Navigating the Cosmos: An Overview of Bayesian and Machine Learning Approaches in Modern Cosmology

Debating the Potential of Machine Learning in Astrophysical Surveys #2 November 29, 2023 IAP, Paris / Flatiron institute, New York

Jens Jasche

Vinut and Alice Wallenberg

Foundation

SF

Next-generation cosmological data is becoming available

Next-generation cosmological data is becoming available

4

The Promise of Bayesian inference for astrophysics (Loredo 1992)

Challenges of Cosmological Inference:

- Cosmology an observational science.
- Phenomena are inaccessible to direct manipulation.
- Cosmological inferences are generally uncertain.

The Bayes Inference Device: $\pi\left(\mathbf{x}|\mathbf{d}\right) = \pi\left(\mathbf{x}\right)\frac{\pi\left(\mathbf{d}|\mathbf{x}\right)}{\pi\left(\mathbf{d}\right)}$

- Guaranteed logically consistent knowledge update supported by data.
- Just Construct the data model and explore the parameter space.

Bayes 1763 Cox 1946 The Promise of Bayesian inference for Cosmology (Trotta 2008)

Why did Bayes become prominent in cosmology?

- Increased Data Sizes and Complexity
 - new surveys arrived
- Algorithmic Advances
 MH, HMC
- Increased Computational Power
- Handling of Complex Models
 Ease of modeling (e.g. BHM)
- Nuisance Parameter marginalization

30 25 15 10Year 95 **'96** '97 '98 **'99 '00 '01 '02** '03 '04 '05 206 All papers (incl. conference proceedings) Journal articles only Loredo 1992 Trotta 2008 Trotta 2017

Number of Bayesian papers in cosmology and astrophysics

The Promise of Deep Learning for Cosmology (Huertas-Company & Lanusse 2023)

Why did Deep Learning become prominent in cosmology?

- Increased Data Sizes and Complexity
 - new are surveys arriving
- Algorithmic Advances
 - Backpropagation, CNN
- Increased Computational Power
- Handling of Complex Models
 - e.g. supervised learning
- Nuisance Parameter marginalization

The Promise of Deep Learning for Cosmology (<u>Huertas-Company & Lanusse 2023</u>)

Why did Deep Learning become prominent in cosmology?

- **Increased Data Sizes and Complexity**
 - new are surveys arriving Ο
- **Algorithmic Advances**
 - **Backpropagation**, CNN Ο
- **Increased Computational Power**
- Handling of Complex Models
 - e.g. supervised learning Ο
- **Nuisance Parameter marginalization**
- Enhancing human data modeling
 - No more manual feature engineering Ο
 - Fully automatic feature learning Ο
 - Data-driven, not algorithm-centered Ο

What is gravity?

• Expansion Dynamics

 $G_{\mu\nu} = \kappa T_{\mu\nu}$

What are the sources of gravity?

- Cosmic Content
- Dynamic Structure Growth

What are the initial conditions?

- Early universe physics
- Origin of structure

 $V_{\mu}T^{\mu\nu}$ = ()

A set of "second order differential equations". Weinberg (2009)

Bayesian Forward modeling cosmic structure surveys

Kostic et al. 2022

How to optimally extract information from data?

Compare 3 standard approaches:

- Standard likelihood-based analysis (LBA) of the two-point correlation function (2PCF), assuming a Gaussian distribution and fixed covariance matrix
- **Simulation-based inference (SBI)**, aka likelihood-free inference, ABC, based on the 2PCF
- Field level data assimilation (DA) technique, e.g.
 Bayesian forward modeling

Beyond summary statistics: Field-level inference

Field-level inference leverages additional data constraints, particularly higher-order statistics.

Leclercq & Heavens 2021

Field-Level Inference in Cosmic Structure Analysis

From the Cosmic Microwave Background to Cosmic Structures

A field-level approach to CMB analyses:

• Wiener Posterior

(see e.g. <u>Wandelt et al 2004</u>, <u>Jewell al 2004</u>, <u>Eriksen et al 2004</u>, <u>Elsner &</u> <u>Wandelt et al 2012</u>, <u>Thommesen et al 2020</u>)

- Linear data modeling
- Gaussian Statistics:

$$P(s|d) \propto \exp\left(-\frac{1}{2}\left(s^{\dagger}S^{-1}s + (d-Rs)^{\dagger}N^{-1}(d-Rs)\right)\right)$$

