Less is enough: extending Λ CDM with representation learning

Davide Piras (and many others)

But first... let me apologise

But first... let me apologise

- Title was not convincing

But first... let me apologise

- Title was not convincing

aIXiV > astro-ph > arXiv:2303.17059
Astrophysics > Instrumentation and Methods for Astrophysics
[Submitted on 29 Mar 2023]
As a matter of colon: I am NOT digging cheeky titles (no, but actually yes :>)

But first... let me apologise

- Title was not convincing

But first... let me apologise

- Title was not convincing
- So I did what any Al researcher would do...

But first... let me apologise

- So I did what any Al researcher would do...

Less is enough: extending Λ CDM with representation learning

Less is enough:
 extending $\Lambda \mathbf{C D M}$ with representation learning

Λ CDM extensions

Λ CDM is good

Λ CDM extensions

Λ CDM is good

Λ : cosmological constant CDM: cold dark matter
[insert standard cosmological image here]

Λ CDM extensions

Λ CDM is good... but not the entire story

Λ CDM extensions

Λ CDM is good... but not the entire story

- Tensions $\left(\mathrm{H}_{0}, \mathrm{~S}_{8}\right)$

Λ CDM extensions

Λ CDM is good... but not the entire story

- Tensions $\left(\mathrm{H}_{0}, \mathrm{~S}_{8}\right)$
- What is dark matter?

Λ CDM extensions

Λ CDM is good... but not the entire story

- Tensions $\left(\mathrm{H}_{0}, \mathrm{~S}_{8}\right)$
- What is dark matter?
- And dark energy?

Λ CDM extensions

Λ CDM is good... but not the entire story

- Tensions $\left(\mathrm{H}_{0}, \mathrm{~S}_{8}\right)$
- What is dark matter?
- And dark energy?

○ ...

Λ CDM extensions

Λ CDM is good... but not the entire story

Beyond- Λ CDM models add extra parameters

Λ CDM extensions

^CDM is good... but not the entire story

- Beyond- Λ CDM models add extra parameters

CDM
$\Omega_{b} \Omega_{m} h n_{s} A_{s}$

Λ CDM extensions

^CDM is good... but not the entire story

Beyond- Λ CDM models add extra parameters

CDM
$\Omega_{\mathrm{b}} \Omega_{\mathrm{m}} \mathrm{hn}_{\mathrm{s}} \mathrm{A}_{\mathrm{s}}$

Λ CDM extensions

^CDM is good... but not the entire story

Beyond- Λ CDM models add extra parameters

CDM
$\Omega_{\mathrm{b}} \Omega_{\mathrm{m}} \mathrm{h} \mathrm{n}_{\mathrm{s}} \mathrm{A}_{\mathrm{s}}$
$\mathrm{f}(\mathrm{R})$

$$
\begin{array}{|l|l}
\hline \Omega_{\mathrm{b}} \Omega_{\mathrm{m}} \mathrm{hn}_{\mathrm{s}} \mathrm{~A}_{\mathrm{s}} & \mathrm{f}_{\mathrm{R} 0} \\
\hline
\end{array}
$$

Λ CDM extensions

^CDM is good... but not the entire story

- Beyond- Λ CDM models add extra parameters

CDM
$\Omega_{\mathrm{b}} \Omega_{\mathrm{m}} \mathrm{h} \mathrm{n}_{\mathrm{s}} \mathrm{A}_{\mathrm{s}}$

Dvali-Gabadadze-Porrati

$$
\begin{array}{|l|l|}
\hline \Omega_{\mathrm{b}} \Omega_{\mathrm{m}} \mathrm{hn}_{\mathrm{s}} \mathrm{~A}_{\mathrm{s}} & \Omega_{\mathrm{rc}} \\
\hline
\end{array}
$$

Λ CDM extensions

^CDM is good... but not the entire story

Beyond- Λ CDM models add extra parameters

CDM
$\Omega_{\mathrm{b}} \Omega_{\mathrm{m}} \mathrm{h} \mathrm{n}_{\mathrm{s}} \mathrm{A}_{\mathrm{s}}$

Λ CDM extensions

Λ CDM is good... but not the entire story

Beyond- Λ CDM models add extra parameters

- Find common parameterisation of all these models?

