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eROSITA – X-ray telescope

Effects of point spread functions (PSF)

distort X-ray Observations 

● Spatially invariant PSF

● Spatially variant PSF 
(off-axis-angle, azimuth and energy)



  

eROSITA PSF

© F.Haberl, M. Freyberg und C. Maitra, MPE/IKI Predehl, Peter, et al. "The eROSITA X-ray telescope on SRG." Astronomy & Astrophysics 647 (2021): A1.



  

Chandra PSF

https://cxc.harvard.edu/proposer/POG/html/chap4.html
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This affects many optical systems.

….we don’t want to wait!
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Information Field Theory

● Information theory for fields using Bayes’ Theorem 

●         or posterior samples                

●           : domain knowledge about the signal

●                                                           : knowledge about the instrument and the noise

●                                 [Framework to build generative models for Bayesian inference]

● Geometric Variational Inference  [P. Frank et al. 2021] 
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PSF Representation

Spatially invariant PSF:

● Convolution with one PSF kernel

● O(N log N) Fast Fourier Transform 

Spatially variant PSF:

● Not a convolution.

● Naive: Full Matrix?  [O(N²)]
     → Huge memory consumption  
     → Slow execution

Strategies for spatially variant PSF de-blurring: 

● Deconvolution with averaged PSF

● Remove off-axis data



  

Patched Interpolated Convolution
[Nagy, James G., and Dianne P. O'Leary. "Fast iterative image restoration with a spatially varying PSF." 
Advanced Signal Processing: Algorithms, Architectures, and Implementations VII. Vol. 3162. SPIE, 1997.]



  

Image
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Select Patches

PSF of patch center

Cut out with overlap

Patched Interpolated Convolution



  

° =

Interpolation weights

Weight cut outs bilinearly

Cut out Weighted cut out

Patched Interpolated Convolution



  

* =

Weighted cut out Local PSF Weighted convolved cut out

Convolve weighted cut outs with local PSF

Patched Interpolated Convolution



  

Add up the patches...

Patched Interpolated Convolution
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Why is it non-trivial to remove the PSF?

De-blurring noisy images PSF Representation 

Information Field Theory
& 

Generative Modeling

Patched Interpolated Convolution

Bayesian 
Denoising, Decomposition and Deconvolution 

with spatially variant PSF
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Bayesian Reconstruction of Perseus Cluster 
with observation off-axis observation [11713]

● Energy bins:

– 0.5 – 1.2 keV

– 1.2 – 2.9 keV

– 2.9 - 7 keV

● Generative Model with diffuse & point-source component

● Assuming spatial and spectral correlations



  

0.5 – 1.2 keV

Exposure corrected data
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Exposure corrected data posterior mean integrated sky brightness 



  posterior mean integrated sky brightness Exposure corrected data
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  posterior mean integrated sky brightness Exposure corrected data
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More data? No Problem! 

Sky Reconstruction

Observations: 11713-11716,  3209, 4289, 4948, 4952

diffuse / correlated point source-like
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Cassiopeia A



  

eROSITA 
LMC 1987A

© F.Haberl, M. Freyberg and C. Maitra, MPE/IKI 



  

LMC 1987A

eROSITA 

© V. Eberle, M. Guardiani and M. Westerkamp, MPA 
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Summary

● Removal of spatially variant PSF is possible, despite Poisson noise

● Enables us to use also far off-axis observations

● Stabilizes point source detection

Future:

● Search for even faster and more precise representations

● Infer PSF and other detector effects (pileup etc.) from redundancy in data



  

You want to know more about IFT, NIFTy or PSF Representation?

Get in contact direct or via mail:

veberle@mpa-garching.mpg.de

© Randall Munroe, https://xkcd.com/2776/
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