- Wiener Filtering & Gibbs sampling
 - Handle noise & incomplete data
 - Uncertainty Quantification

(Also see ML Wiener filter implementations in e.g. Münchmeyer & Smith et al 2019, Costanza et al 2023, Pal & Saha 2023)

Searching Cosmic Structure Posteriors:

- Gaussian / Wiener posterior
 - (see e.g. <u>Zaroubi et al 2002</u>, <u>Erdoğdu et al 2004</u>,
 <u>Kitaura et al 2009</u>, <u>Jasche et al 2010</u>, <u>Grannet et al 2012</u>)
- LogNormal
 - (see e.g. <u>Kitaura et al 2010</u>, <u>Jasche et al 2010</u>, <u>Ata et al</u>
 <u>2015</u>, <u>Böhm et al 2017</u>, <u>Böhm et al 2017</u>)
- Physics based model
 - (see e.g. Jasche et al 2013, Wang et al 2013, Kitaura
 2013, Ata et al 2022, Modi et al 2023)

Bayesian Origin Reconstruction from Galaxies (BORG)

Large scale Structure Posterior via BHM

- "Ab initio" modeling of cosmic structures
 - Gaussian initial conditions to Non-Gaussian final conditions
- Numerical Structure Formation Models
 - e.g. LPT, PM and COLA
- Phenomenological likelihoods and galaxy biases
 - e.g. Poisson distribution, power-law bias

Large scale Bayesian inference via MCMC

- A High-dimensional problem: 10⁶ to 10⁹ parameter
- Hierarchical Bayes and block sampling
- Efficient Hamiltonian Monte Carlo technique
- Differentiable structure formation model

A BHM of the cosmic structure

Jasche & Wandelt 2014 Jasche & Lavaux 2019

Bayesian Origin Reconstruction from Galaxies (BORG)

Large scale Structure Posterior via BHM

- "Ab initio" modeling of cosmic structures
 - Gaussian initial conditions to Non-Gaussian final conditions
- Numerical Structure Formation Models
 - e.g. LPT, PM and COLA
- Phenomenological likelihoods and galaxy biases
 - e.g. Poisson distribution, power-law bias

Large scale Bayesian inference via MCMC

- A High-dimensional problem: 10⁶ to 10⁹ parameter
- Hierarchical Bayes and block sampling
- Efficient Hamiltonian Monte Carlo technique
- Differentiable structure formation model

A BHM of the cosmic structure

Jasche & Wandelt 2014 Jasche & Lavaux 2019 **BORG: A Bayesian Generative Model of the Cosmic Structure**

A numerical cosmic structure posterior distribution of the local super volume

• Using the 2M++ Galaxy Compilation (Lavaux & Hudson 2011).

BORG: A Bayesian Generative Model of the Cosmic Structure

Jasche & Lavaux 2019

BORG: A Bayesian Generative Model of the Cosmic Structure

21

Field-level inference of cosmic shear with intrinsic alignments

BORG-WL

- Field-based Bayesian Hierarchical Model for cosmic shear
- Includes baryon feedback (Dai et al 2018)

Field-level inference of cosmic shear with intrinsic alignments

Joint inference of fields and cosmological parameter

- Lifting parameter degeneracies by jointly using:
 - matter power spectrum Ο
 - geometry 0
 - tidal field \bigcirc
 - structure growth Ο
 - distance-redshift relation 0

Porqueres et al. 2021 Porqueres et al. 2022 Porqueres et al. 2023

Also see e.g. Loureiro et al 2023, Boruah & Rozo 2023 for field-based weak lensing signal extraction.

Inferring Initial conditions without explicit posteriors

Posterior sampling using diffusion models

Yang et al 2022

Inferring Initial conditions without explicit posteriors

- No explicit likelihood and gradient needed
- Marginalization over cosmological parameter
- Computationally effective

 10^{5}

 10^{4}

 10^{3}

Also see e.g. List et al 2023 for an alternative approach.

