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What | want:

| want an Al scientist.

Machine learning research:
* Driven mostly by computer vision/NLP benchmarks

* Motivated by industry interests, robotics

» Attempts to reach “human-level performance”

* Narrow stepping stone benchmarks along the way.
Problem:

* Much of ML applied to science takes such approaches, and replaces the datasets
with scientific ones.
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Instead of vision/language, want Al to reach human-level performance at
research in the natural sciences

What needs to happen?
* Natural science i1s not a regression problem. Need understanding.

* We need to be able to use machine learning for discovering universal concepts
and theories, and representing them in human language
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Key point

Neural nets trained on big datasets can find new insights.

The remaining challenge is distilling the insights to our language.
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CV/NLP strateqy of interpretability

Typically involves feature importance

Omeiza et al., 2019



(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar (d) Explaining Labrador

Figure 4: Explaining an image classification prediction made by Google’s Inception network, high-
lighting positive pixels. The top 3 classes predicted are “Electric Guitar” (p = 0.32), *Acoustic guitar”
(p = 0.24) and *Labrador” (p = 0.21)

Ribeiro et al., 2016
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Science already has a modeling language

Computer Vision
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1-d motion, constant a

_YVr—v
T
Vo +V
Vay — 9 4 ) (xf s 330) = Vgyl
(s —z0) = vol + §at2 =yt — §at2
L.g: 1ig
5V — 5% = a(xy — o)
Projectile Motion
’U2 Ug 9
Range = —sin 28, Max. height = —sin” ¢
g 29
Momentum, Force and Impulse
A
=Ty, F = KI: :ma,I:FAt:Ap

Work, Energy and Power

g B g e AR
W=F.(f—70), KE=smv’, P=—

= Cp/ C'v 5 /3 for monotomc gas=T7/5 for diatomic gas

Q TAS, AS>0
Engines: e = W/Qu < (Tu —T1)/Tu < 1

Refrigerators and heat pumps: e = Qr/W < T1/(Tu — T1.)

Simple Harmonic Motion and Waves
Spring: F = —kz, PE = (1/2)kz?, w = /k/m
f =w/(27), z(t) = Acos(wt) + B sin{wt)
Pendulum: T = 27./L/g
Waves: y(z,t) = Asin27(ft —z/A+ )], v = fA
I =constA?2f2, I,/I, = R}/ R}
Standing waves: A\, = 2L/n
Strings: v = /T /u, Solid/Liquid: v =+/B/p
Sound: I = E/(A - At) = Power/A
Io = 1072 W/m?, Intensity in decibels=10log, (/o)
Beat freq.=|f; — fo|, Doppler:

fobs — fsource(vsound = = 'Uobs)/(";ound == ’Usource)
Pipes: same at both ends: . = A\/2, \,;3\/2
Pipes: open at only one end: L = A\/4,3\/4---
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We should build interpretations in this existing
language: mathematical expressions!
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* For physical problems, even if it is not the “true”’
expression, analytic models can often generalize
better than neural networks! (See M. Cranmer+2020)

* This is a type of inductive bias: searching for models
represented as sparse combination of analytic
operators hold geometrical and physical significance

+ X exp

Length Solution to
Translation => Area common ODE
=> Volume y ~y
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Symbolic regression is a machine learning task, where the objective is to find
analytic expressions that optimize some objective.

* Popularized by Koza (1990s); and its use in science by Lipson (2000s)

EQUATIONS AS TREES

y=2z+2sinz
can be represented
as the following tree

and curve.




SOTA = genetic algorithm

MUTATION

The algorithm might mutate one node of the tree.

y=2z+2sin z



CROSSBREEDING

It may also breed new equations by swapping the branches

of existing ones.

'/\
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CROSSBREEDING

It may also breed new equations by swapping the branches

of existing ones.

i
J Jointly optimize
accuracy & complexity

y=2z+ y=2z+DH5

; Complexity Is user-defined,
7N 7N but usually = number of nodes

/7 N\ “ ™ N
| % K \‘T




High-level open-source frameworks:

github.com/MilesCranmer/SymbolicRegression.|l/

[l SymbolicRegression.jl | Public

Distributed High-Performance Symbolic Regression in Julia = MLJ interface
@Juia Y449 % 45 (main search code)

github.com/MilesCranmer/PySR/

[ PySR ( Public

High-Performance Symbolic Regression in Python and Julia

= Scikit-Learn wrapper

@® Python Yo 1.4k Y 141



Build your own symbolic regression algorithm!

github.com/SymbolicML/DynamicExpressions.jl/

] SymbolicML/DynamicExpressions.jl | Public

Ridiculously fast symbolic expressions

Q@Jia w68 T4 DynamicExpressions.jl

github.com/SymbolicML/DynamicQuantities.jl/

[l SymbolicML/DynamicQuantities.jl | Public

Lightweight + fast physical quantities in Julia
@Juia w44 %3

DynamicQuantities. ||



Age-Regularized Multi-Population Evolution in PySR

ij

|Select Fittest

1.15y + 0.86

N

Randomly
Subsample

X
L.1oy +

LY

I

0.36
3

Replace

Oldest

1.15y2 + 0.86J or [1-15y} or ...