Less is enough: extending Λ CDM with representation learning

Less is enough: extending $\Lambda C D M$ with representation learning

Representation learning

Representation learning

Representation learning

Representation learning

Representation learning

Power spectrum boost $=\frac{\text { Power spectrum in extended model }}{\text { Power spectrum in } \Lambda \text { CDM model }}$

Representation learning

Piras \& Lombriser, arXiv 2310.10717

Power spectrum boost $=\frac{\text { Power spectrum in extended model }}{\text { Power spectrum in } \Lambda \text { CDM model }}$

Less is enough: extending Λ CDM with representation learning

extending Λ CDM with representation learning

An application to dark energy

Apply our framework to single extension: wCDM

An application to dark energy

Apply our framework to single extension: wCDM

Two extra parameters: w_{0} and w_{a} $w(a)=w_{0}+(1-a) w_{a}$

An application to dark energy

Apply our framework to single extension: wCDM

Two extra parameters: w_{0} and w_{a}

Expect two latent variables are needed...?

An application to dark energy

Results

Results

One latent variable

Two latent variables

Results

One latent variable

Two latent variables

Results

One latent variable

Two latent variables

Results

One latent variable

Two latent variables

Results

One latent variable

Two latent variables

One variable is enough for wCDM!

How to analyse the latent space?

How to analyse the latent space?

Mutual information

What is mutual information?

Measures dependence between random variables (more general than Pearson, which measures correlation)

What is mutual information?

Measures dependence between random variables (more general than Pearson, which measures correlation)

Well-established in information theory

What is mutual information?

Measures dependence between random variables (more general than Pearson, which measures correlation)

Well-established in information theory

- Hard to estimate!

Estimating mutual information (MI)

- No available estimator returns uncertainty on MI

Estimating mutual information (MI)

No available estimator returns uncertainty on MI

Solution: density estimate with Gaussian mixture model

GMM-MI validation

Piras et al. (including Hiranya Peiris, Andrew Pontzen, Luisa Lucie-Smith, Lillian Guo, Brian Nord), MLST

Code

Ask me later!

How we use mutual information (MI)

Calculate MI between latent variables (are they disentangled?)

Latent A Latent B

How we use mutual information (MI)

Calculate MI between latent variables (are they disentangled?)

Latent A Latent B

Calculate MI between a latent variable and model parameters

Latent A
$\rightleftarrows \mathrm{w}_{0}, \mathrm{w}_{\mathrm{a}}$

Mutual information in latent space

Mutual information in latent space

Mutual information in latent space

How to analyse the latent space?

Mutual information

Symbolic regression

What is symbolic regression?

Check out review on symbolic regression on Wednesday

Symbolic regression in latent space

Link latent variable and wCDM parameters

Symbolic regression in latent space

Link latent variable and wCDM parameters

$$
\mathrm{A}_{d=1}\left(w_{0}, w_{a}\right)=w_{0}^{2}+\frac{e^{w_{a}+\cos \left(w_{0}\right)}}{w_{0}}+e^{\cos (1)}-1
$$

Symbolic regression in latent space

Link latent variable and wCDM parameters

$$
\mathrm{A}_{d=1}\left(w_{0}, w_{a}\right)=w_{0}^{2}+\frac{e^{w_{a}+\cos \left(w_{0}\right)}}{w_{0}}+e^{\cos (1)}-1
$$

$$
\text { Analogous to } \mathrm{S}_{8}=\sigma_{8}\left(\Omega_{\mathrm{m}} / 0.3\right)^{0.5} \ldots ?
$$

Conclusions

- Only need one variable to describe wCDM matter power spectra

Conclusions

- Only need one variable to describe wCDM matter power spectra

- Can use mutual information and symbolic regression to interpret latent space

Conclusions

```
- Only need one variable to describe wCDM matter power spectra
```

