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The ORION-B dataset

Acquired by the wide-band receiver at the IRAM-30 m

∼ 1 000 h of observations

Observations interpretation needs proper images/data
processing and efficient inference procedures.
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The ORION-B dataset

∼ 30 molecular line cubes for
J = 1 - 0 transition

Spatially and spectrally
resolved

1074× 758 profiles

240 velocity channels per cube

13CO (1-0) line cube.
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Denoising of radio astronomy line cubes

1 Denoising of radio astronomy line cubes

2 Emulation of astrophysical codes

3 Conclusions
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About denoising

Interest of denoising

Increasing the signal-to-noise ratio is an important step to
lead to discoveries.

Necessary to find statistical relations between certain lines and
physical parameters (otherwise hidden by noise).
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Fully connected autoencoder-based denoising

Efficient for Earth remote sensing cubes (Licciardi+2015, Licciardi+2018).

Figure: Example of an autoencoder neural network with extrinsic and
intrinsic dimensions of 10 and 3, respectively.
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A locally connected AE with prior information

Noise is pixel dependent, spectrally and spatially correlated
−→ false signal

Unlike Earth remote sensing cubes, very low information
redundancy
−→ need to make the best use of itRadioastronomy Line

13CO (1 − 0) in Orion B
Hyperspectral Data
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Figure: 13CO line and Earth image “Indian Pines” correlation matrices
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A locally connected AE with prior information

Proposition 1: Loss function to help the network

The redundancy is unsufficient for proper denoising.

We give more information to the network with a loss function
depending on a prior.

This prior is taken from a 3D segmentation method.

L(d̂i ,j , di ,j) =
1

K

K∑
k=1


(d̂i,j,k − di,j,k )

2

σi,j
if probably signal + noise∣∣∣∣ d̂i,j,kσi,j

∣∣∣∣q if probably only noise

with q ∈]0, 1] an hyperparameter than controls the sparcity.
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A locally connected AE with prior information

Distant channels share almost no information
−→ most of the weights are useless, or even counter-productive

Proposition 2: Locally connected architecture

We propose this kind of architecture where distant channels cannot
be combined together.

Example of fully connected AE Example of locally connected AE
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Gaussian fitting method ROHSA

Comparison with state-of-the-art ROHSA gaussian fitting method
(Marchal+2019):

Spatially constrained Gaussian decomposition of profiles.

Reconstruction/decomposition can perform denoising.
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Denoising performances: residuals
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Denoising performances: residuals
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Emulation of astrophysical codes

1 Denoising of radio astronomy line cubes

2 Emulation of astrophysical codes

3 Conclusions
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Interstellar medium and numerical simulations

Numerical simulations are widely used in order to model the ISM
and compare theory with observations.

Computation time is often prohibitive for inference procedures.

Usual solutions

Interpolation methods:

1 Nearest point in grid (Sheffer+2011; Sheffer+2013; Joblin+2018)

2 SciPy interpolation (Wu+2018; Ramambason+2022)

Regression-based approximations:

1 k-nearest neighbors (Smirnov-Pinchukov+2022)

2 Random forests (Bron+2021)

3 Neural networks (de Mijolla+2019; Holdship+2021; Grassi+2022)

→ Less complex, so faster and allow more training data
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A Meudon PDR approximation as a template

The Meudon PDR code

Emulates photo-dissociation regions (PDRs) at equilibrium.

This version: 4 inputs 7−→ ∼ 5 000 spectral lines intensities

Execution time ∼ 6 hours and may yield anomalies.

Predictions directly comparable with observations.

Overall: representative example of ISM numerical simulations.
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Evolutions of a standard multilayer perceptron

Start: A multilayer perceptron to approach the simulations.

Proposition 1: ignoring anomalies

Anomalies ̸= well-modeled points with sensitive behavior!

1 Training with a robust loss (e.g., Cauchy) to detect badly
reconstructed points.

2 Use physics knowledge to determine anomalies among them.

3 New training from scratch with a masked non-robust loss
function (e.g., MSE), ignoring the abnormal outputs.

Proposition 2: outputs clustering to divide and conquer

Since outputs can be grouped into clusters by their similarity, it’s
efficient to train dedicated networks side by side for each cluster.
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Evolutions of a standard multilayer perceptron

Proposition 3: reuse intermediate computations

As some outputs can be computed from other outputs, keeping
track of intermediate results optimizes network capacities.
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Results on the Meudon PDR code

Error factor
→ Symmetrized relative error

err% = 100 ·max

(
ŷ

y
,
y

ŷ

)

Speed

→ Computation of a batch of
1 000 entries on a laptop.

R: regression by an ANN

P: polynomial expansion

C: lines clustering

D: dense architecture

Lucas Einig Deep learning approaches for the ISM ML-IAP/CCA-2023 18



Results on the Meudon PDR code

Error factor
→ Symmetrized relative error

err% = 100 ·max

(
ŷ
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Take-home messages

AI benefits from rigorous data analysis and physical
knowledge, for example here for denoising.

Deep learning is efficient to emulate complex simulations,
especially with additional constraints.

Deep learning denoising by dimension reduction: Application to the
ORION-B line cubes, L. Einig, J. Pety et al, A&A, 2023.

Neural network-based emulation of interstellar medium models,
P. Palud, L. Einig et al, A&A, 2023.

https://github.com/einigl

https://pypi.org/project/nnbma −→ pip install nnbma
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