
(Machine)-learning (astro)-physical laws
Wassim Tenachi

Nov 27 2023
ML IAP/CCA 2023 – Debating the Potential of Machine Learning in Astronomical Surveys

With Rodrigo Ibata & Foivos Diakogiannis

Motivations

Nov 27 2023

Φ-SO : Motivations

1Wassim Tenachi, Physical Symbolic Optimization

Motivations

Nov 27 2023
1Wassim Tenachi, Physical Symbolic Optimization

Empirical law

!! = 4$!
%& '"

Φ-SO : Motivations

Motivations

Nov 27 2023
1Wassim Tenachi, Physical Symbolic Optimization

Empirical law

Took him 4 years !

!! = 4$!
%& '"

Φ-SO : Motivations

Motivations

Nov 27 2023
1Wassim Tenachi, Physical Symbolic Optimization

Empirical law General theory

Took him 4 years !

!! = 4$!
%& '" (#$

#% = F

Φ-SO : Motivations

Motivations

Nov 27 2023
1Wassim Tenachi, Physical Symbolic Optimization

Empirical law General theory

Took him 4 years !

!! = 4$!
%& '" (#$

#% = F

Gaia

SKA

Euclid

LSST

Φ-SO : Motivations

Motivations

Nov 27 2023
1Wassim Tenachi, Physical Symbolic Optimization

Empirical law General theory

Took him 4 years !

!! = 4$!
%& '" (#$

#% = F

Gaia

SKA

Euclid

LSST

Φ-SO : Motivations

Motivations

Nov 27 2023
1Wassim Tenachi, Physical Symbolic Optimization

Empirical law General theory

Took him 4 years !

!! = 4$!
%& '" (#$

#% = F

Gaia

SKA

Euclid

LSST

à Black box

Φ-SO : Motivations

Motivations

Nov 27 2023
1Wassim Tenachi, Physical Symbolic Optimization

Empirical law General theory

Took him 4 years !

!! = 4$!
%& '" (#$

#% = F

Gaia

SKA

Euclid

LSST

à Black box

) * = ⋯

à Enables connection with theory

Φ-SO : Motivations

Empirical law

Motivations

Nov 27 2023
1Wassim Tenachi, Physical Symbolic Optimization

Empirical law General theory

Took him 4 years !

!! = 4$!
%& '" (#$

#% = F

Gaia

SKA

Euclid

LSST

à Black box

) * = ⋯

à Enables connection with theory

new physics

Φ-SO : Motivations

Empirical law

Symbolic regression (SR)

Nov 27 2023

Φ-SO – SR

2Wassim Tenachi, Physical Symbolic Optimization

!:ℝ$ → ℝ such that
& = !())

(), &) data
!" !# $

0.75582 0.25850 0.02674
0.36786 0.42401 0.06278
0.69507 0.38057 0.74014
0.96493 0.33398 0.81558
0.07139 0.16604 0.07735
0.86413 0.41952 0.87872
0.18012 0.40581 0.63637

Symbolic regression (SR)

Nov 27 2023

Φ-SO – SR

2Wassim Tenachi, Physical Symbolic Optimization

https://youtu.be/wubzZMkoTUY

https://youtu.be/wubzZMkoTUY

The virtues of obtaining symbolic models (1)

1. Interpretability

Gaia

SKA

Euclid

LSST

à Connecting with theory

Nov 27 2023
3Wassim Tenachi, Physical Symbolic Optimization

Φ-SO – SR

The virtues of obtaining symbolic models (1)

1. Interpretability

Gaia

SKA

Euclid

LSST

à Connecting with theory

Nov 27 2023
3Wassim Tenachi, Physical Symbolic Optimization

2. Compactness

à Cheap

à Intellegible

! " = ⋯

Φ-SO – SR

The virtues of obtaining symbolic models (1)

3. Generalization1. Interpretability

Gaia

SKA

Euclid

LSST

à Connecting with theory

Nov 27 2023
3Wassim Tenachi, Physical Symbolic Optimization

2. Compactness

à Cheap

à Intellegible

! " = ⋯

Φ-SO – SR

Language processing for symbolic mathematics

Nov 27 2023

Φ-SO : Embedding

4Wassim Tenachi, Physical Symbolic Optimization

cat .

…

tree car

Language processing for symbolic mathematics

Nov 27 2023

Φ-SO : Embedding

4Wassim Tenachi, Physical Symbolic Optimization

!"# ∎!

%"& '()

− ∗

+ /

…

(" (#

Binary
operations

Unary
operations

Input variables
& constants

cat .

…

tree car

Embedding (1) : how to go from numbers to symbols ?

Nov 27 2023
5

Model

Φ-SO : Embedding

[0.15, 0.05, 0.95, 0.25, 0.30, 0.25, 0.10, 0.35, 0.25, 0.10]

Embedding (1) : how to go from numbers to symbols ?

Nov 27 2023
5

Model

!" !# + − ∗ / ()* +!, -). /

Categorical distribution

Φ-SO : Embedding

[0.15, 0.05, 0.95, 0.25, 0.30, 0.25, 0.10, 0.35, 0.25, 0.10]

Embedding (1) : how to go from numbers to symbols ?

Nov 27 2023
5

Model

!" !# + − ∗ / ()* +!, -). /

Categorical distribution

+
Sampled symbol

Φ-SO : Embedding

[0.15, 0.05, 0.95, 0.25, 0.30, 0.25, 0.10, 0.35, 0.25, 0.10]

Embedding (2) : how to go from vector of symbols to expressions ?

Nov 27 2023
6Wassim Tenachi, Physical Symbolic Optimization

Φ-SO : Embedding

Infix notation

! + cos(')

Embedding (2) : how to go from vector of symbols to expressions ?

Nov 27 2023
6Wassim Tenachi, Physical Symbolic Optimization

Φ-SO : Embedding

Infix notation

! + cos(')

* 1:1 equivalence

*

Tree representation

+

!)*+

'

Embedding (2) : how to go from vector of symbols to expressions ?

Nov 27 2023
6Wassim Tenachi, Physical Symbolic Optimization

Φ-SO : Embedding

Infix notation

! + cos(')

* 1:1 equivalence

*

1

2 3

4

Tree representation

+

!)*+

'

Listing each node first in depth and then left to right

Embedding (2) : how to go from vector of symbols to expressions ?

Nov 27 2023
6Wassim Tenachi, Physical Symbolic Optimization

Φ-SO : Embedding

Infix notation

! + cos(')

* 1:1 equivalence

* *

1

2 3

4

Tree representation

+

!)*+

'

Listing each node first in depth and then left to right

+ !)*+ '

Prefix notation (“Polish” notation)

1 2 3 4

Embedding (3) : Encoding a whole expression

Nov 27 2023
7Wassim Tenachi, Physical Symbolic Optimization

Φ-SO : Embedding

[1, 0, 0, 0, 0]+
[0, 1, 0, 0, 0]!"#

[0, 0, 1, 0, 0]$"%

[0, 0, 0, 1, 0]"
[0, 0, 0, 0, 1]#

Library of possible symbols

* 1:1 equivalence

Embedding (3) : Encoding a whole expression

Nov 27 2023
7Wassim Tenachi, Physical Symbolic Optimization

Φ-SO : Embedding

[1, 0, 0, 0, 0]+
[0, 1, 0, 0, 0]!"#

[0, 0, 1, 0, 0]$"%

[0, 0, 0, 1, 0]"
[0, 0, 0, 0, 1]#

Library of possible symbols

" + cos(#) *

+ ' $"% (

[1
, 0

, 0
, 0

, 0
]

[0
, 0

, 0
, 1

, 0
]

[0
, 0

, 1
, 0

, 0
]

[0
, 0

, 0
, 0

, 1
]

* 1:1 equivalence

Embedding (4) : Arity

Nov 27 2023
8Wassim Tenachi, Physical Symbolic Optimization

Φ-SO : Embedding

/
!"#

$"%

"

#

Binary
operations

+

Unary
operations

Terminal
symbols

(arity = 2)

(arity = 1)

(arity = 0)

+ ' $"% (

Total arity = 2 + 0 + 1 + 0 = 3

Length = 1 + 1 + 1 + 1 = 4

Embedding (4) : Arity

Nov 27 2023
8Wassim Tenachi, Physical Symbolic Optimization

Φ-SO : Embedding

/
!"#

$"%

"

#

Binary
operations

+

Unary
operations

Terminal
symbols

(arity = 2)

(arity = 1)

(arity = 0)

+ ' $"% (

Total arity = 2 + 0 + 1 + 0 = 3

Length = 1 + 1 + 1 + 1 = 4

An expression is valid ⟺ length - (total arity) = 1

Dimensional analysis constrains the search space

Nov 27 2023

Φ-SO : units constraints

9Wassim Tenachi, Physical Symbolic Optimization

+ "# / % ?

Dimensional analysis constrains the search space

Nov 27 2023
9Wassim Tenachi, Physical Symbolic Optimization

+ "# / % ?

"# +
%
?

lengthvelocity

Φ-SO : units constraints

Dimensional analysis constrains the search space

Nov 27 2023

Φ-SO

9Wassim Tenachi, Physical Symbolic Optimization

+ "# / % ?

"# +
%
?

lengthvelocity

time

Φ-SO : units constraints

Search space reduction using physical units constraints

Nov 27 2023
10Wassim Tenachi, Physical Symbolic Optimization

Prefix notation paths for expressing a velocity v using a library of symbols {+, /, cos, v0, x, t} where v0 is a velocity, x is a length, and t is a
time (length < 5 for readability).

Search space Search space with our in situ physical units prior

+
cos

v0

xt

cos v0

+

/

cos

v0

x

t

v0 x
t

v0
x

t v0 x t v0 x
t

v0

x

t

v0

x

t

v0
x

t

v0 x
t

cos

v0

x

t

v0

x

t

cos

t

v0

x
t

cos

v0
x

t

x
v0

x

t
cos

v0

x

t

v0
v0

x

t
cos

v0

x

t

v0

x

t

v0

x

t

v0

x

t

v0

x

t
+

cos

x

v0

x

t

cos

v0

x

t

v0

x

t

v0

v0

x

t

x

v0

x

tt
v0

x

t

/

v0
v0

x

tx

v0

x

t

t

v0

x
t

+

cos

t

v0
x

t

cos

v0
x

t

v0
x

t

v0

v0x
t

x

v0x t

t

v0
x

t

9

cos

v0

x

t

/

cos

v0 x
t

+v0

x

t
/

v0

x

t

cos

v0
x

t
v0

x

t

15

15

27

27

+

/
26

27

x

t

v0

+

v0

v0

+

/

v0

v0

v0

x

t

x

/

t

/
x

t

v0

268 expressions

[Tenachi et al 2023] (this work)

Φ-SO : units constraints

https://arxiv.org/abs/2303.03192

Search space reduction using physical units constraints

Nov 27 2023
10Wassim Tenachi, Physical Symbolic Optimization

Prefix notation paths for expressing a velocity v using a library of symbols {+, /, cos, v0, x, t} where v0 is a velocity, x is a length, and t is a
time (length < 6 for readability).

Search space Search space with our in situ physical units prior

+
cos

v0

xt

cos v0

+

/

cos

v0

x

t

v0 x
t

v0
x

t v0 x t v0 x
t

v0

x

t

v0

x

t

v0
x

t

v0 x
t

cos

v0

x

t

v0

x

t

cos

t

v0

x
t

cos

v0
x

t

x
v0

x

t
cos

v0

x

t

v0
v0

x

t
cos

v0

x

t

v0

x

t

v0

x

t

v0

x

t

v0

x

t
+

cos

x

v0

x

t

cos

v0

x

t

v0

x

t

v0

v0

x

t

x

v0

x

tt
v0

x

t

/

v0
v0

x

tx

v0

x

t

t

v0

x
t

+

cos

t

v0
x

t

cos

v0
x

t

v0
x

t

v0

v0x
t

x

v0x t

t

v0
x

t

9

cos

v0

x

t

/

cos

v0 x
t

+v0

x

t
/

v0

x

t

cos

v0
x

t
v0

x

t

15

15

27

27

+

/
26

27

x

t

v0

+

v0

v0

+

/

v0

v0

v0

x

t

x

/

t

/
x

t

v0

268 expressions 6 expressions

[Tenachi et al 2023] (this work)

Φ-SO : units constraints

https://arxiv.org/abs/2303.03192

In situ prior

11Wassim Tenachi, Physical Symbolic Optimization

! = !# +
%
?