Mutation
or

(top two) Crossover
or

1.150%% + O.SGJ or [1.15 + ().865”} or ...

1.15y + 0.861

Simplification
or

Optimize
Constants

1.1395y + 0.721}

Cranmer, 2023 - arxiv.org/abs/2305.071582



https://arxiv.org/abs/2305.01582

Model discovery at scale:

exp(z — y)

exp(exp(z) — z)

Cos(cos(x)N
4

1.15y + 0.86

.
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=
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"  Each island evolves independently on a

single core.
 Scale up to ~1000s of cores (=1000s of

independent populations)
* Asynchronous migration between

populations

 J- 115y

Migration step









julia> |



julia> |



Python AP

from pysr import PySRRegressor

model = PySRRegressor
niterations=40, # < Increase me for better results
binary_operators=["+", "x"],
unary_operators=]|
""cos",
“exp”,
"sin",
"inv(x) = 1/x",
# ~ Custom operator (julia syntax)
1,
extra_sympy_mappings={"inv": lambda x: 1 / X},
# ~ Define operator for SymPy as well
loss="1loss(prediction, target) = (prediction - target)”2",
# ~ Custom loss function (julia syntax)



Dimensional constraints

To do this, we need to use the format of DynamicQuantities.|jl.

# Get numerical arrays to fit:

X = pd.DataFrame(dict(
M=M.to("M_sun") .value,
m=m.to("kg").value,
r=r.to("R_earth").value,

))
y = F.value
model . fit(
X,
Y,
X_units=["Constants.M_sun", "kg", "Constants.R_earth"],

y_units="kg * m / s?2”



Custom objectives

“Can | make 1t so that my equation has exactly 2 sinusoids?” Yes!

function my_objective(tree::Node{T}, dataset::Dataset{T,L}, options::0Options) where {T,L} (L
prediction, flag = eval_tree_array(tree, dataset.X, options)
'flag && return convert(L, Inf)

sin_idx = 1 # Change if you change the order you put "sin , or use findfirst(==(sin), options.operators.unaops)::.

prediction_loss = sum(i —> abs(prediction[i] - dataset.y[i])”3, eachindex(dataset.y)) / length(dataset.y)

# Count number of sinusoids:
num_sins = count(node —> node.degree == 1 && node.op == sin_idx, tree)

# Add penalty of 10 for every sinusoids off from 2:
regularization = convert(L, 10 * abs(num_sins - 2))

return prediction_loss + regularization
end



https://arxiv.org/abs/2305.01582

Scalability

Practicality

Interfacing

Extensibility
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GPU-capable
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Denoising

Feature selection
Differential equations
High-dimensional
Full Pareto curve
API

SymPy Interface
Deep Learning export
Expressivity score
Open-source

Real Constants
Custom operators
Discontinuous operators
Custom losses
Symbolic Constraints
Custom complexity
Custom types
Citation
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Selection of user-contributed
publications that have used

symbolic distillation/PySR/
SymbolicRegression.jl:

astroautomata.com/PySR/papers

Below is a showcase of papers which have used PySR to discover or rediscover a symbolic
model. These are sorted by the date of release, with most recent papers at the top.

If you have used PySR in your research, please submit a pull request to add your paper to this file.
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We can use Symbolic Regression to Distill a
Neural Network into an Analytic Expression
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and freeze parameters. network over training set.



