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Accelearating simulations

Reaching the information floor 
of the data

How can AI open new possibilities in cosmological analysis of LSS?

Breaking degeneracies between 
cosmology and systematics
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Dark matter distributions carries information about cosmological parameters

fiducial

high DE equation of state

high matter density high dark energy

low S8 high S8



Large Scale Structure is highly non-Gaussian
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Gaussian Random Field with the same 2-pt as (left)

N-body simulation slice Gaussian Random Field with the same 
power spectrum as the N-body slice

these maps have the same power spectra
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Weak lensing matter mass maps: projected matter distribution



What is the advantage of deep learning for current and upcoming data?

add smoothing →

add noise →

quality of  
simulations

quality of  
observations



How much more information can we gain with deep learning 
for Stage-III and Stage-IV surveys?

Rubin/LSST

Euclid

Kilo Degree Survey

Hyper Suprime 
 Cam

Stage III

Stage IV



First results for CNN vs 2-pt on lensing convergence: classification

• First application of CNNs to weak lensing 
maps for a classification problem 

• Discriminating between five cosmologies in 
 that have the same power spectra 

• Smoothing scale  arcmin 

• Realistic noise level for Stage-3 surveys 

• Biggest challenge: make the network handle 
very noisy data 

• Classification accuracy CNN 90%, compared 
to skewness and kurtosis (70%)

Ωm, σ8

σ = 0.9

Schmelzle, +TK, et al. 1707.05167



First results for CNN vs 2-pt

Gupta et al. 2018 1902.03663

Gaussian Random FieldsN-body simulation

• First comparison between CNN 
and 2-pt on the constraints level 
noise- free N-body sims 

• Greatly improved precision by 
CNN vs 2-pt, also beating peak 
counts 

• Same results for CNN as for 2-
pt for Gaussian Random Fields 
→ reassuring!



Fluri, TK, et al. 1807.08732
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What is the advantage of deep learning for current and upcoming data?

• Work led by Janis Fluri, 
interdisciplinary PhD (2022) 
with the Cosmology Group, the 
ETHZ Data Analytics Lab and 
Swiss Data Science Center 

• The advantage of deep learning 
is preserved for high noise levels 

• Advantage of deep learning 
starts at intermediate scales, 
around  

• This is the regime already 
affected by baryonic feedback 

• The advantage increased 
greatly if small scales included

ℓ < 1000 in
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• The advantage of deep 
learning is preserved for 
high noise levels 

• Advantage of deep 
learning starts at 
intermediate scales, 
around  

• This is the regime 
already affected by 
baryonic feedback 

• The advantage increased 
greatly if small scales 
included

ℓ = 1000
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What is the advantage of deep learning for current and upcoming data?

Fluri, TK, et al. 1807.08732



First CNN measurement on data: analysis of KiDS-450 with deep learning

Fluri, TK, et al. 1906.03156

network: 3 parameter outputdata: 
20 x 4 tomographic 
shear maps

likelihood analysis



Analysis of KiDS-450 with deep learning

S8 = σ8(Ωm/0.3)0.5 = 0.777 +/- 0.037

blinding strategy used in the analysis
First results using machine learning inference in LSS cosmology 

Blinded analysis
Fluri, TK, et al. 1906.03156



KiDS-1000 constraints with deep learning

• Demonstration of the scalability of the deep learning 
approach 

• Full KiDS-1000 survey analysis of the 1000 deg2 

• Low-res analysis at nside=512 due to processing 
power limitations, pixel size 7 arcmin 

• Using full CosmoGridV1 simulation volume 

• Constrained:  

• Marginalized: +baryons , +sys 

• Improved results compared to power spectra  25% 

• Blinded analysis with results consistent with main 
KiDS results 

Ωm, σ8, w0, AIA

H0, Ωb, ns, Mc, ν

∼

Fluri, TK, et al. 2022, 2201.07771 

simulated “observation”



KiDS-1000 constraints with deep learning

Fluri, TK, et al. 2022, 2201.07771 

• Demonstration of the scalability of the deep learning 
approach 

• Full KiDS-1000 survey analysis of the 1000 deg2 

• Low-res analysis at nside=512 due to processing 
power limitations, pixel size 7 arcmin 

