#### 





# **Testing the fidelity of posterior inference methods for astrophysics**

Becky Nevin and the DeepSkies Lab

Nov 27, 2023 ML-IAP/CCA Debating the potential of ML in astronomical surveys

## Why test the fidelity of posterior inference methods?

important astrophysical parameter #1 estimate of posterior from a posterior inference method important astrophysical parameter #2



## Why test the fidelity of posterior inference methods?





## Why test the fidelity of posterior inference methods?



Many ML posterior inference methods are over-confident (<u>A crisis in simulation-based inference</u>)



What does it mean to **test the fidelity** of these methods?

Error is important in astrophysics, people's entire careers depend upon / define these error bars:





# Testing the fidelity of **posterior inference methods** for astrophysics







**Posterior inference method** = determining possible parameter values that make sense for your data,  $p(\theta|X)$ 

🛟 Fermilab





## **Posterior inference methods**



### **Bayesian Inference** Analytic likelihood and HMC sampling



#### **Simulation-based inference**

No likelihood needed, uses a density estimator



#### **Deep Ensembles** An amalgamation of neural networks





# **Posterior inference methods**



**Bayesian Inference + Hierarchical** Analytic likelihood and HMC sampling



**Simulation-based inference + Hierarchical** No likelihood needed, uses a density estimator



**Deep Ensembles** An amalgamation of neural networks



### What does it mean to **test the fidelity** of these methods?





## Can we trust the uncertainty prediction of the model?



- ^Uncertainty is clearly really important in astrophysics^
- Can we trust the confidence of these models?
- How do these different models perform under different uncertainty conditions? Different types of uncertainty?

**芬** Fermilab

We require fine control over uncertainty properties  $\rightarrow$  we use Deepskies' **DeepBench** software

## https://github.com/deepskies/DeepBench



Astrophysical object simulation (stars, galaxies)





# **Testing the fidelity of posterior inference methods for astrophysics**

- Comparing posterior inference methods (Bayesian inference, simulation-based inference, and deep ensembles)
- Developing software tools to assess uncertainty prediction from these methods