Context around next
symbol

+

"# /

?&

[Tenachi et al 2023] (this work)

Φ-SO : units constraints

https://arxiv.org/abs/2303.03192

In situ prior

11Wassim Tenachi, Physical Symbolic Optimization

Model

! = !# +
%
?

Context around next
symbol

+

"# /

?&

[Tenachi et al 2023] (this work)

Φ-SO : units constraints

https://arxiv.org/abs/2303.03192

In situ prior

11Wassim Tenachi, Physical Symbolic Optimization

Model

! " + − ∗ / '()!* +,- ∎/

Categorical distribution

' = '(+
!
?

Context around next
symbol

+

"# /

?&

[Tenachi et al 2023] (this work)

Φ-SO : units constraints

https://arxiv.org/abs/2303.03192

In situ prior

11Wassim Tenachi, Physical Symbolic Optimization

Model

! " + − ∗ / '()!* +,- ∎/

Categorical distribution

' = '(+
!
?

! " + − ∗ / '()!* +,- ∎/

Prior

Context around next
symbol

+

"# /

?&

[Tenachi et al 2023] (this work)

Φ-SO : units constraints

https://arxiv.org/abs/2303.03192

In situ prior

11Wassim Tenachi, Physical Symbolic Optimization

Model

! " + − ∗ / '()!* +,- ∎/

Categorical distribution

!

Sampled
symbol

' = '(+
!
?

! " + − ∗ / '()!* +,- ∎/

Prior

x
Context around next

symbol

+

"# /

?&

[Tenachi et al 2023] (this work)

Φ-SO : units constraints

NB: Such priors are only possible in sequential expression generation SR approaches

https://arxiv.org/abs/2303.03192

Propagating units constraints (1)

Nov 27 2023
12[Tenachi et al 2023] (this work)

https://youtu.be/clZsLj3oPy8

Φ-SO : units constraints

https://arxiv.org/abs/2303.03192
https://youtu.be/clZsLj3oPy8

Propagating units constraints (2)

Nov 27 2023
12[Tenachi et al 2023] (this work)

https://youtu.be/U_hnFJuZ1dA

Φ-SO : units constraints

https://arxiv.org/abs/2303.03192
https://youtu.be/U_hnFJuZ1dA

Expression (prefix notation)

/

L.T-1

-

-

L.T-1

dangling = 1

L.T-1

-

L.T-1

L.T-1

dangling = 2

L.T-1

L.T-1

L.T-1

L.T-1

dangling = 1

L.T-1

-

L.T-1

-

dangling = 2

t

/ L.T-1

L

L

T

dangling = 1

/

RNN

Categorical
distribution

Physical units prior
(+ other priors)

Sampled
token

Contextual information
around next token

dangling

sibling and units
parent and units

previous token and units

1

2 3

4 5

Expression tree

Expression

Library of choosable
tokens

current required units

Symbolic function generation Φ-SO : generation

13Wassim Tenachi, Physical Symbolic Optimization

Expression (prefix notation)

/

L.T-1

-

-

L.T-1

dangling = 1

L.T-1

-

L.T-1

L.T-1

dangling = 2

L.T-1

L.T-1

L.T-1

L.T-1

dangling = 1

L.T-1

-

L.T-1

-

dangling = 2

t

/ L.T-1

L

L

T

dangling = 1

/

RNN

Categorical
distribution

Physical units prior
(+ other priors)

Sampled
token

Contextual information
around next token

dangling

sibling and units
parent and units

previous token and units

1

2 3

4 5

Expression tree

Expression

Library of choosable
tokens

current required units

! = ∎

Nov 27 2023

In situ
dimensional

analysis

/

L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1
??

/

L.T-1

L.T-1 L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1

Any Any
? ?

RNN

Categorical
distribution

Physical
constraints

Sampled
token

Local units
constraints

L.T-1

L.T-1 L.T-1

L T
?

t

In situ
dimensional

analysis

Expression (prefix notation)

/

L.T-1

-

-

L.T-1

dangling = 1

L.T-1

-

L.T-1

L.T-1

dangling = 2

L.T-1

L.T-1

L.T-1

L.T-1

dangling = 1

L.T-1

-

L.T-1

-

dangling = 2

t

/ L.T-1

L

L

T

dangling = 1

/

RNN

Categorical
distribution

Physical units prior
(+ other priors)

Sampled
token

Contextual information
around next token

dangling

sibling and units
parent and units

previous token and units

1

2 3

4 5

Expression tree

Expression

Library of choosable
tokens

current required units

Symbolic function generation Φ-SO : generation

13Wassim Tenachi, Physical Symbolic Optimization
Nov 27 2023

Expression (prefix notation)

/

L.T-1

-

-

L.T-1

dangling = 1

L.T-1

-

L.T-1

L.T-1

dangling = 2

L.T-1

L.T-1

L.T-1

L.T-1

dangling = 1

L.T-1

-

L.T-1

-

dangling = 2

t

/ L.T-1

L

L

T

dangling = 1

/

RNN

Categorical
distribution

Physical units prior
(+ other priors)

Sampled
token

Contextual information
around next token

dangling

sibling and units
parent and units

previous token and units

1

2 3

4 5

Expression tree

Expression

Library of choosable
tokens

current required units

! = ∎

In situ
dimensional

analysis

/

L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1
??

/

L.T-1

L.T-1 L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1

Any Any
? ?

RNN

Categorical
distribution

Physical
constraints

Sampled
token

Local units
constraints

L.T-1

L.T-1 L.T-1

L T
?

t

In situ
dimensional

analysis

Expression (prefix notation)

/

L.T-1

-

-

L.T-1

dangling = 1

L.T-1

-

L.T-1

L.T-1

dangling = 2

L.T-1

L.T-1

L.T-1

L.T-1

dangling = 1

L.T-1

-

L.T-1

-

dangling = 2

t

/ L.T-1

L

L

T

dangling = 1

/

RNN

Categorical
distribution

Physical units prior
(+ other priors)

Sampled
token

Contextual information
around next token

dangling

sibling and units
parent and units

previous token and units

1

2 3

4 5

Expression tree

Expression

Library of choosable
tokens

current required units

Symbolic function generation Φ-SO : generation

13Wassim Tenachi, Physical Symbolic Optimization
Nov 27 2023

Expression (prefix notation)

/

L.T-1

-

-

L.T-1

dangling = 1

L.T-1

-

L.T-1

L.T-1

dangling = 2

L.T-1

L.T-1

L.T-1

L.T-1

dangling = 1

L.T-1

-

L.T-1

-

dangling = 2

t

/ L.T-1

L

L

T

dangling = 1

/

RNN

Categorical
distribution

Physical units prior
(+ other priors)

Sampled
token

Contextual information
around next token

dangling

sibling and units
parent and units

previous token and units

1

2 3

4 5

Expression tree

Expression

Library of choosable
tokens

current required units

! = ∎ +∎

In situ
dimensional

analysis

/

L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1
??

/

L.T-1

L.T-1 L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1

Any Any
? ?

RNN

Categorical
distribution

Physical
constraints

Sampled
token

Local units
constraints

L.T-1

L.T-1 L.T-1

L T
?

t

In situ
dimensional

analysis

Expression (prefix notation)

/

L.T-1

-

-

L.T-1

dangling = 1

L.T-1

-

L.T-1

L.T-1

dangling = 2

L.T-1

L.T-1

L.T-1

L.T-1

dangling = 1

L.T-1

-

L.T-1

-

dangling = 2

t

/ L.T-1

L

L

T

dangling = 1

/

RNN

Categorical
distribution

Physical units prior
(+ other priors)

Sampled
token

Contextual information
around next token

dangling

sibling and units
parent and units

previous token and units

1

2 3

4 5

Expression tree

Expression

Library of choosable
tokens

current required units

Symbolic function generation Φ-SO : generation

13Wassim Tenachi, Physical Symbolic Optimization
Nov 27 2023

Expression (prefix notation)

/

L.T-1

-

-

L.T-1

dangling = 1

L.T-1

-

L.T-1

L.T-1

dangling = 2

L.T-1

L.T-1

L.T-1

L.T-1

dangling = 1

L.T-1

-

L.T-1

-

dangling = 2

t

/ L.T-1

L

L

T

dangling = 1

/

RNN

Categorical
distribution

Physical units prior
(+ other priors)

Sampled
token

Contextual information
around next token

dangling

sibling and units
parent and units

previous token and units

1

2 3

4 5

Expression tree

Expression

Library of choosable
tokens

current required units

! = ∎ +∎

In situ
dimensional

analysis

/

L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1
??

/

L.T-1

L.T-1 L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1

Any Any
? ?

RNN

Categorical
distribution

Physical
constraints

Sampled
token

Local units
constraints

L.T-1

L.T-1 L.T-1

L T
?

t

In situ
dimensional

analysis

In situ
dimensional

analysis

/

L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1
??

/

L.T-1

L.T-1 L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1

Any Any
? ?

RNN

Categorical
distribution

Physical
constraints

Sampled
token

Local units
constraints

L.T-1

L.T-1 L.T-1

L T
?

t

In situ
dimensional

analysis

Expression (prefix notation)

/

L.T-1

-

-

L.T-1

dangling = 1

L.T-1

-

L.T-1

L.T-1

dangling = 2

L.T-1

L.T-1

L.T-1

L.T-1

dangling = 1

L.T-1

-

L.T-1

-

dangling = 2

t

/ L.T-1

L

L

T

dangling = 1

/

RNN

Categorical
distribution

Physical units prior
(+ other priors)

Sampled
token

Contextual information
around next token

dangling

sibling and units
parent and units

previous token and units

1

2 3

4 5

Expression tree

Expression

Library of choosable
tokens

current required units

Symbolic function generation Φ-SO : generation

13Wassim Tenachi, Physical Symbolic Optimization
Nov 27 2023

Expression (prefix notation)

/

L.T-1

-

-

L.T-1

dangling = 1

L.T-1

-

L.T-1

L.T-1

dangling = 2

L.T-1

L.T-1

L.T-1

L.T-1

dangling = 1

L.T-1

-

L.T-1

-

dangling = 2

t

/ L.T-1

L

L

T

dangling = 1

/

RNN

Categorical
distribution

Physical units prior
(+ other priors)

Sampled
token

Contextual information
around next token

dangling

sibling and units
parent and units

previous token and units

1

2 3

4 5

Expression tree

Expression

Library of choosable
tokens

current required units

! = !# + ∎

In situ
dimensional

analysis

/

L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1
??

/

L.T-1

L.T-1 L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1

Any Any
? ?

RNN

Categorical
distribution

Physical
constraints

Sampled
token

Local units
constraints

L.T-1

L.T-1 L.T-1

L T
?

t

In situ
dimensional

analysis

In situ
dimensional

analysis

/

L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1
??

/

L.T-1

L.T-1 L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1

Any Any
? ?

RNN

Categorical
distribution

Physical
constraints

Sampled
token

Local units
constraints

L.T-1

L.T-1 L.T-1

L T
?

t

In situ
dimensional

analysis

Expression (prefix notation)

/

L.T-1

-

-

L.T-1

dangling = 1

L.T-1

-

L.T-1

L.T-1

dangling = 2

L.T-1

L.T-1

L.T-1

L.T-1

dangling = 1

L.T-1

-

L.T-1

-

dangling = 2

t

/ L.T-1

L

L

T

dangling = 1

/

RNN

Categorical
distribution

Physical units prior
(+ other priors)

Sampled
token

Contextual information
around next token

dangling

sibling and units
parent and units

previous token and units

1

2 3

4 5

Expression tree

Expression

Library of choosable
tokens

current required units

Symbolic function generation Φ-SO : generation

13Wassim Tenachi, Physical Symbolic Optimization
Nov 27 2023

Expression (prefix notation)

/

L.T-1

-

-

L.T-1

dangling = 1

L.T-1

-

L.T-1

L.T-1

dangling = 2

L.T-1

L.T-1

L.T-1

L.T-1

dangling = 1

L.T-1

-

L.T-1

-

dangling = 2

t

/ L.T-1

L

L

T

dangling = 1

/

RNN

Categorical
distribution

Physical units prior
(+ other priors)

Sampled
token

Contextual information
around next token

dangling

sibling and units
parent and units

previous token and units

1

2 3

4 5

Expression tree

Expression

Library of choosable
tokens

current required units

! = !# +
∎
∎

In situ
dimensional

analysis

/

L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1
??