• Using full CosmoGridV1 simulation volume 

• Constrained:  

• Marginalized: +baryons , +sys 

• Improved results compared to power spectra  25% 

• Blinded analysis with results consistent with main 
KiDS results 
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Cosmology from HSC Y1 with deep learning 

Lu, Haiman, Li 2023 2301.01354 

• 171 deg2 lensing data from HSC 

• +baryons:  

• Marginalized systematics 

• No marginalization of other cosmological 
parameters in wCDM 

• for the first time: forward-modelling of PSF 
leakage residuals on the map level 

• CNNs deliver improved constraints: 5–24% for 
 and a factor of 2.5–3.0 smaller for  

• Greatly improved constraint on , although 
IA fixed with redshift 

• No blinding

Ωm, σ8, AIA, Mc, M1,0, η, β

S8 Ωm

AIA



Human vs machine: peaks statistics for DES Y3

Image credit: Samantha Bond (SKIM Group)



Human intuition statistics: peaks for DES-Y3

Zuercher, +TK, +DES Collaboration  2110.10135 

DES Y3 data

Constrain:
•  : clustering strength
•  : matter density
•  : intrinsic alignment

Marginalize:

➡  

➡ n(z) error

➡ Shear calibration error

σ8
Ωm
AIA

ns, Ωb, h

Simulations

• 5000 deg2

• Up to redshift z=1.5
•≈6 galaxies/arcmin2 



• Tomographic peaks measurement 
• Conservative scales, smoothing  arcmin 
• Using a Peaks + Cl emulator 
• 40% improvement for combined analysis 
• Blinded analysis

σ > 8  =S8
 =AIA

S8

Zuercher, +TK, +DES Collaboration  2110.10135 

Human intuition statistics: peaks for DES-Y3



BOSS galaxy clustering with Wavelet Scattering Transform 
(24 Oct 2023)

Valogiannis, Yuan, Dvorkin 2023 2310.1611

• Emulator created using ABACUS-SUMMIT simulations 
• Using BOSS spectroscopic LRG galaxy clustering 

 (CMAS sample) 

• 4 cosmology parameters:  

• Smallest smoothing scale:   
• 6 halo occupation distribution parameters: 

•   minimum halo mass to host a central galaxy 

•  typical halo mass that hosts one satellite galaxy 

•  steepness of the error function upturn in the 
•  is the power-law index on the number of satellite galaxies 

•  minimum mass of a halo that can host a satellite 

•  modulation to satellite occupation function to disfavor 
satellites from halos without centrals 

• Wavelet Scattering Transform + correlation gives 
improvement  compared to correlations only 

• No blinding / under review

z ∈ [0.46,0.57]
ωc, σ8, ns, h

8 Mpc/h

Mcut

M1

σ
α
κMcut

n̄LRG
cent

2.5 − 6 ×



BOSS galaxy clustering with CNNs (23 Oct 2023)

• Using the Qiuchote Simulations suite 
• Using BOSS spectroscopic LRG galaxy clustering 

 (CMAS sample) 

• 5 cosmology parameters:  

• Marginalizing over 9 HOD parameters 
• Using the SimBIG forward modelling framework  
• Pixelizing the clustering data into voxel box with 

 voxels 

• Smoothing scale: voxel size of  

• Training CNNs with  learnable kernels 
• CNNs give improvement  compared to 

correlations only 

• Gives low  values  
interesting for  tension? 

• No blinding / under review

z ∈ [0.46,0.57]
Ωm, σ8, ns, h, Ωb

64 × 128 × 128
11 Mpc/h

3 × 3 × 3
2.65 ×

H0 = 64.5 ± 3.8 km/s/Mpc →
H0



SBI for neutrino constraints

• Forecast for Rubin/LSST full data 

• High resolution: pixel size 0.4 arcmin 

• Improvement in  constraint by , but 
depend on the noise level  

• Using the MassiveNus simulation suite 

• Potential to detect neutrino mass from 
Stage-3 surveys? 