Inferred Truth

Implicit Likelihood Inference

Simulation Based Inference: Implicit Likelihoods and Posterior Distributions

Simulators define the likelihood $\pi(d|x)$ as implicit distributions:

This process generates samples from the joint distribution: $\mathcal{D} = \{x_i, d_i\} \sim \pi(x, d)$

e.g.: <u>Hahn et al 2022</u> <u>Alsing et al 2020</u> <u>Cranmer et al 2020</u>

28

Constructing posterior distributions $\pi(x|d)$ via variational inference:

- Model the posterior distribution by a parametric conditional distribution $q_{\phi}(x|d)$
- Match $q
 ightarrow \pi(x|d)$ by optimizing the Kullback–Leibler divergence:

$$\max_{\phi} \sum_{i} \log \left(q_{\phi}(x_i | d_i) \right) \quad \forall x_i, d_i \sim \pi(x, d)$$

• In the simplest case:

$$q \leftarrow \mathcal{N}(\mu,\,\sigma^2)$$
 with $\mu = f_{\phi_1}(d)$ and $\sigma^2 = g_{\phi_2}(d)$.

but more generally Normalizing Flows or Mixture Density Networks (MDNs).

e.g.: <u>Makinen et al 2023</u> <u>Lemos et al 2023</u> <u>Hahn et al 2022</u> <u>Alsing et al 2020</u> Cranmer et al 2020

Steps of SBI:

- 1. Create a training set $\mathcal{D} = \{x_i, d_i\} \sim \pi(x, d)$ (this may include data compression)
- 2. Choose a parametric model $q_{\phi}(x|d)$
- 3. Optimize parameter ϕ :

$$\max_{\phi} \sum_{i} \log\left(q_{\phi}(x_i | d_i)\right)$$

4. Perform inference:

e.g.: <u>Makinen et al 2023</u> <u>Lemos et al 2023</u> <u>Hahn et al 2022</u> <u>Alsing et al 2020</u> Cranmer et al 2020

Constructing informative Summary Statistics

- Information Maximizing Networks
 - Compress data for dimensional reduction
 - Optimal Score compression by optimizing Fisher-Information:

$$\mathcal{L} = -\ln \det \langle F \rangle_{\pi(d|\theta_{\mathrm{fid}})}$$

Also see e.g. Heavens et al 2000, Heavens et al 2023, Akhmetzhanova et al 2023

Simulation-based inference for cosmic shear with KiDS

Test SBI vs MCMC:

- Recovers the 12-dimensional KiDS posterior.
- Requires under 10,000 simulations.
- SBI is competitive to MCMC

Also see e.g. Zhao et al 2022, Lemos et al 2023, Makinen et al 2023, Modi et al 2023

Fast Emulation of Cosmological Simulations

Massive Galaxy Clusters in the Nearby Universe

Stopyra et al 2021 34

Massive Galaxy Clusters in the Nearby Universe

- Significance of High-Mass Objects:
 - Small volume contribution
 - Large impact on cosmology
- Challenges in Cluster Mass Estimation:
 - Intricate details
 - complex cosmic environments
 - Simplifying assumptions do not apply (e.g., sphericity, virial theorem)
- Requires accurate modeling:
 - Non-linear structure formation
 - Fast and scalable models

Local Universe Cluster Mugshots

A multitude of approximate models:

- Lagrangian / Eulerian perturbation theory (see e.g. Zel'dovich 1970, Bernardeau 2002)
- Adhesion / Schrödinger mode (see e.g. Gurbatov et al 1985, Coles & Spencer et al 2002)
- **E**ffective **F**ield **T**heory of Cosmic Structures (see e.g Carrasco et al 2012, Schmidt et al 2018)
- For more see e.g. Monaco 2016

(i) A3LPT

36 Monaco 2016

A multitude of approximate models:

- Lagrangian / Eulerian perturbation theory (see e.g. Zel'dovich 1970, Bernardeau 2002)
- Adhesion / Schrödinger mode (see e.g. Gurbatov et al 1985, Coles & Spencer et al 2002)
- **E**ffective **F**ield **T**heory of Cosmic Structures (see e.g Carrasco et al 2012, Schmidt et al 2018)
- For more see e.g. Monaco 2016

Residual Correction Technique:

COmoving Lagrangian Acceleration (COLA) Tassev et al 2013

$$m{x} = m{x}_{
m LPT} + m{x}_{
m res}$$

$$oldsymbol{v} = \dot{oldsymbol{x}}_{ ext{LPT}} + oldsymbol{v}_{ ext{res}}$$

$$oldsymbol{F}(oldsymbol{x}) = \ddot{oldsymbol{x}}_{ ext{LPT}} + oldsymbol{F}_{ ext{res}}(oldsymbol{x})$$

≈ 100 times faster than N-body simulations

(h) A2LPT

(i) A3LPT

(g) COLA

Monaco 2016

Required approximation accuracy for field-level inference

• required COLA time steps to re-simulate cluster masses

Also see e.g. Ding et al 2023

Stopyra et al 2023³⁸

Modeling residual displacements

• Learns LPT residuals from paired simulations.