/

L.T-1

L.T-1 L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1

Any Any
? ?

RNN

Categorical
distribution

Physical
constraints

Sampled
token

Local units
constraints

L.T-1

L.T-1 L.T-1

L T
?

t

In situ
dimensional

analysis

In situ
dimensional

analysis

/

L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1
??

/

L.T-1

L.T-1 L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1

Any Any
? ?

RNN

Categorical
distribution

Physical
constraints

Sampled
token

Local units
constraints

L.T-1

L.T-1 L.T-1

L T
?

t

In situ
dimensional

analysis

In situ
dimensional

analysis

/

L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1
??

/

L.T-1

L.T-1 L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1

Any Any
? ?

RNN

Categorical
distribution

Physical
constraints

Sampled
token

Local units
constraints

L.T-1

L.T-1 L.T-1

L T
?

t

In situ
dimensional

analysis

Expression (prefix notation)

/

L.T-1

-

-

L.T-1

dangling = 1

L.T-1

-

L.T-1

L.T-1

dangling = 2

L.T-1

L.T-1

L.T-1

L.T-1

dangling = 1

L.T-1

-

L.T-1

-

dangling = 2

t

/ L.T-1

L

L

T

dangling = 1

/

RNN

Categorical
distribution

Physical units prior
(+ other priors)

Sampled
token

Contextual information
around next token

dangling

sibling and units
parent and units

previous token and units

1

2 3

4 5

Expression tree

Expression

Library of choosable
tokens

current required units

Symbolic function generation Φ-SO : generation

13Wassim Tenachi, Physical Symbolic Optimization
Nov 27 2023

Expression (prefix notation)

/

L.T-1

-

-

L.T-1

dangling = 1

L.T-1

-

L.T-1

L.T-1

dangling = 2

L.T-1

L.T-1

L.T-1

L.T-1

dangling = 1

L.T-1

-

L.T-1

-

dangling = 2

t

/ L.T-1

L

L

T

dangling = 1

/

RNN

Categorical
distribution

Physical units prior
(+ other priors)

Sampled
token

Contextual information
around next token

dangling

sibling and units
parent and units

previous token and units

1

2 3

4 5

Expression tree

Expression

Library of choosable
tokens

current required units

! = !# +
%
∎

In situ
dimensional

analysis

/

L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1
??

/

L.T-1

L.T-1 L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1

Any Any
? ?

RNN

Categorical
distribution

Physical
constraints

Sampled
token

Local units
constraints

L.T-1

L.T-1 L.T-1

L T
?

t

In situ
dimensional

analysis

In situ
dimensional

analysis

/

L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1
??

/

L.T-1

L.T-1 L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1

Any Any
? ?

RNN

Categorical
distribution

Physical
constraints

Sampled
token

Local units
constraints

L.T-1

L.T-1 L.T-1

L T
?

t

In situ
dimensional

analysis

In situ
dimensional

analysis

/

L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1
??

/

L.T-1

L.T-1 L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1

Any Any
? ?

RNN

Categorical
distribution

Physical
constraints

Sampled
token

Local units
constraints

L.T-1

L.T-1 L.T-1

L T
?

t

In situ
dimensional

analysis

Expression (prefix notation)

/

L.T-1

-

-

L.T-1

dangling = 1

L.T-1

-

L.T-1

L.T-1

dangling = 2

L.T-1

L.T-1

L.T-1

L.T-1

dangling = 1

L.T-1

-

L.T-1

-

dangling = 2

t

/ L.T-1

L

L

T

dangling = 1

/

RNN

Categorical
distribution

Physical units prior
(+ other priors)

Sampled
token

Contextual information
around next token

dangling

sibling and units
parent and units

previous token and units

1

2 3

4 5

Expression tree

Expression

Library of choosable
tokens

current required units

Symbolic function generation Φ-SO : generation

13Wassim Tenachi, Physical Symbolic Optimization
Nov 27 2023

Expression (prefix notation)

/

L.T-1

-

-

L.T-1

dangling = 1

L.T-1

-

L.T-1

L.T-1

dangling = 2

L.T-1

L.T-1

L.T-1

L.T-1

dangling = 1

L.T-1

-

L.T-1

-

dangling = 2

t

/ L.T-1

L

L

T

dangling = 1

/

RNN

Categorical
distribution

Physical units prior
(+ other priors)

Sampled
token

Contextual information
around next token

dangling

sibling and units
parent and units

previous token and units

1

2 3

4 5

Expression tree

Expression

Library of choosable
tokens

current required units

! = !# +
%
&

In situ
dimensional

analysis

/

L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1
??

/

L.T-1

L.T-1 L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1

Any Any
? ?

RNN

Categorical
distribution

Physical
constraints

Sampled
token

Local units
constraints

L.T-1

L.T-1 L.T-1

L T
?

t

In situ
dimensional

analysis

In situ
dimensional

analysis

/

L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1
??

/

L.T-1

L.T-1 L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1

Any Any
? ?

RNN

Categorical
distribution

Physical
constraints

Sampled
token

Local units
constraints

L.T-1

L.T-1 L.T-1

L T
?

t

In situ
dimensional

analysis

In situ
dimensional

analysis

/

L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1
??

/

L.T-1

L.T-1 L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1

Any Any
? ?

RNN

Categorical
distribution

Physical
constraints

Sampled
token

Local units
constraints

L.T-1

L.T-1 L.T-1

L T
?

t

In situ
dimensional

analysis

In situ
dimensional

analysis

/

L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1
??

/

L.T-1

L.T-1 L.T-1
?

In situ
dimensional

analysis

L.T-1

L.T-1 L.T-1

Any Any
? ?

RNN

Categorical
distribution

Physical
constraints

Sampled
token

Local units
constraints

L.T-1

L.T-1 L.T-1

L T
?

t

In situ
dimensional

analysis

Reinforcement learning in a nutshell (1) Φ-SO : RL

Nov 27 2023
14Wassim Tenachi, Physical Symbolic Optimization

https://youtu.be/spfpBrBjntg

https://youtu.be/spfpBrBjntg

Reinforcement learning in a nutshell (2) Φ-SO : RL

Nov 27 2023
14Wassim Tenachi, Physical Symbolic Optimization

https://youtu.be/igZ6IPQimjQ

https://youtu.be/igZ6IPQimjQ

Nov 27 2023

Φ-SO : RL

15Wassim Tenachi, Physical Symbolic Optimization

Reinforcement learning & risk seeking policy

! = #/%

! = !& + #/%
! = !&

Categorical distributions

! = !&(
#/%

! = !& − x/t

…

Φ(r) = − 4πGρ0R3
s

r
ln (1 + r

Rs) + arctan (r
Rs)

Φ(r) = − 4πGρcR3
s

r (Rs + r
Rs)

α−1

[1 + Rs + r
Rs]

β−γ

Φ(r) = − 4πGρsR3
s

r [ln(1 + r
Rs

) − r
r + Rs]

Φ " = 4%&'()*	,
" ln 1 + "

)*
	

Reinforcing on best candidates

Computing
discrepancyΦ-SO

Nov 27 2023

Φ-SO : RL

15Wassim Tenachi, Physical Symbolic Optimization

! = #/%

! = !& + #/%
! = !&

Categorical distributions

! = !&(
#/%

! = !& − x/t

…

à R = 0.28

à R = 0.99

à R = 0.93

à R = 0.73

à R = 0.64

Candidates vs data
à reward

Reinforcement learning & risk seeking policy

Φ(r) = − 4πGρ0R3
s

r
ln (1 + r

Rs) + arctan (r
Rs)

Φ(r) = − 4πGρcR3
s

r (Rs + r
Rs)

α−1

[1 + Rs + r
Rs]

β−γ

Φ(r) = − 4πGρsR3
s

r [ln(1 + r
Rs

) − r
r + Rs]

Φ " = 4%&'()*	,
" ln 1 + "

)*
	

Reinforcing on best candidates

Computing
discrepancyΦ-SO

Nov 27 2023

Φ-SO : RL

15Wassim Tenachi, Physical Symbolic Optimization

! = #/%

! = !& + #/%
! = !&

Categorical distributions

! = !&(
#/%

! = !& − x/t

…

à R = 0.28

à R = 0.99

à R = 0.93

à R = 0.73

à R = 0.64

Candidates vs data
à reward

Reinforcement learning & risk seeking policy

Reinforce on the 5% best
candidates

Not punished/rewarded on
95% of candidates
à “risk seeking”

[Petersen et al 2019]

Φ(r) = − 4πGρ0R3
s

r
ln (1 + r

Rs) + arctan (r
Rs)

Φ(r) = − 4πGρcR3
s

r (Rs + r
Rs)

α−1

[1 + Rs + r
Rs]

β−γ

Φ(r) = − 4πGρsR3
s

r [ln(1 + r
Rs

) − r
r + Rs]

Φ " = 4%&'()*	,
" ln 1 + "

)*
	

Reinforcing on best candidates

Computing
discrepancyΦ-SO

https://arxiv.org/abs/1912.04871

Nov 27 2023

Φ-SO : RL

15

! = #/%

! = !& + #/%
! = !&

Categorical distributions

! = !&(
#/%

! = !& − x/t

…

à R = 0.28

à R = 0.99

à R = 0.93

à R = 0.73

à R = 0.64

Candidates vs data
à reward

Reinforcement learning & risk seeking policy

Reinforce on the 5% best
candidates

Not punished/rewarded on
95% of candidates
à “risk seeking”

[Petersen et al 2019]

Reward à no auto-differentiation
(unlike most ML methods used in physics)

à We can apply any physical
constraints we want even if it is
not differentiable

Black box reward function

Φ(r) = − 4πGρ0R3
s

r
ln (1 + r

Rs) + arctan (r
Rs)

Φ(r) = − 4πGρcR3
s

r (Rs + r
Rs)

α−1

[1 + Rs + r
Rs]

β−γ

Φ(r) = − 4πGρsR3
s

r [ln(1 + r
Rs

) − r
r + Rs]

Φ " = 4%&'()*	,
" ln 1 + "

)*
	

Reinforcing on best candidates

Computing
discrepancyΦ-SO

https://arxiv.org/abs/1912.04871

Nov 27 2023

Φ-SO : RL

15

! = #/%

! = !& + #/%
! = !&

Categorical distributions

! = !&(
#/%

! = !& − x/t

…

à R = 0.28

à R = 0.99

à R = 0.93

à R = 0.73

à R = 0.64

Candidates vs data
à reward

Reinforcement learning & risk seeking policy

Reinforce on the 5% best
candidates

Not punished/rewarded on
95% of candidates
à “risk seeking”

[Petersen et al 2019]

Reward à no auto-differentiation
(unlike most ML methods used in physics)

à We can apply any physical
constraints we want even if it is
not differentiable

àComplexity (Occam's razor)
àSymmetries
àConstraints on derivatives/primitives
àSymbolic computing using Sympy/Mathematica
àFitness in ODEs, limits values
àBehavior in N-body simulation

…

Black box reward function

Φ(r) = − 4πGρ0R3
s

r
ln (1 + r

Rs) + arctan (r
Rs)

Φ(r) = − 4πGρcR3
s

r (Rs + r
Rs)

α−1

[1 + Rs + r
Rs]

β−γ

Φ(r) = − 4πGρsR3
s

r [ln(1 + r
Rs

) − r
r + Rs]

Φ " = 4%&'()*	,
" ln 1 + "