Mν × 2

Cheng, Ménard 2021 2103.09247

input map

power 
spectrum

bispectrum scattering 
transform S1, S2



AI cosmology with 21cm maps from SKA

• Use the SKA 21-cm instrument model, 
including noise, angular resolution, foreground 
cleaning 

• Using the SIMFAST21 simulation code 

• Using CNN architectures: VGGNet, ResNet 

• Simultaneously , , , and astrophysics:  

‣ Photon escape fraction fesc  

‣ Ionizing emissivity power dependence on halo 
mass Cion  

‣ Ionizing emissivity redshift evolution index Dion 

• Very good accuracy!  

Ωm σ8 h

Hassan Andrianomena Doughty 2020 1907.07787 
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How can AI open new possibilities in cosmological analysis?

Breaking degeneracies between 
cosmology and systematics



Robust cosmology  well constrained astrophysics↔
• Cosmology and astrophysics can be 

degenerate (IA, baryon, galaxy evolution) 

• Measurements have a limited ability to 
constrain the models 

• Too simple astrophysical models can lead 
to underfitting bias in results 

• Marginalizing over complex astrophysical 
models can lead to loss of precision and to 
prior volume effects, which bias results 

• Simulation-Based Analysis can extract 
more information, which enables 
constraining more complex astrophysical 
models without loss of precision in 
cosmology parameters 

• For this, especially powerful is map-level 
probe combination

Secco+TK, DES Collab [2105.13544]



DeepLSS: combined probes with deep learning
Kacprzak and Fluri 2022, arXiv:2203.09616, Phys. Rev. X 12, 031029  

• Consistent 
simulations of galaxy 
shapes and positions 

• Using Stage-III 
configuration with 4 
tomographic bins 

• Avoiding non-linear 
bias and baryons by 
smoothing the maps 

• Code public: 
github.com/
tomaszkacprzak/
DeepLSS 

Higher redshift →← Lower redshift

http://github.com/tomaszkacprzak/DeepLSS
http://github.com/tomaszkacprzak/DeepLSS
http://github.com/tomaszkacprzak/DeepLSS


DeepLSS: combined probes with deep learning
Kacprzak and Fluri 2022, 2203.09616, Phys. Rev. X 12, 031029  

Weak lensing

Physical fields:

Galaxy clustering Intrinsic Alignment



DeepLSS: combined probes with deep learning

Galaxy shapes = 
noisy weak lensing 
and intrinsic 
alignment

Galaxy positions = 
biased galaxy 
clustering

Observables:

Kacprzak and Fluri 2022, 2203.09616, Phys. Rev. X 12, 031029  



Example simulated analysis, 
posterior distribution

DeepLSS: combined probes with deep learning

• Apples-to-apples comparison 
between power spectra and 
deep learning 

• Biasing sector constraints also 
improved by 30-40% 

• Deep learning analysis breaks 
several key degeneracies 

• Intrinsic alignment 
measurement is greatly de-
correlated from cosmology 

• Galaxy biasing evolution is also 
de-correlated from cosmology 

• Cosmology constraints 
improved due to breaking 
degeneracy with IA 
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DeepLSS: combined probes with deep learning



DeepLSS: combined probes with deep learning

• Apples-to-apples comparison 
between power spectra and deep 
learning 

• Deep learning analysis breaks several 
key degeneracies 

• Intrinsic alignment measurement is 
greatly de-correlated from cosmology 

• Cosmology constraints improved due 
to breaking degeneracy with IA 

Kacprzak and Fluri 2022, Phys. Rev. X 12, 031029  



• Sensitivity maps show which pixels have 
the most impact on the final prediction of 
the network 

• The networks focuses on very specific 
regions in the galaxy positions and 
lensing maps 

• Deep learning weights the data in a way 
that maximises information gain 

Where is the additional information coming from?