How this works:

Cranmer et al., 2019, 2020 — Work with: Alvaro
Sanchez-Gonzalez, Shirley Ho, Peter Battaglia, X1 0N
Kyle Cranmer, David Spergel, Rui Xu

PySR

[y]; = cos(2.1 - [x]5) — [x]4

1. Train NN normally, 2. Record input/outputs of 3. Fit the input/outputs of the
and freeze parameters. network over training set. neural network with PySR
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(Searching over n~ expressions — Searching over 2n expressions)




Inductive bias

* Introducing some form of inductive bias is needed to eliminate the
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Inductive bias

* Introducing some form of inductive bias is needed to eliminate the
functional degeneracy. For example:
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(the latent space between f and g could have some aggregation over a set)
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Some examples:



Model with
Graph Neural Network

Dataset

. w Predict Dynamics ! |

®

-Nfé%

Encourage Low-Dimensionality

Simple Particles

with Alvaro Sanchez Gonzalez, Peter Battaglia, Ruil Xu, Kyle Cranmer,
David Spergel, Shirley Ho; (NeurlPS 2020)



1/r%

Lk :
Spring :
Damped :
Charge :

Dicontinuous :

Uia = —mima /77,
Uiz = mima log (7))
Uz = (r12 — 1)°
Uiz = (1 — 1)° +11 - 11 /1
Uiz = q142/715

((),/ : r:12<2
I (r1g — 1), 115> 2

Uiz = A<
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Knowledge Discovery

 Predict the dark matter properties in a
simulation with a graph neural network:

Encourage Low-Dimensionality
Representation

PramaEE Sclf-supervised ® \ o0
B (predict neighbors) ¢ "

Detailed 0

Dark Matter Simulation



Encourage Low-Dimensionality
Representation

» 9; = Cq 4
POy + Cs M, ; Cs + Cg(1i)°7

Unknown Dark Matter
overdensity equation

Detailed
Dark Matter Simulation
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Example 2:
Discovering Orbital Mechanics

Can we learn Newton’s law of gravity by modelling the solar system
with a graph neural network?

Unknown masses, and unknown dynamical model.

"Rediscovering orbital mechanics with machine learning” (2022)
Pablo Lemos, Niall Jeffrey, Miles Cranmer, Shirley Ho, Peter Battaglia
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Next: interpretation

Approximate relation between latent
spaces of network with PySR
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Interpretation Results for f

3.0

xr
T

I

(r+C1h)

[r(r+C1)]
leE
(C2—r)

Cimomizx
r2

Accuracy/Complexity
Tradeoff* 2.0

Cimomizx
T‘3

d(log(error))
d(complexity)

1
1
1
]
1
1
_

(' - Comomix
/1 rS

7 7 11 13 17
Complexity

*from Cranmer+2020; similar to
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Test the symbolic model:
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* |Let's look at the mass values in comparison with the true masses:
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Solution: re-optimize v;!

» The v; were optimized for the neural network.

* The symbolic formula 1s not a *perfect* approximation of the network.

 Thus: we need to re-optimize v; for the symbolic function f !
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Fig. 4D: Grav influence

Fie. 4C: Graph network 4+ svmbolic regression + relearned masses
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Symbolic Regression on FPGAs for Fast Machine Learning
Inference

Ho Fung Tsoi'*, Adrian Alan Pol’, Vladimir Loncar>*, Ekaterina Govorkova®, Miles

Cranmer?®°, Sridhara Dasu', Peter Elmer? thlzp Harrls Isobel OJalvo and Maurizio
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Inference

Ho Fung Tsoi'*, Adrian Alan Pol’, Vladimir Loncar>*, Ekaterina Govorkova®, Miles
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and Maurizio
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Symbolic Regression on FPGAs for Fast Machine Learning
Inference
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Symbolic Regression on FPGAs for Fast Machine Learning
Inference

Ho Fung Tsoi'*, Adrian Alan Pol?, Vladimir Loncar’*, Ekaterina Govorkova’, Miles
Cranmer®°, Sridhara Dasu!, Peter Elmer? thllp Harrls Isobel OJalvo and Maurizio
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* Approximate neural net with small ol |
expression = 90% accuracy : Ay 3
* 5 ns inference time on FPGA!
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Discussion/Future

* |s a pure neural net approach to Al for science (i.e., no interpretation)
possible? How would you get the same level of generalization as we have
had from theory

* General relativity derived from only a few postulates/data points, yet
can predict the existence of black holes. Is it hopeless to expect that
level of generalization from foundation models?

* How do we distill very large models, like large language models, into the
language of science?

* These models may have learned some new unifying principles across
domains. How can we find 1t?

* Can you use this symbolic regression technique to interpret language
models directly?
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FAQ: Why not fit directly?

 Constraints:

* Neural Networks require ~TM evaluations of a loss function to train.

* Genetic algorithm-based symbolic regression requires ~1B evaluations
to find a complex+accurate expression.

* Need symbolic regression loss to be extremely efficient!

o Offline vs online learning:
* Full loss is too expensive.

e So, we do “online” learning of the neural net, and then fit the inputs/
outputs of the network afterwards