)*
	

Reinforcing on best candidates

Computing
discrepancyΦ-SO

https://arxiv.org/abs/1912.04871

Nov 27 2023

Φ-SO : RL

16Wassim Tenachi, Physical Symbolic Optimization

Model loss : how do we reinforce ?
+ "# / %

[1
, 0

, 0
, 0

, 0
]

[0
, 0

, 0
, 1

, 0
]

[0
, 0

, 1
, 0

, 0
]

[0
, 0

, 0
, 0

, 1
]

&

[0
, 1

, 0
, 0

, 0
]

! = !# +
$
%Reward

Model

[0
.8

, 0
.1

, 0
.3

, 0
.2

, 0
.1

]

[0
.2

, 0
.1

, 0
.3

, 0
.9

, 0
.1

]

[0
.4

, 0
.1

, 0
.7

, 0
.2

, 0
.1

]

[0
.2

, 0
.1

, 0
.3

, 0
.2

, 0
.9

]

[0
.1

, 0
.8

, 0
.3

, 0
.2

, 0
.1

]

'

Nov 27 2023

Φ-SO : RL

16Wassim Tenachi, Physical Symbolic Optimization

Model loss : how do we reinforce ?
+ "# / % &

[1
, 0

, 0
, 0

, 0
]

[0
, 0

, 0
, 1

, 0
]

[0
, 0

, 1
, 0

, 0
]

[0
, 0

, 0
, 0

, 1
]

[0
, 1

, 0
, 0

, 0
]

! = !# +
$
%Reward

Model

[0
.8

, 0
.1

, 0
.3

, 0
.2

, 0
.1

]

[0
.2

, 0
.1

, 0
.3

, 0
.9

, 0
.1

]

[0
.4

, 0
.1

, 0
.7

, 0
.2

, 0
.1

]

[0
.2

, 0
.1

, 0
.3

, 0
.2

, 0
.9

]

[0
.1

, 0
.8

, 0
.3

, 0
.2

, 0
.1

]

'

If the reward is among the 5% best:
à Adjust ' such that probability

distributions is closer to the sampled one
encoded in a one-hot (via cross-entropy)

Learning to produce physical expressions

Nov 27 2023

Φ-SO : RL

17Wassim Tenachi, Physical Symbolic Optimization

Learning curves
Learning to produce accurate expressions

18Wassim Tenachi, Physical Symbolic Optimization

Feynman Benchmark

Nov 27 2023

120 equations from the Feynman Lectures on Physics (+ other physics textbooks)

Introduced in [Udrescu & Tegmark 2020]
Formalized benchmark in SRBench [LaCava et al 2021]

12 Tenachi et al.

Method Technique(s) Description Reference

PhySO RL, DA Physical Symbolic Optimization This work

uDSR RL, GP, Simp., Sup. A Unified Framework for Deep Symbolic Regression Landajuela et al. (2022)

AIFeynman 2.0 Simp., DA Symbolic regression exploiting graph modularity Udrescu et al. (2020)

AFP FE GP AFP with co-evolved fitness estimates, Eureqa-esque Schmidt & Lipson (2009)

DSR RL Deep Symbolic Regression Petersen et al. (2021a)

AFP GP Age-fitness Pareto Optimization Schmidt & Lipson (2011)

gplearn GP Koza-style symbolic regression in Python Stephens (2015)

GP-GOMEA GP GP-Optimal Mixing Evolutionary Algorithm Virgolin et al. (2021)

ITEA GP Interaction-Transformation EA de Franca & Aldeia (2021)

EPLEX GP ✏-lexicase selection La Cava et al. (2019)

NeSymReS Sup. Neural Symbolic Regression that Scales Biggio et al. (2021)

Operon GP SR with Non-linear least squares Kommenda et al. (2020)

SINDy NeuroSym Sparse identification of non-linear dynamics Brunton et al. (2016)

SBP-GP GP Semantic Back-propagation Genetic Programming Virgolin et al. (2019)

BSR MCMC Bayesian Symbolic Regression Jin et al. (2019)

FEAT GP Feature Engineering Automation Tool Cava et al. (2019)

FFX Rand. Fast function extraction McConaghy (2011)

MRGP GP Multiple Regression Genetic Programming Arnaldo et al. (2014)

Table 3. Summary of baseline symbolic regression methods along with the the underlying techniques they rely on: reinforcement
learning (RL), genetic programming (GP), problem simplification schemes (Simp.), end-to-end supervised learning (Sup.),
dimensional analysis (DA), neuro-symbolic / auto-di↵erentiation based sparse fitting techniques (NeuroSym), Markov chain
Monte Carlo (MCMC) and random search (Rand.).

we note that is important to exercise caution when in-
terpreting this additional DSR performance data-point as
well as the performances of SINDy, NeSymReS, and uDSR

as our available data only o↵ers their final scores on a
composite dataset, which encompasses both the Feyn-
man benchmark and the Strogatz benchmark (La Cava
et al. 2016) - the latter accounting for approximately
5% of the total score. This aggregated score is what we
illustrate in our figures throughout this Section. In ad-
dition, it is worth noting that the exact conditions under
which SINDy and NeSymReS were benchmarked are un-
known and that in the case of uDSR and the additional
DSR data-point, the benchmarking respectively permit-
ted an evaluation of up to 2 million and 0.5 million ex-
pressions respectively, in contrast to the 1 million limit
set for other methods. Furthermore, detailed results for
these methods, in particular those regarding the specific
expressions they identified, are unavailable, preventing
their inclusion in our comparative analysis when con-
cerning expression metrics (complexity or number of free
parameters). Although, per SRBench rules, we permit-
ted our method to evaluate up to 1 million expressions
compared to DSR’s 0.5 million, PhySO typically identifies
the correct expression well before reaching this limit or
not at all. Additionally, while DSR’s 42% score is influ-
enced by another benchmark, the impact is very low,

accounting for only 5%. This external benchmark is rel-
atively straightforward, with DSR achieving around 25%
even without free parameters (La Cava et al. 2021), in-
dicating its limited e↵ect on the overall score. Thus, we
believe a direct comparison between PhySO’s score and
DSR’s from Landajuela et al. (2022) is valid especially
considering the gap in performance as detailed in the
next sub-section.

4.2. Exact symbolic recovery

Figure 4 presents the performance of PhySO against
baseline algorithms from Table 3 on the Feynman bench-
mark. This includes the average exact symbolic recovery
rate, accurate expression rate (defined as those with a fit
coe�cient R2 > 0.999), and normalized accurate expres-
sion rate considering the number of free parameters in
the expressions, across di↵erent noise levels. Compared
to DSR, which strictly relies on reinforcement learning,
PhySO utilizes both reinforcement learning and dimen-
sional analysis. With DSR’s score at roughly 42%, our
method’s 58.5% score highlights the significant benefits
of incorporating dimensional analysis. In the realm of
physics, the exact symbolic recovery rate is a paramount
metric and given that real-world physics data is often
noisy, the resilience of an algorithm to noise is also
crucial. However, with a minor noise level of 0.1%,

Against 17 other algorithms

Φ-SO : performances

https://arxiv.org/abs/1905.11481
https://arxiv.org/abs/2107.14351

18Wassim Tenachi, Physical Symbolic Optimization

Feynman Benchmark

Nov 27 2023
[Tenachi et al 2023]

Φ-SO : performances

https://arxiv.org/abs/2303.03192

Wassim Tenachi, Physical Symbolic Optimization

Feynman Benchmark

Nov 27 2023
18

[Tenachi et al 2023]

Φ-SO : performances

https://arxiv.org/abs/2303.03192

Wassim Tenachi, Physical Symbolic Optimization

Feynman Benchmark

Nov 27 2023
18

[Tenachi et al 2023]

Φ-SO : performances

https://arxiv.org/abs/2303.03192

Wassim Tenachi, Physical Symbolic Optimization

Feynman Benchmark

Nov 27 2023
18

[Tenachi et al 2023]

Φ-SO : performances

https://arxiv.org/abs/2303.03192

2 4 6 8 10 12 14
complexity

°20

°10

0

10

20

lo
g(

R
M

S
E

)

E = mv2

E = mc2
E = m

°
c2 + v2

¢
E = mc2

cos2
≥

v2

c2

¥

E = mc2
q

1°v2

c2

Nov 27 2023

Φ-SO : showcases

19Wassim Tenachi, Physical Symbolic Optimization

Discovering new physics with SR

Nov 27 2023

Φ-SO : conclusion

20Wassim Tenachi, Physical Symbolic Optimization

Conclusion
Φ-SO is a RL framework that:

1. Can be used to resolve any
symbolic optimization task

2. While taking full advantage of
physical units constraints

Nov 27 2023
20Wassim Tenachi, Physical Symbolic Optimization

Conclusion

1. Interpretability

2. Compactness

3. Generalization

Gaia

SKA

Euclid

LSST

à Black box

expression

Big data from surveys &
simulations

Φ-SO is a RL framework that:

1. Can be used to resolve any
symbolic optimization task

2. While taking full advantage of
physical units constraints

Φ-SO : conclusion

Nov 27 2023
21Wassim Tenachi, Physical Symbolic Optimization

Perspectives

Curse of accuracy guided SR : “One can improve fit quality
of candidates over learning iterations while getting further
away from the correct solution in symbolic arrangement.”

(", $) data

!" !# $
0.75582 0.25850 0.02674
0.36786 0.42401 0.06278
0.69507 0.38057 0.74014
0.96493 0.33398 0.81558
0.07139 0.16604 0.07735
0.86413 0.41952 0.87872
0.18012 0.40581 0.63637

Scalar
Reward Model

à Leverage data in a more meaningful way

Φ-SO : conclusion

Nov 27 2023
21Wassim Tenachi, Physical Symbolic Optimization

Perspectives

Supervised learning: “ I learn a lot beforehand and if what I
learned does not help me guess the answer for this specific
problem, then too bad there is nothing I can do.”

Trial and error : “ I try to resolve this specific problem by
trial and error without benefiting from past experience.”

“Book smart” or “street smart” ?

Φ-SO : conclusion

Nov 27 2023
21Wassim Tenachi, Physical Symbolic Optimization

Perspectives

Supervised learning: “ I learn a lot beforehand and if what I
learned does not help me guess the answer for this specific
problem, then too bad there is nothing I can do.”

Trial and error : “ I try to resolve this specific problem by
trial and error without benefiting from past experience.”

“Book smart” or “street smart” ?

RNN !" #
#$

#
#%

Differential operators & sub-functions

RNN !&
RNN O'((!", !&, …)

Φ-SO : conclusion

Nov 27 2023
22Wassim Tenachi, Physical Symbolic Optimization

Creating a physical free-form symbolic analytical function
!:ℝ$ → ℝ fitting & = !()) given (), &) data:

Φ-SOPhysical Symbolic Optimization

Github repository: WassimTenachi/PhySO

An open source …

Documentation: physo.readthedocs.io

… and documented package

[Tenachi et al 2023]

https://github.com/WassimTenachi/PhySO
https://physo.readthedocs.io/en/latest/
https://arxiv.org/abs/2303.03192

Thank you for your
attention !

Nov 27 2023

Nov 27 2023

Φ-SO : RL

Wassim Tenachi, Physical Symbolic Optimization

Evaluating a candidate function !

1. Fitting free constants (")

!# $ = &' vs ' "
(using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimization algorithm)

Nov 27 2023

Φ-SO : RL

Wassim Tenachi, Physical Symbolic Optimization

Evaluating a candidate function !