Kacprzak and Fluri 2022, Phys. Rev. X 12, 031029  



What is the network really learning?
• It is important to understand where the information is coming from 
• One way to understand it: which areas of the map are being used to make a decision 

about the output cosmology? 
• A number of interpretability measures are present in literature for computer vision  
• First paper on their application to lensing: Zorrilla Matilla et al. 2020 
• Different interpretability measures give different insights, maps for  output neuronΩm

Zorrilla Matilla et al. 2020 2007.06529  

LRP-αβinput lensing map gradient guided backprop Taylor decomposition



Simulations-Based Inference in Dark Energy Survey

• First multiprobe map-level SBI analysis 
with deep learning and peak counts 

• Traninig set size 50 TB + on-the-fly 
augmentations: noise addition, systematic 
effects 

• Currently training low-resoultion version 
(batch size 100m pixels) 

• Running on 2 NERSC Perlmutter nodes 
(8 GPUs) 

• NERSC Science Acceleration Program 
(NESAP) is helping us with scaling to 
high-res, 4x more pixels 

• See poster by Arne Thomsen

∼



Data Science Challenge: map-level 
goodness of fit  

• Goal: simulations-based inference without bias 
stemming from a wrong simulation model 

• In traditional inference with summaries, 
simple metrics exist to quantify this, simplest 
being the reduced  

• Problem: how to evaluate goodness of fit for 
a 1m-dimensional map vector 

• No established methods existing yet 
• Possible approach: decompose data and check 

stability of results: 
‣ different areas of the survey 
‣ scale decomposition: naturally included in 

normalizing flows (Dai Seljak 2023 
2306.04689)  

• Another proposed method: foundation models

χ2

Distribution of 
residuals tells us 
about goodness of 
fit, for example χ2

red

How to quantify 
goodness of fit for 
stochastic maps?

survey data

simulation

CMB TT Planck 2015
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How can AI open new possibilities in cosmological analysis?

Breaking degeneracies between 
cosmology and systematics



The simulation set that started it all:  
Dietrich & Hartlap 2009

• First simulations-based inference for 
cosmology, with two types of peak counts 
functions 

• 158 simulations in  space 

• Pencil-beam lightcones from  particle 
simulations in  boxes 

• 6 6 deg2 convergence maps 
• Uniformly sampled background galaxies 

with shears from fixed n(z) 
• Used in first shear peak statistics papers: 
‣ CFHTLenS: Liu et al. 1412.0757 
‣ DES-SV: Kacprzak et al. 1603.05040 
‣ KiDS-450: Martinet et al. 1709.07678 

Ωm − σ8

2563

200 h−1 Mpc
×

Joerg Dietrich  
(LMU)



Cosmo-Slics

Harnois-Déraps et al. 2021 2012.02777 

• 26 cosmology parameters spanning 
 

• 100s of realizations at fiducial cosmology, 
good for covariance validation 

• 10 10 deg2 pencil-beam lensing maps 
• High resolution convergence: 15362 

particles inside  boxes 
• Great for small scales, but at the moment 

lacking baryon feedback models 
• Used in DES-Y1 peak counts cosmology 

paper: Harnois-Déraps et al. 2021 
2012.02777 

• Used in many forecasts for non-Gaussian 
statistics, latest for Euclid Preparation Key 
Project 

• Available at: https://slics.roe.ac.uk  

Ωm, σ8 h, w

×

505 h−1 Mpc

DES-Y1 peak cosmology  
field cutouts

https://slics.roe.ac.uk


Cosmo-Slics

Euclid forecast for  
11 non-Gaussian statistics

Euclid Collab. 2023 2301.12890

• 26 cosmology parameters spanning 
 

• 100s of realizations at fiducial cosmology, 
good for covariance validation 

• 10 10 deg2 pencil-beam lensing maps 
• High resolution convergence: 15362 

particles inside  boxes 
• Great for small scales, but at the moment 

lacking baryon feedback models 
• Used in DES-Y1 peak counts cosmology 

paper: Harnois-Déraps et al. 2021 
2012.02777 

• Used in many forecasts for non-Gaussian 
statistics, latest for Euclid Preparation Key 
Project 