- Can use mutual information and symbolic regression to interpret latent space
- Will apply our framework to multiple extensions and different summaries

Cheeky ad

Check out our poster on accelerated Bayesian inference with CosmoPower-JAX

Conclusions

- Only need one variable to describe wCDM matter power spectra
- Can use mutual information and symbolic regression to interpret latent space
- Will apply our framework to multiple extensions and different summaries

Extra slides (and memes)

Representation learning in cosmological structure formation

Application to cosmological structure formation

Explore dependence of latent variables

Latent A
Latent B
Latent C

> KDE :=
> kernel
> density
> estimation

An application to dark energy

- Expect two latent variables are needed...?

An application to dark energy

- Expect two latent variables are needed...?

Results

One latent variable

Two latent variables

$$
\sigma(k, z)=\sqrt{\frac{4 \pi^{2}}{k^{2} \Delta k V(z)}\left(P_{\delta \delta}(k, z)+\frac{1}{\bar{n}(z)}\right)^{2}+\sigma_{\text {sys }}^{2}}
$$

Results

One latent variable

arXiV > cs > arxiv:1506. 02640
Computer Science > Computer Vision and Pattern Recognition
[Submitted on 8 Jun 2015 (v)), last revised 9 May 2016 (this version, 55)]
You Only Look Once: Unified, Real-Time Object Detection
Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi
YONOV: You Only Need One Variable

Symbolic regression results

What is mutual information?

Measures dependence between random variables

 (more general than Pearson, which measures correlation)
Well-established in information theory

- Defined by :

$$
\operatorname{MI}(X, Y)=\int p(x, y) \log \frac{p(x, y)}{p(x) p(y)} \mathrm{d} x \mathrm{~d} y
$$

$\longrightarrow \mathrm{Mi}(X, Y)=0$ if and only if X and Y are independent

8
8

// Davide Piras

Unmute
Start Video 2. 1 Participants Dill \qquad cc
8
Security Polls

Chat Share Screen Record
Live Transcript Breakout Rooms

GMM-MI: a robust estimator of mutual information

Cross-validation and multiple initialisations to optimise fit

GMM-MI: a robust estimator of mutual information

Cross-validation and multiple initialisations to optimise fit

- Works with continuous and discrete variables

$$
\because \because \text { GMM-MI }
$$

GMM-MI: a robust estimator of mutual information

Cross-validation and multiple initialisations to optimise fit

Works with continuous and discrete variables

GMM-MI returns uncertainty on MI through bootstrapping

$$
\because \because \text { GMM-MI }
$$

GMM-MI at work

(gmm_mi) davide@crash: \$

GMM-MI at work

(gmm_mi) davide@crash:~\$ pip install gmm-mi

In [1]:

GMM-MI at work

(gmm_mi) davide@crash:~\$ pip install gmm-mi

In [1]: import numpy as np
...: from gmm_mi.mi import EstimateMI
$\operatorname{In}[2]:-$

GMM-MI at work

```
(gmm_mi) davide@crash: $ pip install gmm-mi
In [1]: import numpy as np
...: from gmm_mi.mi import EstimateMI
...:
In [2]: # create bivariate Gaussian data
...: mean = np.array([0, 0])
...: cov = np.array([[1, 0.6], [0.6, 1]])
...: rng = np.random.default_rng(0)
...: X = rng.multivariate_normal(mean, cov, 200)
```


GMM-MI validation

- GMM-MI is unbiased

GMM-MI validation

GMM-MI is unbiased

> GMM-MI respects MI invariance

Piras et al., MLST
No transformation

Logarithmic transformation

GMM-MI validation

GMM-MI is unbiased

GMM-MI respects MI invariance

GMM-MI errors scale as expected

Piras et al., MLST
No transformation

Logarithmic transformation

What is symbolic regression?

Finds analytic equation linking variables

What is symbolic regression?

Finds analytic equation linking variables

- Less accurate, but more interpretable (?)

What is symbolic regression?

Finds analytic equation linking variables

Less accurate, but more interpretable (?)

Many implementations available

Material

Representation learning