1. Fitting free constants (")

2. Reward (#)

Normalized Root Mean Square Error

NRMSE = 1
&'

1
()*+,

-
(/* − !1 2*)4

= 1
1 + (#678

!1 2 = 9/ vs / "
(using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimization algorithm)

! ∈ [0,1]

Nov 27 2023

Φ-SO : RL

Wassim Tenachi, Physical Symbolic Optimization

Loss details (1)

• Expressions of a given batch have different sizes

! = #/%

! = !! + #/%

! = !!
! = !! − x/t

+ #! / % &

#! % / & &

− #! / % &

/ % & ()* &

&

&

&

&

àPlaceholder out of valid expression range are not
taken into account

Nov 27 2023

Φ-SO : RL

Wassim Tenachi, Physical Symbolic Optimization

Loss details (2)

• Weighting is different along sequence dimension: via a !! coefficient

" = "" + %/'+ $" / & ' '

(" () (* (+ (, (-

àWe give more importance to first symbols via ! = 0.7 < 1 to avoid searching
around the same initial nodes

[Landajuela et al 2021]

https://mathai-iclr.github.io/papers/papers/MATHAI_16_paper.pdf

Nov 27 2023

Φ-SO : RL

Wassim Tenachi, Physical Symbolic Optimization

Loss details (3)

• Weighting gradients accordingly with reward value

[Petersen et al 2019]

! = #/%/ " # $%& # # à R = 0.28

! = !' + #/%+)' / " # # à R = 0.99

! = !')' " / # # # à R = 0.93

! = !' − x/t−)' / " # # à R = 0.73

(R – baseline)5% best

0.26

=
 + ,
-.
=
0.7
3

0.20

0.00

https://arxiv.org/abs/1912.04871

Wassim Tenachi, Physical Symbolic Optimization

Feynman Benchmark

Nov 27 2023
[Tenachi et al 2023]

Φ-SO : performances

https://arxiv.org/abs/2303.03192

12 Tenachi et al.

Expression #
T
ri
al

ex
p
re

ss
io

n
s

�
-S

O
⌘

{�
-p

ri
or

,
�

-R
N

N
}

{�
-R

N
N
}

{�
-p

ri
or

,
R

N
N
}

{R
N

N
}

{�
-p

ri
or

,
R

N
G
}

{R
N

G
}

E = mc2p
1�v2/c2

10M 100 % 0 % 60 % 0 % 20 % 0 %

Jr = GMp
�2E

� 1
2

⇣
L + 1

2

p
L2 � 4GMb

⌘
4M 100 % 0 % 80 % 0 % 60 % 0 %

⇢ = ⇢0/

⇣
r
Rs

(1 + r
Rs

)2
⌘

2M 100 % 100 % 40 % 100 % 20 % 100 %

y = e
�↵t cos(ft + �) 1M 100 % 0 % 0 % 0 % 0 % 0 %

F = Gm1m2
r2

100K 100 % 80 % 100 % 20 % 80 % 0 %

H
2(x ⌘ 1 + z) = H0

2(⌦mx
3 + (1 � ⌦m)) 100K 100 % 100 % 100 % 100 % 40 % 40 %

Table 2. Exact symbolic recovery rate summary and ablation study on our panel of astrophysical examples (input variables and
free parameters are colored in red and blue respectively). The acronymns are as follows. �-prior : physical units prior; �-RNN
: physical units informed RNN; RNG : random number generator. By studying the performance in combinations of ablations
of the in situ units prior, the RNN’s ability to be informed of local units constraints, and of the RNN itself (i.e., replaced by a
random number generator), we show that all three are essential ingredients of the success of our �-SO algorithm.

tively learn units rules as shown in Figure 5 which gives
the fraction of physical expressions successfully gener-
ated over iterations of learning.
Finally, we also illustrate the generalization capabili-

ties o↵ered by virtue of finding the exact analytical ex-
pression compared to a good approximation in Figure
6, where we show that such analytical expressions can
vastly outperform a multilayer perceptron (MLP) neural
network.

6. DISCUSSION

Since the Deep Symbolic Regression framework (Pe-
tersen et al. 2019) and most other SR methods work
by maximizing fit quality, there are few constraints on
the arrangement of symbols. However, the paths in fit
quality and the paths in symbol arrangement toward the
global minima (perfect fit quality and perfect symbol ar-
rangement) are not necessarily correlated. This results
in the curse of accuracy guided SR, as small changes in
fit quality can hide dramatic changes in functional form
and vice-versa. In essence, one can improve fit quality
of candidates over learning iterations while getting fur-
ther away from the correct solution in symbolic arrange-
ment. Therefore strong constraints on the functional
form, such as the one we are proposing in our setup, are
of great value for guiding SR algorithms in the context of
physics. This is an advantage that physics has and that
�-SO leverages by: (i) reducing the search space and (ii)

Figure 5. RNN learning units rules. The black line shows
the evolution of the fraction of expressions that have bal-
anced units. As the training progresses, the algorithm learns
to respect the units constraints better. Here, we showcase
this trend on the relativistic energy of a particle test case
(averaged over multiple runs).

enabling the neural network to actively learn units rules
and leverage them to explore the space of solutions more
e�ciently. Although the possibility of making a physical

8 Tenachi et al.

galactic dynamics could be if we were provided a set
of potential values �, and cylindrical coordinate values
(R, z) of some mystery function that was actually a sim-
ple logarithmic potential model:

� =
1

2
v20 ln

✓
R2

c + R2 +
z2

q2

◆
, (2)

whose parameters are the velocity parameter v0, the core
radius Rc and the potential flattening q. Of course, we
will generally not know in advance either the number
of such parameters that the correct solution requires,
or their numerical values. Yet to be able to evaluate
the loss of the trial functions f , we need to assign val-
ues to all such free “constants” they may contain. We
accomplish this task by processing each trial function,
with the L-BFGS (Zhu et al. 1997) optimization routine
in pytorch, leveraging the fact that we can encode the
symbols of f using pytorch functions. Since pytorch has
in-built auto-di↵erentiation, finding the optimal value
of the constants via gradient descent is extremely e�-
cient. However, due to the number of trial expressions to
evaluate and considering that each expression must be
evaluated multiple times to optimize its free constants,
this optimization step is one of the main performance
bottlenecks of the �-SO algorithm.
Then, as in Petersen et al. (2019) for each candidate

f , we compute a reward R that is representative of fit
quality: R = 1/(1+NRMSE) where NRMSE is the root
mean squared error normalized by the deviation of the

target �y: NRMSE = 1
�y

q
1
N

PN
i=1(yi � f(xi))2. We

apply the policy gradients by means of an Adam opti-
mizer Kingma & Ba (2014) and use a long-short term
memory (LSTM) type RNN (Hochreiter & Schmidhuber
1997). Our additional learning hyper-parameters can be
found in Table 1. It is worth noting that the empirically
tuned batch size we found (10k) is larger than the one
found by Petersen et al. (2019) which was of 1k. We at-
tribute this to the very strong constraints o↵ered by our
�-SO setup which require a strong exploration counter-
part to avoid getting stuck in local minima.
It is also worth noting that in the reinforcement learn-

ing framework, the the reward function can be consid-
ered as as a black box, which does not have to be dif-
ferentiable, therefore one could use anything as the re-
ward. For example, we can also include the complexity
of the symbolic function in the reward function, so as
to have a criterion akin to Occam’s razor. But actually
one could in principle implement many ideas into the re-
ward function: symmetries, constraints on primitives or
derivatives, fitness in a di↵erential equation, the results
of some symbolic computation using external packages
such as Mathematica (Wolfram 2003) or SymPy (Meurer

Learning parameters

Batch size 10 000

Learning rate 0.0025

Entropy coe�cient 0.005

Risk factor 5 %

Table 1. Learning parameters.

et al. 2017), behavior of the function when implemented
an n-body simulation, and so on.

4. CASE STUDIES

We showcase our �-SO method on a panel of astro-
physical test cases: the relativistic energy of a particle
is examined in subsection 4.1, the law describing the ex-
pansion of the Universe in subsection 4.2, the isochrone
action from galactic dynamics in subsection 4.3 and ad-
ditional toy test cases given in 4.4. These examples show
that the method can successfully recover physical laws
and relations from real or synthetic data. We limit our-
selves to the exploration of 10 million trial expressions
which roughly takes ⇠ 4 hours on a modern laptop com-
puter and is only necessary for the most di�cult case
(the relativistic energy).
In addition, for some of these cases, we give the Pareto

front which shows the most accurate expression based
on RMSE (root mean squared error) for each level of
complexity. Although we note that there are sophisti-
cated schemes inspired by information theory to define
the complexity (Udrescu & Tegmark 2020; Bartlett et al.
2022; Schmidt & Lipson 2009), we defer such considera-
tions to a future study and simply define the complexity
of each token to be of 1 except for input variables which
we take to have complexity zero.
We also define the successful exact symbolic recovery

of an expression by its symbolic equivalence using the
SymPy symbolic simplification subroutine (Meurer et al.
2017) whenever possible and by a numerical criterion
akin to the one used in (La Cava et al. 2021; Matsubara
et al. 2022) R > 0.9999 along with manual verifications
in cases where it is impossible to automatically simplify
(e.g., when free constants are involved).
Finally, we agnostically rely on the same li-

brary of choosable tokens for all test cases:
{+, �, ⇥, /, 1/⇤,

p
⇤,⇤2, exp, log, cos, sin, 1} to which

we only add input variables and free or fixed constants
depending on the test cases.

4.1. Relativistic energy of a particle

, free constants & input variablesAllowing:
Nov 27 2023

Wassim Tenachi, Physical Symbolic Optimization

(Astro)-physical showcases & ablation study
RNN : vanilla model
Φ-RNN : model can observe physical units context
Φ-prior : physical units prior

Φ-SO : showcases

12 Tenachi et al.

Expression #
T
ri
al

ex
p
re

ss
io

n
s

�
-S

O
⌘

{�
-p

ri
or

,
�

-R
N

N
}

{�
-R

N
N
}

{�
-p

ri
or

,
R

N
N
}

{R
N

N
}

{�
-p

ri
or

,
R

N
G
}

{R
N

G
}

E = mc2p
1�v2/c2

10M 100 % 0 % 60 % 0 % 20 % 0 %

Jr = GMp
�2E

� 1
2

⇣
L + 1

2

p
L2 � 4GMb

⌘
4M 100 % 0 % 80 % 0 % 60 % 0 %

⇢ = ⇢0/

⇣
r
Rs

(1 + r
Rs

)2
⌘

2M 100 % 100 % 40 % 100 % 20 % 100 %

y = e
�↵t cos(ft + �) 1M 100 % 0 % 0 % 0 % 0 % 0 %

F = Gm1m2
r2

100K 100 % 80 % 100 % 20 % 80 % 0 %

H
2(x ⌘ 1 + z) = H0

2(⌦mx
3 + (1 � ⌦m)) 100K 100 % 100 % 100 % 100 % 40 % 40 %

Table 2. Exact symbolic recovery rate summary and ablation study on our panel of astrophysical examples (input variables and
free parameters are colored in red and blue respectively). The acronymns are as follows. �-prior : physical units prior; �-RNN
: physical units informed RNN; RNG : random number generator. By studying the performance in combinations of ablations
of the in situ units prior, the RNN’s ability to be informed of local units constraints, and of the RNN itself (i.e., replaced by a
random number generator), we show that all three are essential ingredients of the success of our �-SO algorithm.

tively learn units rules as shown in Figure 5 which gives
the fraction of physical expressions successfully gener-
ated over iterations of learning.
Finally, we also illustrate the generalization capabili-

ties o↵ered by virtue of finding the exact analytical ex-
pression compared to a good approximation in Figure
6, where we show that such analytical expressions can
vastly outperform a multilayer perceptron (MLP) neural
network.