• Available at: https://slics.roe.ac.uk  

Ωm, σ8 h, w

×

505 h−1 Mpc

https://slics.roe.ac.uk


Quichote simulations 

Villaescusa-Navarro et al. 2019, 1909.05273

• 1 Gpc/h boxes with 5123 particles 
• 45500 simulations total 
• High-res benchmarks 
• Snapshots at z=0, 0.5, 1, 2, 3 
• Data available at                           

https://quijote-simulations.readthedocs.io/

• 11000 simulations distributed in a latin hypercube 
• Varying parameters  
• 7000 cosmological models 
• Central simulation and derivatives from the same 

initial conditions

Ωm, σ8 Ωb ns, σ8, Mν, w

 fiducial  derivative  Ωm  derivative σ8

https://quijote-simulations.readthedocs.io/


The ABACUS-SUMMIT simulations

Maksimova et al. 2021 2110.11398

• 139 simulations with  particles in 
 boxes 

• 97 cosmological models 

• Spanning  core parameters, 
+additional “derivatives” for extended 
parameters 

• Stored 33 timesteps in for  
• full snapshots, lightcones, halo catalogs, 

particle subsets, merger trees 
• 2PB of data products 
• data products support using HODs to 

create galaxy catalogs 
• Ran on Summit, one of the largest 

supercomputers in the world 

69123

2 h−1 Gpc

Ωm, As, h, ns

z ∈ [0.1,8]
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The public CosmoGridV1 simulation set
TK, Fluri, Schneider, Refregier, Stadel 2209.04662 

• 2500 unique cosmologies in wCDM 
 

• 200 simulations at the fiducial+deltas 
• 7 unique initial conditions simulations per 

cosmology 
• Total 20000 independent N-body simulations 
•  boxes, 8323 particles, box 

replication up to  
• 70 shells per lightcone, typical shell thickness 

 
• Benchmark simulations available with bigger 

boxes, more particles and more shells 
• Baryonification and NLA intrinsic alignments 

available 
• CSCS Large Production Project, 2020-21 
• 300TB of raw simulation data, CC-BY licence

Ωm, σ8, w, ns, H0, Ωb

∼
900 Mpc/h

z = 3.5

60 Mpc/h



The public CosmoGridV1 simulation set
TK, Fluri, Schneider, Refregier, Stadel 2209.04662 

• So far used at Nside=512 for the 1000 
dataset (Fluri et al. 2022, 2201.07771)  

• Smaller subset used for Nside=1024 for the 
Stage-4 peaks+non-Gaussian forecast 
(Zuercher et al. 2022, 2206.01450) 

• Baryonification done so far for two 
parameters controlling the mass 
dependence of the gas profile: scale and 
redshift dependence 

• Baryonification can be re-done with more 
parameters 

• Possibility of doing a 2048 analysis with 
more baryon parameters



Baryon Correction Model (BCM), 
or baryonification

Schneider Teyssier 2015 1510.06034 

• Idea: modify dark matter only simulations so that 
they have the same distribution as hydrosims 

• Use Halo Model framework 

• Write a halo profile function including baryon 
correction terms 

• Procedure for each halo: 

‣ Measure NWF halo parameters and make a 
parametric profile 

‣ Modify halo profile according to BCM 
parameters 

‣ Find displacement vectors for each particle in a 
halo 

• Advantage: parametric model that can reproduce 
multiple hydro-sims on the power spectrum level 

• Question: does it reproduce hydro-sims on a map 
level?



Schneider Teyssier 2015 1510.06034 

Baryon Correction Model (BCM), or baryonification

• Idea: modify dark matter only simulations so that 
they have the same distribution as hydrosims 

• Use Halo Model framework 

• Write a halo profile function including baryon 
correction terms 

• Procedure for each halo: 

‣ Measure NWF halo parameters and make a 
parametric profile 

‣ Modify halo profile according to BCM 
parameters 
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multiple hydro-sims on the power spectrum level 
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CosmoGridV1 shell permutations

• Box replication schemes do not introduce 
discontinuities in the lightcone, but can lead to 
repeated structures along the line of sight 

• The line of sight repetition will happen for every 45 
deg x N, (N=integer) angle 

• To avoid this, we introduced a “shell permutation 
scheme”, where each shell group (of thickness 
corresponding to the simulation box) comes from 
independent N-body simulations 

• Up to redshift of z=2 we have 5 shells 

• This introduces slight discontinuities in the lightcone, 
but generally <1% of the volume (in 4 Mpc voxels) 