Deep neural network field-level emulator

- V-net (convolutional with skip connections)
- Cosmology encoded as style parameters
- Neural network enables differentiability
- Accurate alternative to 3D simulation.

Deep Density Displacement Model (D3M).

Jamieson et al 2023

Field-level Neural Network Emulator outperform traditional approximate models

Power- and Bi-spectra

40

Field-level Neural Network Emulator outperform traditional approximate models

<u>Doeser et al (in prep)</u>

41

Enabling efficient Bayesian Inference with Neural Emulators

Bayesian Origin Reconstruction from Galaxies (BORG) Image Design: D.K.Ramanah et al. (2019)

Doeser et al (in prep) 42

Enabling efficient Bayesian Inference with Neural Emulators

slide credit: Ludvig Doeser

Doeser et al (in prep) 43

Galaxy Bias, the Biggest Bottleneck in Cosmological Studies

Modeling Galaxy bias with ML: Lagrangian Deep Learning

Translate Eulerian DM density to galaxy fields

- Map DMO 3D matter to galaxy fields in full hydro simulations
- Two-step learning process due to zero-inflation of data
- Unet achieves 10% level accuracy up to $k = 10 h Mpc^{-1}$

10³

Zhang et al 2019

Inception+R2Unet

R2Unet+R2Unet

Modeling Galaxy bias with ML: Lagrangian Deep Learning

Generate astrophysical observables by displacing particles

- Leverage translational and rotational symmetries
- Stable, easy to train, and explicitly differentiable.
- Order 10 parameters

Translate Eulerian DM density to halo fields

- Encode Physical Symmetries
 - Translational invariance
 - Local rotational invariance
 - Locality

47

Charnock et al 2020

Also see <u>Dai & Seljak 2021</u> for an analogous Lagrangian approach.

Ding et al in prep Charnock et al 2020 48

Also see <u>Dai & Seljak 2021</u> for an analogous Lagrangian approach.

credit for slide: Simon Ding

DM field at z=0

Data = Halo Catalog

Inferred NPE halo model

Learning to Learn from ML

Explainable AI: Dark Matter Halo density profiles

Learning Dark Matter Halo Density Profiles:

- Supervised encoder-decoder framework
- Compresses inputs into a low-dimensional latent representation.
- Outputs $\rho(r)$ for any desired value of radius r.

Explainable AI: Dark Matter Halo density profiles Interpreting the latent representation using mutual information

- 2D: Accurately models density profiles up to the virial radius.
- 3D: Required for describing outer profiles beyond the virial radius.
- 4D+: Reveals infalling material in outer profiles and splashback boundaries.

Predict remaining information content of 3D cosmic structures

- Optimally answer physics questions
- Propose optimal regions for follow-up observations

Fisher information: Parameter Of Interest (POI) $\mathcal{I}(heta|\phi) = \mathbb{E}_{(d| heta,\phi)} \left[\left(rac{\partial \ln(\mathcal{L}(d| heta,\phi))}{\partial heta}
ight)^2
ight]$ $= \int \mathcal{D}d \, \left(\frac{\partial \ln(\mathcal{L}(d|\theta,\phi))}{\partial \theta} \right)^2 \mathcal{L}(d|\theta,\phi)$ Inferred Initial conditions **Parameter Sensit** Kostic et al 2022

Parameter Sensitivities

Kostic et al 2022

Kostic et al 2022

Summary & Conclusion

Summary & Conclusions

Cosmological data will no longer be scarce:

• Our capability to analyse data will limit knowledge gains

Inference Technology:

- Field-level Inference:
 - Information Optimality
 - The complete characterization of cosmic structure (no compression)
- Implicit Likelihood Inference:
 - Simulation Based Inference (no explicit likelihood)
 - Information Optimal Data Compression
 - A viable alternative to classical MCMC

ML enhanced data modeling

- Accurate and fast Physics Emulators
- Automatic feature design (e.g. information maximizing summaries)

3

Current limitations:

- Handling of small-scale baryonic physics and galaxy biasing
- Training data requirements
 - Accuracy, Size, Diversity, Representativeness