6. DISCUSSION

Since the Deep Symbolic Regression framework (Pe-
tersen et al. 2019) and most other SR methods work
by maximizing fit quality, there are few constraints on
the arrangement of symbols. However, the paths in fit
quality and the paths in symbol arrangement toward the
global minima (perfect fit quality and perfect symbol ar-
rangement) are not necessarily correlated. This results
in the curse of accuracy guided SR, as small changes in
fit quality can hide dramatic changes in functional form
and vice-versa. In essence, one can improve fit quality
of candidates over learning iterations while getting fur-
ther away from the correct solution in symbolic arrange-
ment. Therefore strong constraints on the functional
form, such as the one we are proposing in our setup, are
of great value for guiding SR algorithms in the context of
physics. This is an advantage that physics has and that
�-SO leverages by: (i) reducing the search space and (ii)

Figure 5. RNN learning units rules. The black line shows
the evolution of the fraction of expressions that have bal-
anced units. As the training progresses, the algorithm learns
to respect the units constraints better. Here, we showcase
this trend on the relativistic energy of a particle test case
(averaged over multiple runs).

enabling the neural network to actively learn units rules
and leverage them to explore the space of solutions more
e�ciently. Although the possibility of making a physical

8 Tenachi et al.

galactic dynamics could be if we were provided a set
of potential values �, and cylindrical coordinate values
(R, z) of some mystery function that was actually a sim-
ple logarithmic potential model:

� =
1

2
v20 ln

✓
R2

c + R2 +
z2

q2

◆
, (2)

whose parameters are the velocity parameter v0, the core
radius Rc and the potential flattening q. Of course, we
will generally not know in advance either the number
of such parameters that the correct solution requires,
or their numerical values. Yet to be able to evaluate
the loss of the trial functions f , we need to assign val-
ues to all such free “constants” they may contain. We
accomplish this task by processing each trial function,
with the L-BFGS (Zhu et al. 1997) optimization routine
in pytorch, leveraging the fact that we can encode the
symbols of f using pytorch functions. Since pytorch has
in-built auto-di↵erentiation, finding the optimal value
of the constants via gradient descent is extremely e�-
cient. However, due to the number of trial expressions to
evaluate and considering that each expression must be
evaluated multiple times to optimize its free constants,
this optimization step is one of the main performance
bottlenecks of the �-SO algorithm.
Then, as in Petersen et al. (2019) for each candidate

f , we compute a reward R that is representative of fit
quality: R = 1/(1+NRMSE) where NRMSE is the root
mean squared error normalized by the deviation of the

target �y: NRMSE = 1
�y

q
1
N

PN
i=1(yi � f(xi))2. We

apply the policy gradients by means of an Adam opti-
mizer Kingma & Ba (2014) and use a long-short term
memory (LSTM) type RNN (Hochreiter & Schmidhuber
1997). Our additional learning hyper-parameters can be
found in Table 1. It is worth noting that the empirically
tuned batch size we found (10k) is larger than the one
found by Petersen et al. (2019) which was of 1k. We at-
tribute this to the very strong constraints o↵ered by our
�-SO setup which require a strong exploration counter-
part to avoid getting stuck in local minima.
It is also worth noting that in the reinforcement learn-

ing framework, the the reward function can be consid-
ered as as a black box, which does not have to be dif-
ferentiable, therefore one could use anything as the re-
ward. For example, we can also include the complexity
of the symbolic function in the reward function, so as
to have a criterion akin to Occam’s razor. But actually
one could in principle implement many ideas into the re-
ward function: symmetries, constraints on primitives or
derivatives, fitness in a di↵erential equation, the results
of some symbolic computation using external packages
such as Mathematica (Wolfram 2003) or SymPy (Meurer

Learning parameters

Batch size 10 000

Learning rate 0.0025

Entropy coe�cient 0.005

Risk factor 5 %

Table 1. Learning parameters.

et al. 2017), behavior of the function when implemented
an n-body simulation, and so on.

4. CASE STUDIES

We showcase our �-SO method on a panel of astro-
physical test cases: the relativistic energy of a particle
is examined in subsection 4.1, the law describing the ex-
pansion of the Universe in subsection 4.2, the isochrone
action from galactic dynamics in subsection 4.3 and ad-
ditional toy test cases given in 4.4. These examples show
that the method can successfully recover physical laws
and relations from real or synthetic data. We limit our-
selves to the exploration of 10 million trial expressions
which roughly takes ⇠ 4 hours on a modern laptop com-
puter and is only necessary for the most di�cult case
(the relativistic energy).
In addition, for some of these cases, we give the Pareto

front which shows the most accurate expression based
on RMSE (root mean squared error) for each level of
complexity. Although we note that there are sophisti-
cated schemes inspired by information theory to define
the complexity (Udrescu & Tegmark 2020; Bartlett et al.
2022; Schmidt & Lipson 2009), we defer such considera-
tions to a future study and simply define the complexity
of each token to be of 1 except for input variables which
we take to have complexity zero.
We also define the successful exact symbolic recovery

of an expression by its symbolic equivalence using the
SymPy symbolic simplification subroutine (Meurer et al.
2017) whenever possible and by a numerical criterion
akin to the one used in (La Cava et al. 2021; Matsubara
et al. 2022) R > 0.9999 along with manual verifications
in cases where it is impossible to automatically simplify
(e.g., when free constants are involved).
Finally, we agnostically rely on the same li-

brary of choosable tokens for all test cases:
{+, �, ⇥, /, 1/⇤,

p
⇤,⇤2, exp, log, cos, sin, 1} to which

we only add input variables and free or fixed constants
depending on the test cases.

4.1. Relativistic energy of a particle

, free constants & input variablesAllowing:
Nov 27 2023

Wassim Tenachi, Physical Symbolic Optimization

(Astro)-physical showcases & ablation study
RNN : vanilla model
Φ-RNN : model can observe physical units context
Φ-prior : physical units prior

Φ-SO : showcases

12 Tenachi et al.

Expression #
T
ri
al

ex
p
re

ss
io

n
s

�
-S

O
⌘

{�
-p

ri
or

,
�

-R
N

N
}

{�
-R

N
N
}

{�
-p

ri
or

,
R

N
N
}

{R
N

N
}

{�
-p

ri
or

,
R

N
G
}

{R
N

G
}

E = mc2p
1�v2/c2

10M 100 % 0 % 60 % 0 % 20 % 0 %

Jr = GMp
�2E

� 1
2

⇣
L + 1

2

p
L2 � 4GMb

⌘
4M 100 % 0 % 80 % 0 % 60 % 0 %

⇢ = ⇢0/

⇣
r
Rs

(1 + r
Rs

)2
⌘

2M 100 % 100 % 40 % 100 % 20 % 100 %

y = e
�↵t cos(ft + �) 1M 100 % 0 % 0 % 0 % 0 % 0 %

F = Gm1m2
r2

100K 100 % 80 % 100 % 20 % 80 % 0 %

H
2(x ⌘ 1 + z) = H0

2(⌦mx
3 + (1 � ⌦m)) 100K 100 % 100 % 100 % 100 % 40 % 40 %

Table 2. Exact symbolic recovery rate summary and ablation study on our panel of astrophysical examples (input variables and
free parameters are colored in red and blue respectively). The acronymns are as follows. �-prior : physical units prior; �-RNN
: physical units informed RNN; RNG : random number generator. By studying the performance in combinations of ablations
of the in situ units prior, the RNN’s ability to be informed of local units constraints, and of the RNN itself (i.e., replaced by a
random number generator), we show that all three are essential ingredients of the success of our �-SO algorithm.

tively learn units rules as shown in Figure 5 which gives
the fraction of physical expressions successfully gener-
ated over iterations of learning.
Finally, we also illustrate the generalization capabili-

ties o↵ered by virtue of finding the exact analytical ex-
pression compared to a good approximation in Figure
6, where we show that such analytical expressions can
vastly outperform a multilayer perceptron (MLP) neural
network.

6. DISCUSSION

Since the Deep Symbolic Regression framework (Pe-
tersen et al. 2019) and most other SR methods work
by maximizing fit quality, there are few constraints on
the arrangement of symbols. However, the paths in fit
quality and the paths in symbol arrangement toward the
global minima (perfect fit quality and perfect symbol ar-
rangement) are not necessarily correlated. This results
in the curse of accuracy guided SR, as small changes in
fit quality can hide dramatic changes in functional form
and vice-versa. In essence, one can improve fit quality
of candidates over learning iterations while getting fur-
ther away from the correct solution in symbolic arrange-
ment. Therefore strong constraints on the functional
form, such as the one we are proposing in our setup, are
of great value for guiding SR algorithms in the context of
physics. This is an advantage that physics has and that
�-SO leverages by: (i) reducing the search space and (ii)

Figure 5. RNN learning units rules. The black line shows
the evolution of the fraction of expressions that have bal-
anced units. As the training progresses, the algorithm learns
to respect the units constraints better. Here, we showcase
this trend on the relativistic energy of a particle test case
(averaged over multiple runs).

enabling the neural network to actively learn units rules
and leverage them to explore the space of solutions more
e�ciently. Although the possibility of making a physical

8 Tenachi et al.

galactic dynamics could be if we were provided a set
of potential values �, and cylindrical coordinate values
(R, z) of some mystery function that was actually a sim-
ple logarithmic potential model:

� =
1

2
v20 ln

✓
R2

c + R2 +
z2

q2

◆
, (2)

whose parameters are the velocity parameter v0, the core
radius Rc and the potential flattening q. Of course, we
will generally not know in advance either the number
of such parameters that the correct solution requires,
or their numerical values. Yet to be able to evaluate
the loss of the trial functions f , we need to assign val-
ues to all such free “constants” they may contain. We
accomplish this task by processing each trial function,
with the L-BFGS (Zhu et al. 1997) optimization routine
in pytorch, leveraging the fact that we can encode the
symbols of f using pytorch functions. Since pytorch has
in-built auto-di↵erentiation, finding the optimal value
of the constants via gradient descent is extremely e�-
cient. However, due to the number of trial expressions to
evaluate and considering that each expression must be
evaluated multiple times to optimize its free constants,
this optimization step is one of the main performance
bottlenecks of the �-SO algorithm.
Then, as in Petersen et al. (2019) for each candidate

f , we compute a reward R that is representative of fit
quality: R = 1/(1+NRMSE) where NRMSE is the root
mean squared error normalized by the deviation of the

target �y: NRMSE = 1
�y

q
1
N

PN
i=1(yi � f(xi))2. We

apply the policy gradients by means of an Adam opti-
mizer Kingma & Ba (2014) and use a long-short term
memory (LSTM) type RNN (Hochreiter & Schmidhuber
1997). Our additional learning hyper-parameters can be
found in Table 1. It is worth noting that the empirically
tuned batch size we found (10k) is larger than the one
found by Petersen et al. (2019) which was of 1k. We at-
tribute this to the very strong constraints o↵ered by our
�-SO setup which require a strong exploration counter-
part to avoid getting stuck in local minima.
It is also worth noting that in the reinforcement learn-

ing framework, the the reward function can be consid-
ered as as a black box, which does not have to be dif-
ferentiable, therefore one could use anything as the re-
ward. For example, we can also include the complexity
of the symbolic function in the reward function, so as
to have a criterion akin to Occam’s razor. But actually
one could in principle implement many ideas into the re-
ward function: symmetries, constraints on primitives or
derivatives, fitness in a di↵erential equation, the results
of some symbolic computation using external packages
such as Mathematica (Wolfram 2003) or SymPy (Meurer

Learning parameters

Batch size 10 000

Learning rate 0.0025

Entropy coe�cient 0.005

Risk factor 5 %

Table 1. Learning parameters.

et al. 2017), behavior of the function when implemented
an n-body simulation, and so on.

4. CASE STUDIES

We showcase our �-SO method on a panel of astro-
physical test cases: the relativistic energy of a particle
is examined in subsection 4.1, the law describing the ex-
pansion of the Universe in subsection 4.2, the isochrone
action from galactic dynamics in subsection 4.3 and ad-
ditional toy test cases given in 4.4. These examples show
that the method can successfully recover physical laws
and relations from real or synthetic data. We limit our-
selves to the exploration of 10 million trial expressions
which roughly takes ⇠ 4 hours on a modern laptop com-
puter and is only necessary for the most di�cult case
(the relativistic energy).
In addition, for some of these cases, we give the Pareto

front which shows the most accurate expression based
on RMSE (root mean squared error) for each level of
complexity. Although we note that there are sophisti-
cated schemes inspired by information theory to define
the complexity (Udrescu & Tegmark 2020; Bartlett et al.
2022; Schmidt & Lipson 2009), we defer such considera-
tions to a future study and simply define the complexity
of each token to be of 1 except for input variables which
we take to have complexity zero.
We also define the successful exact symbolic recovery

of an expression by its symbolic equivalence using the
SymPy symbolic simplification subroutine (Meurer et al.
2017) whenever possible and by a numerical criterion
akin to the one used in (La Cava et al. 2021; Matsubara
et al. 2022) R > 0.9999 along with manual verifications
in cases where it is impossible to automatically simplify
(e.g., when free constants are involved).
Finally, we agnostically rely on the same li-

brary of choosable tokens for all test cases:
{+, �, ⇥, /, 1/⇤,

p
⇤,⇤2, exp, log, cos, sin, 1} to which

we only add input variables and free or fixed constants
depending on the test cases.