• Big box benchmark is composed of 2 shell groups 



→ Data available at 
www.cosmogrid.ai 

→ Full data documentation available 
→ Fast transfer with Globus 
→ Creative Commons BY licence 
→ CosmoGridV1.1 in preparation to 

include ISW and CMB lensing 
maps

The data

http://www.cosmogrid.ai


Other amazing publicly available simulation suites

• MassiveNus (Liu et al. 2018 1711.10524) 

‣ Designed to explore simulations-based inference for 
constraining cosmological neutrino masses, 101 
simulations in , high-resolution pencil beams  

‣ Data available at http://columbialensing.org 

• The CAMELS-SAM Suite (Perez et al. 2022 2204.02408) 

‣ 1000 dark matter simulations at , 
cosmology parameters: , three semi-analytical 
baryon feedback parameters:  

‣ Data available at https://camels-sam.readthedocs.io/  

Ωm, As, Mν

100 h−1 Mpc
Ωm, σ8

ASN1, ASN2, AAGN

neutrino mass Mν

m
at

te
r 

de
ns

ity
 Ω

m

 MassiveNus 

 Camels-SAM  

y 
po

sit
io

n

x position

http://columbialensing.org
https://camels-sam.readthedocs.io/


“Painting with baryons: augmenting N-body simulations with gas using 
deep generative models”

Tröster et al. 2019, 1903.12173

• Using BAHAMAS simulations to create gas pressure maps for the corresponding dark 
matter maps 

• Using Generative Adversarial Nets and Variational Autoencoders to create the gas 
pressure maps based on the dark matter map only

Dark matter map Gas pressure map



CAMELS: Cosmology and Astrophysics with MachinE Learning Simulations  

Dark matter

Stellar mass Gas 
temperature

Neutral 
hydrogen

Gas 
metallicity

Gas 
density

General, precise simulations including all of the important effects 

• Magneto-hydrodynamic simulations using AREPO and 
GIZMO, employing baryonic subgrid physics as IllustrisTNG 
and SIMBA 

• Dataset used to demonstrate the possibilities of machine 
learning to understand astrophysics and cosmology jointly 

• 4233 small boxes  spanning the wCDM 
cosmological model and different AGN feedback models 

• 20+ methods papers for various problems in the last 2 years 

• Data publicly available at https://camels.readthedocs.io

(25 h−1 Mpc)3

Villaescusa-Navarro et al. 2022 2201.01300  

https://camels.readthedocs.io


From EMBER to FIRE: predicting high-res baryon fields from matter-only
Bernardini et al. 2022 2110.11970  

• Improved accuracy of baryon 
painting, using WGANs 

• Zoom-in hydro-simulations 
FIRE representing large range 
of scales 

• Learning the  power specra 
with 10% accuracy at  
scales 

• Multi-scale application, hydro 
at , dark matter 
-only  

HI
∼ kpc

15 h−1 Mpc
100 h−1Mpc

 hydroHI  GAN samplesHI



Data Science Challenge: simulations-based 
inference with multi-fidelity simulations

MF Ho, Bird, Shelton 2021 2105.01081 

• Goal: build simulations for AI-based map-level 
inference that include realistic small scale effects 

• Problem: small hydrosimulations are expensive, 
cosmological-scale hydro-sims are out of our 
current reach 

• Idea: combine expensive small scale simulations 
with cheap large scale simulation 

• This technique is called multi-fidelity and has 
recently been demonstrated on the level of 
summary statistics (power spectra) 

• Challenge: build AI systems that can learn from 
small-scale simulations and correctly “augment” 
large scale simulations and produce consistent 
probe maps for SBI 

• Possible answers: foundation models

Ωm

Ω
b

Multi-fidelity vs 
High-resolution

fra
ct

io
na

l e
rro

r

1%

0.1%

10%



→ Present gains of SBI/AI analysis: increasing the precision of results, typically 30-50% for lensing 
for current scale limit, recently gains of for clustering 

→ Upcoming gains of SBI/AI analysis: constraining more complex astrophysics and make our 
cosmology measurements more robust 

→ Future gains of SBI/AI analysis: increased information sensitivity enables constraining models 
beyond wCDM, testing modified DE/DM/Gravity theories

2 − 6 ×

Where are we with SBI/AI?