4.1. Relativistic energy of a particle

, free constants & input variablesAllowing:
Nov 27 2023

Wassim Tenachi, Physical Symbolic Optimization

(Astro)-physical showcases & ablation study
RNN : vanilla model
Φ-RNN : model can observe physical units context
Φ-prior : physical units prior

Φ-SO : showcases

12 Tenachi et al.

Expression #
T
ri
al

ex
p
re

ss
io

n
s

�
-S

O
⌘

{�
-p

ri
or

,
�

-R
N

N
}

{�
-R

N
N
}

{�
-p

ri
or

,
R

N
N
}

{R
N

N
}

{�
-p

ri
or

,
R

N
G
}

{R
N

G
}

E = mc2p
1�v2/c2

10M 100 % 0 % 60 % 0 % 20 % 0 %

Jr = GMp
�2E

� 1
2

⇣
L + 1

2

p
L2 � 4GMb

⌘
4M 100 % 0 % 80 % 0 % 60 % 0 %

⇢ = ⇢0/

⇣
r
Rs

(1 + r
Rs

)2
⌘

2M 100 % 100 % 40 % 100 % 20 % 100 %

y = e
�↵t cos(ft + �) 1M 100 % 0 % 0 % 0 % 0 % 0 %

F = Gm1m2
r2

100K 100 % 80 % 100 % 20 % 80 % 0 %

H
2(x ⌘ 1 + z) = H0

2(⌦mx
3 + (1 � ⌦m)) 100K 100 % 100 % 100 % 100 % 40 % 40 %

Table 2. Exact symbolic recovery rate summary and ablation study on our panel of astrophysical examples (input variables and
free parameters are colored in red and blue respectively). The acronymns are as follows. �-prior : physical units prior; �-RNN
: physical units informed RNN; RNG : random number generator. By studying the performance in combinations of ablations
of the in situ units prior, the RNN’s ability to be informed of local units constraints, and of the RNN itself (i.e., replaced by a
random number generator), we show that all three are essential ingredients of the success of our �-SO algorithm.

tively learn units rules as shown in Figure 5 which gives
the fraction of physical expressions successfully gener-
ated over iterations of learning.
Finally, we also illustrate the generalization capabili-

ties o↵ered by virtue of finding the exact analytical ex-
pression compared to a good approximation in Figure
6, where we show that such analytical expressions can
vastly outperform a multilayer perceptron (MLP) neural
network.

6. DISCUSSION

Since the Deep Symbolic Regression framework (Pe-
tersen et al. 2019) and most other SR methods work
by maximizing fit quality, there are few constraints on
the arrangement of symbols. However, the paths in fit
quality and the paths in symbol arrangement toward the
global minima (perfect fit quality and perfect symbol ar-
rangement) are not necessarily correlated. This results
in the curse of accuracy guided SR, as small changes in
fit quality can hide dramatic changes in functional form
and vice-versa. In essence, one can improve fit quality
of candidates over learning iterations while getting fur-
ther away from the correct solution in symbolic arrange-
ment. Therefore strong constraints on the functional
form, such as the one we are proposing in our setup, are
of great value for guiding SR algorithms in the context of
physics. This is an advantage that physics has and that
�-SO leverages by: (i) reducing the search space and (ii)

Figure 5. RNN learning units rules. The black line shows
the evolution of the fraction of expressions that have bal-
anced units. As the training progresses, the algorithm learns
to respect the units constraints better. Here, we showcase
this trend on the relativistic energy of a particle test case
(averaged over multiple runs).

enabling the neural network to actively learn units rules
and leverage them to explore the space of solutions more
e�ciently. Although the possibility of making a physical

8 Tenachi et al.

galactic dynamics could be if we were provided a set
of potential values �, and cylindrical coordinate values
(R, z) of some mystery function that was actually a sim-
ple logarithmic potential model:

� =
1

2
v20 ln

✓
R2

c + R2 +
z2

q2

◆
, (2)

whose parameters are the velocity parameter v0, the core
radius Rc and the potential flattening q. Of course, we
will generally not know in advance either the number
of such parameters that the correct solution requires,
or their numerical values. Yet to be able to evaluate
the loss of the trial functions f , we need to assign val-
ues to all such free “constants” they may contain. We
accomplish this task by processing each trial function,
with the L-BFGS (Zhu et al. 1997) optimization routine
in pytorch, leveraging the fact that we can encode the
symbols of f using pytorch functions. Since pytorch has
in-built auto-di↵erentiation, finding the optimal value
of the constants via gradient descent is extremely e�-
cient. However, due to the number of trial expressions to
evaluate and considering that each expression must be
evaluated multiple times to optimize its free constants,
this optimization step is one of the main performance
bottlenecks of the �-SO algorithm.
Then, as in Petersen et al. (2019) for each candidate

f , we compute a reward R that is representative of fit
quality: R = 1/(1+NRMSE) where NRMSE is the root
mean squared error normalized by the deviation of the

target �y: NRMSE = 1
�y

q
1
N

PN
i=1(yi � f(xi))2. We

apply the policy gradients by means of an Adam opti-
mizer Kingma & Ba (2014) and use a long-short term
memory (LSTM) type RNN (Hochreiter & Schmidhuber
1997). Our additional learning hyper-parameters can be
found in Table 1. It is worth noting that the empirically
tuned batch size we found (10k) is larger than the one
found by Petersen et al. (2019) which was of 1k. We at-
tribute this to the very strong constraints o↵ered by our
�-SO setup which require a strong exploration counter-
part to avoid getting stuck in local minima.
It is also worth noting that in the reinforcement learn-

ing framework, the the reward function can be consid-
ered as as a black box, which does not have to be dif-
ferentiable, therefore one could use anything as the re-
ward. For example, we can also include the complexity
of the symbolic function in the reward function, so as
to have a criterion akin to Occam’s razor. But actually
one could in principle implement many ideas into the re-
ward function: symmetries, constraints on primitives or
derivatives, fitness in a di↵erential equation, the results
of some symbolic computation using external packages
such as Mathematica (Wolfram 2003) or SymPy (Meurer

Learning parameters

Batch size 10 000

Learning rate 0.0025

Entropy coe�cient 0.005

Risk factor 5 %

Table 1. Learning parameters.

et al. 2017), behavior of the function when implemented
an n-body simulation, and so on.

4. CASE STUDIES

We showcase our �-SO method on a panel of astro-
physical test cases: the relativistic energy of a particle
is examined in subsection 4.1, the law describing the ex-
pansion of the Universe in subsection 4.2, the isochrone
action from galactic dynamics in subsection 4.3 and ad-
ditional toy test cases given in 4.4. These examples show
that the method can successfully recover physical laws
and relations from real or synthetic data. We limit our-
selves to the exploration of 10 million trial expressions
which roughly takes ⇠ 4 hours on a modern laptop com-
puter and is only necessary for the most di�cult case
(the relativistic energy).
In addition, for some of these cases, we give the Pareto

front which shows the most accurate expression based
on RMSE (root mean squared error) for each level of
complexity. Although we note that there are sophisti-
cated schemes inspired by information theory to define
the complexity (Udrescu & Tegmark 2020; Bartlett et al.
2022; Schmidt & Lipson 2009), we defer such considera-
tions to a future study and simply define the complexity
of each token to be of 1 except for input variables which
we take to have complexity zero.
We also define the successful exact symbolic recovery

of an expression by its symbolic equivalence using the
SymPy symbolic simplification subroutine (Meurer et al.
2017) whenever possible and by a numerical criterion
akin to the one used in (La Cava et al. 2021; Matsubara
et al. 2022) R > 0.9999 along with manual verifications
in cases where it is impossible to automatically simplify
(e.g., when free constants are involved).
Finally, we agnostically rely on the same li-

brary of choosable tokens for all test cases:
{+, �, ⇥, /, 1/⇤,

p
⇤,⇤2, exp, log, cos, sin, 1} to which

we only add input variables and free or fixed constants
depending on the test cases.

4.1. Relativistic energy of a particle

, free constants & input variablesAllowing:
Nov 27 2023

Wassim Tenachi, Physical Symbolic Optimization

(Astro)-physical showcases & ablation study
RNN : vanilla model
Φ-RNN : model can observe physical units context
Φ-prior : physical units prior

Φ-SO : showcases

12 Tenachi et al.

Expression #
T
ri
al

ex
p
re

ss
io

n
s

�
-S

O
⌘

{�
-p

ri
or

,
�

-R
N

N
}

{�
-R

N
N
}

{�
-p

ri
or

,
R

N
N
}

{R
N

N
}

{�
-p

ri
or

,
R

N
G
}

{R
N

G
}

E = mc2p
1�v2/c2

10M 100 % 0 % 60 % 0 % 20 % 0 %

Jr = GMp
�2E

� 1
2

⇣
L + 1

2

p
L2 � 4GMb

⌘
4M 100 % 0 % 80 % 0 % 60 % 0 %

⇢ = ⇢0/

⇣
r
Rs

(1 + r
Rs

)2
⌘

2M 100 % 100 % 40 % 100 % 20 % 100 %

y = e
�↵t cos(ft + �) 1M 100 % 0 % 0 % 0 % 0 % 0 %

F = Gm1m2
r2

100K 100 % 80 % 100 % 20 % 80 % 0 %

H
2(x ⌘ 1 + z) = H0

2(⌦mx
3 + (1 � ⌦m)) 100K 100 % 100 % 100 % 100 % 40 % 40 %

Table 2. Exact symbolic recovery rate summary and ablation study on our panel of astrophysical examples (input variables and
free parameters are colored in red and blue respectively). The acronymns are as follows. �-prior : physical units prior; �-RNN
: physical units informed RNN; RNG : random number generator. By studying the performance in combinations of ablations
of the in situ units prior, the RNN’s ability to be informed of local units constraints, and of the RNN itself (i.e., replaced by a
random number generator), we show that all three are essential ingredients of the success of our �-SO algorithm.

tively learn units rules as shown in Figure 5 which gives
the fraction of physical expressions successfully gener-
ated over iterations of learning.
Finally, we also illustrate the generalization capabili-

ties o↵ered by virtue of finding the exact analytical ex-
pression compared to a good approximation in Figure
6, where we show that such analytical expressions can
vastly outperform a multilayer perceptron (MLP) neural
network.

6. DISCUSSION

Since the Deep Symbolic Regression framework (Pe-
tersen et al. 2019) and most other SR methods work
by maximizing fit quality, there are few constraints on
the arrangement of symbols. However, the paths in fit
quality and the paths in symbol arrangement toward the
global minima (perfect fit quality and perfect symbol ar-
rangement) are not necessarily correlated. This results
in the curse of accuracy guided SR, as small changes in
fit quality can hide dramatic changes in functional form
and vice-versa. In essence, one can improve fit quality
of candidates over learning iterations while getting fur-
ther away from the correct solution in symbolic arrange-
ment. Therefore strong constraints on the functional
form, such as the one we are proposing in our setup, are
of great value for guiding SR algorithms in the context of
physics. This is an advantage that physics has and that
�-SO leverages by: (i) reducing the search space and (ii)

Figure 5. RNN learning units rules. The black line shows
the evolution of the fraction of expressions that have bal-
anced units. As the training progresses, the algorithm learns
to respect the units constraints better. Here, we showcase
this trend on the relativistic energy of a particle test case
(averaged over multiple runs).

enabling the neural network to actively learn units rules
and leverage them to explore the space of solutions more
e�ciently. Although the possibility of making a physical

8 Tenachi et al.

galactic dynamics could be if we were provided a set
of potential values �, and cylindrical coordinate values
(R, z) of some mystery function that was actually a sim-
ple logarithmic potential model:

� =
1

2
v20 ln

✓
R2

c + R2 +
z2

q2

◆
, (2)

whose parameters are the velocity parameter v0, the core
radius Rc and the potential flattening q. Of course, we
will generally not know in advance either the number
of such parameters that the correct solution requires,
or their numerical values. Yet to be able to evaluate
the loss of the trial functions f , we need to assign val-
ues to all such free “constants” they may contain. We
accomplish this task by processing each trial function,
with the L-BFGS (Zhu et al. 1997) optimization routine
in pytorch, leveraging the fact that we can encode the
symbols of f using pytorch functions. Since pytorch has
in-built auto-di↵erentiation, finding the optimal value
of the constants via gradient descent is extremely e�-
cient. However, due to the number of trial expressions to
evaluate and considering that each expression must be
evaluated multiple times to optimize its free constants,
this optimization step is one of the main performance
bottlenecks of the �-SO algorithm.
Then, as in Petersen et al. (2019) for each candidate

f , we compute a reward R that is representative of fit
quality: R = 1/(1+NRMSE) where NRMSE is the root
mean squared error normalized by the deviation of the

target �y: NRMSE = 1
�y

q
1
N

PN
i=1(yi � f(xi))2. We

apply the policy gradients by means of an Adam opti-
mizer Kingma & Ba (2014) and use a long-short term
memory (LSTM) type RNN (Hochreiter & Schmidhuber
1997). Our additional learning hyper-parameters can be
found in Table 1. It is worth noting that the empirically
tuned batch size we found (10k) is larger than the one
found by Petersen et al. (2019) which was of 1k. We at-
tribute this to the very strong constraints o↵ered by our
�-SO setup which require a strong exploration counter-
part to avoid getting stuck in local minima.
It is also worth noting that in the reinforcement learn-

ing framework, the the reward function can be consid-
ered as as a black box, which does not have to be dif-
ferentiable, therefore one could use anything as the re-
ward. For example, we can also include the complexity
of the symbolic function in the reward function, so as
to have a criterion akin to Occam’s razor. But actually
one could in principle implement many ideas into the re-
ward function: symmetries, constraints on primitives or
derivatives, fitness in a di↵erential equation, the results
of some symbolic computation using external packages
such as Mathematica (Wolfram 2003) or SymPy (Meurer

Learning parameters

Batch size 10 000

Learning rate 0.0025

Entropy coe�cient 0.005

Risk factor 5 %

Table 1. Learning parameters.

et al. 2017), behavior of the function when implemented
an n-body simulation, and so on.

4. CASE STUDIES

We showcase our �-SO method on a panel of astro-
physical test cases: the relativistic energy of a particle
is examined in subsection 4.1, the law describing the ex-
pansion of the Universe in subsection 4.2, the isochrone
action from galactic dynamics in subsection 4.3 and ad-
ditional toy test cases given in 4.4. These examples show
that the method can successfully recover physical laws
and relations from real or synthetic data. We limit our-
selves to the exploration of 10 million trial expressions
which roughly takes ⇠ 4 hours on a modern laptop com-
puter and is only necessary for the most di�cult case
(the relativistic energy).
In addition, for some of these cases, we give the Pareto

front which shows the most accurate expression based
on RMSE (root mean squared error) for each level of
complexity. Although we note that there are sophisti-
cated schemes inspired by information theory to define
the complexity (Udrescu & Tegmark 2020; Bartlett et al.
2022; Schmidt & Lipson 2009), we defer such considera-
tions to a future study and simply define the complexity
of each token to be of 1 except for input variables which
we take to have complexity zero.
We also define the successful exact symbolic recovery

of an expression by its symbolic equivalence using the
SymPy symbolic simplification subroutine (Meurer et al.
2017) whenever possible and by a numerical criterion
akin to the one used in (La Cava et al. 2021; Matsubara
et al. 2022) R > 0.9999 along with manual verifications
in cases where it is impossible to automatically simplify
(e.g., when free constants are involved).
Finally, we agnostically rely on the same li-

brary of choosable tokens for all test cases:
{+, �, ⇥, /, 1/⇤,

p
⇤,⇤2, exp, log, cos, sin, 1} to which

we only add input variables and free or fixed constants
depending on the test cases.

4.1. Relativistic energy of a particle

, free constants & input variablesAllowing:
Nov 27 2023

Wassim Tenachi, Physical Symbolic Optimization

(Astro)-physical showcases & ablation study
RNN : vanilla model
Φ-RNN : model can observe physical units context
Φ-prior : physical units prior

Φ-SO : showcases

12 Tenachi et al.

Expression #
T
ri
al

ex
p
re

ss
io

n
s

�
-S

O
⌘

{�
-p

ri
or

,
�

-R
N

N
}

{�
-R

N
N
}

{�
-p

ri
or

,
R

N
N
}

{R
N

N
}

{�
-p

ri
or

,
R

N
G
}

{R
N

G
}

E = mc2p
1�v2/c2

10M 100 % 0 % 60 % 0 % 20 % 0 %

Jr = GMp
�2E

� 1
2

⇣
L + 1

2

p
L2 � 4GMb

⌘
4M 100 % 0 % 80 % 0 % 60 % 0 %

⇢ = ⇢0/

⇣
r
Rs

(1 + r
Rs

)2
⌘

2M 100 % 100 % 40 % 100 % 20 % 100 %

y = e
�↵t cos(ft + �) 1M 100 % 0 % 0 % 0 % 0 % 0 %

F = Gm1m2
r2

100K 100 % 80 % 100 % 20 % 80 % 0 %

H
2(x ⌘ 1 + z) = H0

2(⌦mx
3 + (1 � ⌦m)) 100K 100 % 100 % 100 % 100 % 40 % 40 %

Table 2. Exact symbolic recovery rate summary and ablation study on our panel of astrophysical examples (input variables and
free parameters are colored in red and blue respectively). The acronymns are as follows. �-prior : physical units prior; �-RNN
: physical units informed RNN; RNG : random number generator. By studying the performance in combinations of ablations
of the in situ units prior, the RNN’s ability to be informed of local units constraints, and of the RNN itself (i.e., replaced by a
random number generator), we show that all three are essential ingredients of the success of our �-SO algorithm.

tively learn units rules as shown in Figure 5 which gives
the fraction of physical expressions successfully gener-
ated over iterations of learning.
Finally, we also illustrate the generalization capabili-

ties o↵ered by virtue of finding the exact analytical ex-
pression compared to a good approximation in Figure
6, where we show that such analytical expressions can
vastly outperform a multilayer perceptron (MLP) neural
network.

6. DISCUSSION

Since the Deep Symbolic Regression framework (Pe-
tersen et al. 2019) and most other SR methods work
by maximizing fit quality, there are few constraints on
the arrangement of symbols. However, the paths in fit
quality and the paths in symbol arrangement toward the
global minima (perfect fit quality and perfect symbol ar-
rangement) are not necessarily correlated. This results
in the curse of accuracy guided SR, as small changes in
fit quality can hide dramatic changes in functional form
and vice-versa. In essence, one can improve fit quality
of candidates over learning iterations while getting fur-
ther away from the correct solution in symbolic arrange-
ment. Therefore strong constraints on the functional
form, such as the one we are proposing in our setup, are
of great value for guiding SR algorithms in the context of
physics. This is an advantage that physics has and that
�-SO leverages by: (i) reducing the search space and (ii)

Figure 5. RNN learning units rules. The black line shows
the evolution of the fraction of expressions that have bal-
anced units. As the training progresses, the algorithm learns
to respect the units constraints better. Here, we showcase
this trend on the relativistic energy of a particle test case
(averaged over multiple runs).

enabling the neural network to actively learn units rules
and leverage them to explore the space of solutions more
e�ciently. Although the possibility of making a physical

8 Tenachi et al.

galactic dynamics could be if we were provided a set
of potential values �, and cylindrical coordinate values
(R, z) of some mystery function that was actually a sim-
ple logarithmic potential model:

� =
1

2
v20 ln

✓
R2

c + R2 +
z2

q2

◆
, (2)

whose parameters are the velocity parameter v0, the core
radius Rc and the potential flattening q. Of course, we
will generally not know in advance either the number
of such parameters that the correct solution requires,
or their numerical values. Yet to be able to evaluate
the loss of the trial functions f , we need to assign val-
ues to all such free “constants” they may contain. We
accomplish this task by processing each trial function,
with the L-BFGS (Zhu et al. 1997) optimization routine
in pytorch, leveraging the fact that we can encode the
symbols of f using pytorch functions. Since pytorch has
in-built auto-di↵erentiation, finding the optimal value
of the constants via gradient descent is extremely e�-
cient. However, due to the number of trial expressions to
evaluate and considering that each expression must be
evaluated multiple times to optimize its free constants,
this optimization step is one of the main performance
bottlenecks of the �-SO algorithm.
Then, as in Petersen et al. (2019) for each candidate

f , we compute a reward R that is representative of fit
quality: R = 1/(1+NRMSE) where NRMSE is the root
mean squared error normalized by the deviation of the

target �y: NRMSE = 1
�y

q
1
N

PN
i=1(yi � f(xi))2. We

apply the policy gradients by means of an Adam opti-
mizer Kingma & Ba (2014) and use a long-short term
memory (LSTM) type RNN (Hochreiter & Schmidhuber
1997). Our additional learning hyper-parameters can be
found in Table 1. It is worth noting that the empirically
tuned batch size we found (10k) is larger than the one
found by Petersen et al. (2019) which was of 1k. We at-
tribute this to the very strong constraints o↵ered by our
�-SO setup which require a strong exploration counter-
part to avoid getting stuck in local minima.
It is also worth noting that in the reinforcement learn-

ing framework, the the reward function can be consid-
ered as as a black box, which does not have to be dif-
ferentiable, therefore one could use anything as the re-
ward. For example, we can also include the complexity
of the symbolic function in the reward function, so as
to have a criterion akin to Occam’s razor. But actually
one could in principle implement many ideas into the re-
ward function: symmetries, constraints on primitives or
derivatives, fitness in a di↵erential equation, the results
of some symbolic computation using external packages
such as Mathematica (Wolfram 2003) or SymPy (Meurer

Learning parameters

Batch size 10 000

Learning rate 0.0025

Entropy coe�cient 0.005

Risk factor 5 %

Table 1. Learning parameters.

et al. 2017), behavior of the function when implemented
an n-body simulation, and so on.

4. CASE STUDIES

We showcase our �-SO method on a panel of astro-
physical test cases: the relativistic energy of a particle
is examined in subsection 4.1, the law describing the ex-
pansion of the Universe in subsection 4.2, the isochrone
action from galactic dynamics in subsection 4.3 and ad-
ditional toy test cases given in 4.4. These examples show
that the method can successfully recover physical laws
and relations from real or synthetic data. We limit our-
selves to the exploration of 10 million trial expressions
which roughly takes ⇠ 4 hours on a modern laptop com-
puter and is only necessary for the most di�cult case
(the relativistic energy).
In addition, for some of these cases, we give the Pareto

front which shows the most accurate expression based
on RMSE (root mean squared error) for each level of
complexity. Although we note that there are sophisti-
cated schemes inspired by information theory to define
the complexity (Udrescu & Tegmark 2020; Bartlett et al.
2022; Schmidt & Lipson 2009), we defer such considera-
tions to a future study and simply define the complexity
of each token to be of 1 except for input variables which
we take to have complexity zero.
We also define the successful exact symbolic recovery

of an expression by its symbolic equivalence using the
SymPy symbolic simplification subroutine (Meurer et al.
2017) whenever possible and by a numerical criterion
akin to the one used in (La Cava et al. 2021; Matsubara
et al. 2022) R > 0.9999 along with manual verifications
in cases where it is impossible to automatically simplify
(e.g., when free constants are involved).
Finally, we agnostically rely on the same li-

brary of choosable tokens for all test cases:
{+, �, ⇥, /, 1/⇤,

p
⇤,⇤2, exp, log, cos, sin, 1} to which

we only add input variables and free or fixed constants
depending on the test cases.

4.1. Relativistic energy of a particle

, free constants & input variablesAllowing:
Nov 27 2023

Wassim Tenachi, Physical Symbolic Optimization

(Astro)-physical showcases & ablation study
RNN : vanilla model
Φ-RNN : model can observe physical units context
Φ-prior : physical units prior

Φ-SO : showcases