Backup slides 



• Cosmology from Galaxy Redshift Surveys with PointNet, S. Anagnostidis, A. Thomsen, T. Kacprzak, T. Tröster, L. Biggio, A. Refregier, T. Hofmann, 
NeurIPS 2022, 2211.12346 

• CosmoGridV1: a simulated wCDM theory prediction for map-level cosmological inference, T. Kacprzak, J. Fluri, A. Schneider, A Refregier, J Stadel, 
JCAP 2023, 2, 50, 2209.04662  

• DeepLSS: breaking parameter degeneracies in large scale structure with deep learning of combined probes, T. Kacprzak, J. Fluri, PhysRevX, 2022, 
2, 031029, 2203.09616,  

• A Full wCDM Analysis of KiDS-1000 Weak Lensing Maps using Deep Learning, J. Fluri, T. Kacprzak, A. Lucchi, A. Schneider, A. Refregier, T. 
Hofmann PhysRevD, 2022, 105, 8, 083518, 2201.07771,  

• Cosmological constraints with deep learning from KiDS-450 weak lensing maps, J. Fluri, T. Kacprzak, A. Lucchi, A. Refregier, A. Amara, T. 
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Visual comparison between original N-body and GAN maps

KiDS-1000 mass map emulator

https://tfhub.dev/cosmo-group-ethz/models/kids-cgan/1

Grid of simulations as 
train/test set

Very fast generator publicly available:

https://tfhub.dev/cosmo-group-ethz/models/kids-cgan/1


Perraudin, TK,  et al. 2020, 2004.08139

Quantitative comparison: a very good match of summary statistics 

Pixel histogram

Peaks histogram

Power spectrum

Bispectrum

Minkowski V1

Minkowski V2

Power spectrum 
correlation matrix

GAN

N-Body

Emulation of cosmological mass maps with conditional GANs
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Perraudin, TK,  et al. 2020, 2004.08139

Comparison between the N-body and GAN-generated mass maps for 
varying cosmological parameters

Emulation of cosmological mass maps with conditional GANs



Deep learning on the sphere: a tool for large area sky maps

github.com/
deepsphere

• Various CNN/Transformer architectures on the sphere with Healpix sampling 
• Using graph representation, useful for analysis of data on part of the sphere 
• One of the fastest sphere convolutions available (but slightly approximate) 
• Used by other domains: weather, geo-sciences 
• Tensorflow and PyTorch interfaces

Perraudin, TK, et al. 1810.12186



Cosmological parameter inference 

Secco, +DES. +TK, 2105.13544
matter density Ωm 
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Zuercher, +TK, +DES, 2110.10135

parameter measurement

LSS observations

Assume a model with parameters 
Assume priors on parameters 
Compare with observations



Dark matter distributions carries information about cosmological parameters

fiducial

high dark energy 
equation of state w

high matter density high dark energy

low S8 high S8

z=0.5



background 
galaxies

foreground 
galaxies

telescope 
image

Tomographic combined probes of LSS

Image: Joachimi et al. 2015 

• Photometric surveys 
take images of the sky 
for a few filters 

• Photo-z is used to 
make maps of galaxy 
positions and shapes 



background 
galaxies

foreground 
galaxies

telescope 
image

Image: Joachimi et al. 2015 

Tomographic combined probes of LSS

• Weak lensing:    
galaxy shapes are 
unbiased tracer of 
dark matter between 
the galaxy and the 
observer 

• Galaxy clustering: 
galaxy positions are a 
biased tracer of 
underlying dark matter  

• Intrinsic alignmnets: 
galaxy shapes are also 
aligned with their local 
density environment



Image: Joachimi et al. 2015 

Tomographic combined probes of LSS

• Weak lensing:    
galaxy shapes are 
unbiased tracer of dark 
matter between the 
galaxy and the 
observer 

• Galaxy clustering: 
galaxy positions are 
a biased tracer of 
underlying dark 
matter  

• Intrinsic alignmnets: 
galaxy shapes are also 
aligned with their local 
density environment

background 
galaxies

foreground 
galaxies

telescope 
image



Image: Joachimi et al. 2015 

Tomographic combined probes of LSS

background 
galaxies

foreground 
galaxies

telescope 
image

• Weak lensing:    
galaxy shapes are 
unbiased tracer of dark 
matter between the 
galaxy and the 
observer 

• Galaxy clustering: 
galaxy positions are a 
biased tracer of 
underlying dark matter  

• Intrinsic alignmnets: 
galaxy shapes are 
also aligned with 
their local density 
environment



theory prediction: analytical

Traditional inference
LSS observations

Ωm 

parameter measurement

σ 8
 

statistics: 2pt functions



statistics: deep convolutional network

theory prediction: simulations

…

Inference with Deep Learning
LSS observations

Ωm 

parameter measurement

σ 8
 



Dark matter distributions carries information about cosmological parameters

fiducial

high dark energy 
equation of state

high matter density high dark energy

low S8 high S8

z=0.5



N-body cube generation in 3D

Srivastava, TK, et al.,  submitted



First Generative Model for cosmological mass maps

Mustafa et al. 2017 1706.02390

• First generative model 
trained on simulations 
applied to cosmological 
fields 

• N-body vs GAN visually 
indistinguishable 

• Excellent agreement on 
(non-Gaussian) summary 
statistics 

• Very simple networks, 
worked out-of-the-box



AI super-resolution of N-body simulations

• Learn the mapping from 
the low to high resolution 
simulations 

• Works on 3D volumes! 
• Using Wasserstein GANs 

with gradient penalty on 
3D volumes 

• Increase of resolution by 
a factor of 8  

• Super-resolution is 
extremely fast 

• Reproduces well the                          
halo mass function            
(1011-1014 M⊙) and          
power spectra                    
(k between 0.1 - 10) 

• Works for a single 
cosmology, separate GAN 
for each redshift

Li et al. 2021 2010.06608  Low-res (training) Hi-res (true) Super-resolution



Visual comparison between original N-body and GAN maps

KiDS-1000 mass map emulator

https://tfhub.dev/cosmo-group-ethz/models/kids-cgan/1

Grid of simulations as 
train/test set

Very fast generator publicly available:

https://tfhub.dev/cosmo-group-ethz/models/kids-cgan/1


Fiducial cosmology and derivatives
TK, Fluri, Schneider, Refregier, Stadel 2209.04662 

• There are 200 independent simulations at the fiducial cosmology 
• Each has a +/- Δ simulation with the same initial conditions 
• Can be used to create map derivatives with respect to the cosmological parameters 
• Useful for Information Maximising Neural Networks 



Deep learning helps with constraining baryons

Lu, Haiman, Zorilla-Matilla 2022 2109.11060 

+2 more baryon parameters: ν, β

• Forecast for Stage-3 survey with 20 
galaxies/arcmin2 

• High-resolution maps, pixel size 0.4 arcmin 

• Using baryonic correction model (BCM) 
with parameters:  

• Improvement over power spectrum for 
 figure of merit: 1.66  with 

baryons marginalized 

• CNN improves constraints on , but 
does not constrain 

Mc, M1,0, η, β

Ωm − σ8 ×

Mc, M1,0
η, β



Massive-Nus 

• Designed to explore simulations-based 
inference for constraining cosmological 
neutrino masses 

• 101 simulations in  
• Halo catalogs and merger trees for all 

simulations stored 
• Lensing convergence maps 12.252 deg2 
• Relatively high resolution:  

boxes with  particles 
• Large neutrino mass range: 

 
• Data available at:                       

http://columbialensing.org  

Ωm, As, Mν

512 h−1 Mpc
10243

Mν ∈ [0, 0.6] eV

no neutrinos difference with neutrinos 
at Mν = 0.1 eV



Deep learning helps with constraining baryons

Lu, Haiman, Zorilla-Matilla 2022 2109.11060 

• Forecast for Stage-3 survey with 20 
galaxies/arcmin2 

• High-resolution maps, pixel size 0.4 arcmin 

• Using baryonic correction model (BCM) 
with parameters:  

• Improvement over power spectrum for 
 figure of merit: 1.66  with 

baryons marginalized 

• CNN improves constraints on , but 
does not constrain 

Mc, M1,0, η, β

Ωm − σ8 ×

Mc, M1,0
η, β

dmo dmb-dmo


