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!:ℝ$ → ℝ such that
& = !())

(), &) data
!" !# $

0.75582 0.25850 0.02674
0.36786 0.42401 0.06278
0.69507 0.38057 0.74014
0.96493 0.33398 0.81558
0.07139 0.16604 0.07735
0.86413 0.41952 0.87872
0.18012 0.40581 0.63637
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https://youtu.be/wubzZMkoTUY
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Prefix notation paths for expressing a velocity v using a library of symbols {+, /, cos, v0, x, t} where v0 is a velocity, x is a length, and t is a 
time (length < 5 for readability).
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[Tenachi et al 2023] (this work)

Φ-SO : units constraints

https://arxiv.org/abs/2303.03192
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Prefix notation paths for expressing a velocity v using a library of symbols {+, /, cos, v0, x, t} where v0 is a velocity, x is a length, and t is a 
time (length < 6 for readability).
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NB: Such priors are only possible in sequential expression generation SR approaches
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https://youtu.be/spfpBrBjntg

https://youtu.be/spfpBrBjntg
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https://youtu.be/igZ6IPQimjQ
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Reinforcement learning & risk seeking policy
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Reward à no auto-differentiation
(unlike most ML methods used in physics)

à We can apply any physical 
constraints we want even if it is 
not differentiable

àComplexity (Occam's razor)
àSymmetries
àConstraints on derivatives/primitives 
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àBehavior in N-body simulation
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Model loss : how do we reinforce ?
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Model loss : how do we reinforce ?
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If the reward is among the 5% best:
à Adjust ' such that probability

distributions is closer to the sampled one
encoded in a one-hot (via cross-entropy)
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Learning curves
Learning to produce accurate expressions
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Feynman Benchmark

Nov 27 2023

120 equations from the Feynman Lectures on Physics (+ other physics textbooks)

Introduced in [Udrescu & Tegmark 2020]
Formalized benchmark in SRBench [LaCava et al 2021]

12 Tenachi et al.

Method Technique(s) Description Reference

PhySO RL, DA Physical Symbolic Optimization This work

uDSR RL, GP, Simp., Sup. A Unified Framework for Deep Symbolic Regression Landajuela et al. (2022)

AIFeynman 2.0 Simp., DA Symbolic regression exploiting graph modularity Udrescu et al. (2020)

AFP FE GP AFP with co-evolved fitness estimates, Eureqa-esque Schmidt & Lipson (2009)

DSR RL Deep Symbolic Regression Petersen et al. (2021a)

AFP GP Age-fitness Pareto Optimization Schmidt & Lipson (2011)

gplearn GP Koza-style symbolic regression in Python Stephens (2015)

GP-GOMEA GP GP-Optimal Mixing Evolutionary Algorithm Virgolin et al. (2021)

ITEA GP Interaction-Transformation EA de Franca & Aldeia (2021)

EPLEX GP ✏-lexicase selection La Cava et al. (2019)

NeSymReS Sup. Neural Symbolic Regression that Scales Biggio et al. (2021)

Operon GP SR with Non-linear least squares Kommenda et al. (2020)

SINDy NeuroSym Sparse identification of non-linear dynamics Brunton et al. (2016)

SBP-GP GP Semantic Back-propagation Genetic Programming Virgolin et al. (2019)

BSR MCMC Bayesian Symbolic Regression Jin et al. (2019)

FEAT GP Feature Engineering Automation Tool Cava et al. (2019)

FFX Rand. Fast function extraction McConaghy (2011)

MRGP GP Multiple Regression Genetic Programming Arnaldo et al. (2014)

Table 3. Summary of baseline symbolic regression methods along with the the underlying techniques they rely on: reinforcement
learning (RL), genetic programming (GP), problem simplification schemes (Simp.), end-to-end supervised learning (Sup.),
dimensional analysis (DA), neuro-symbolic / auto-di↵erentiation based sparse fitting techniques (NeuroSym), Markov chain
Monte Carlo (MCMC) and random search (Rand.).

we note that is important to exercise caution when in-
terpreting this additional DSR performance data-point as
well as the performances of SINDy, NeSymReS, and uDSR

as our available data only o↵ers their final scores on a
composite dataset, which encompasses both the Feyn-
man benchmark and the Strogatz benchmark (La Cava
et al. 2016) - the latter accounting for approximately
5% of the total score. This aggregated score is what we
illustrate in our figures throughout this Section. In ad-
dition, it is worth noting that the exact conditions under
which SINDy and NeSymReS were benchmarked are un-
known and that in the case of uDSR and the additional
DSR data-point, the benchmarking respectively permit-
ted an evaluation of up to 2 million and 0.5 million ex-
pressions respectively, in contrast to the 1 million limit
set for other methods. Furthermore, detailed results for
these methods, in particular those regarding the specific
expressions they identified, are unavailable, preventing
their inclusion in our comparative analysis when con-
cerning expression metrics (complexity or number of free
parameters). Although, per SRBench rules, we permit-
ted our method to evaluate up to 1 million expressions
compared to DSR’s 0.5 million, PhySO typically identifies
the correct expression well before reaching this limit or
not at all. Additionally, while DSR’s 42% score is influ-
enced by another benchmark, the impact is very low,

accounting for only 5%. This external benchmark is rel-
atively straightforward, with DSR achieving around 25%
even without free parameters (La Cava et al. 2021), in-
dicating its limited e↵ect on the overall score. Thus, we
believe a direct comparison between PhySO’s score and
DSR’s from Landajuela et al. (2022) is valid especially
considering the gap in performance as detailed in the
next sub-section.

4.2. Exact symbolic recovery

Figure 4 presents the performance of PhySO against
baseline algorithms from Table 3 on the Feynman bench-
mark. This includes the average exact symbolic recovery
rate, accurate expression rate (defined as those with a fit
coe�cient R2 > 0.999), and normalized accurate expres-
sion rate considering the number of free parameters in
the expressions, across di↵erent noise levels. Compared
to DSR, which strictly relies on reinforcement learning,
PhySO utilizes both reinforcement learning and dimen-
sional analysis. With DSR’s score at roughly 42%, our
method’s 58.5% score highlights the significant benefits
of incorporating dimensional analysis. In the realm of
physics, the exact symbolic recovery rate is a paramount
metric and given that real-world physics data is often
noisy, the resilience of an algorithm to noise is also
crucial. However, with a minor noise level of 0.1%,
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symbolic optimization task

2. While taking full advantage of 
physical units constraints
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à Black box 
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simulations
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physical units constraints
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Perspectives

Curse of accuracy guided SR : “One can improve fit quality 
of candidates over learning iterations while getting further 
away from the correct solution in symbolic arrangement.”

(", $) data

!" !# $
0.75582 0.25850 0.02674
0.36786 0.42401 0.06278
0.69507 0.38057 0.74014
0.96493 0.33398 0.81558
0.07139 0.16604 0.07735
0.86413 0.41952 0.87872
0.18012 0.40581 0.63637

Scalar
Reward Model

à Leverage data in a more meaningful way
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Supervised learning: “ I learn a lot beforehand and if what I 
learned does not help me guess the answer for this specific 
problem, then too bad there is nothing I can do.”
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trial and error without benefiting from past experience.”
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Creating a physical free-form symbolic analytical function 
!:ℝ$ → ℝ fitting & = !()) given (), &) data:

Φ-SOPhysical Symbolic Optimization

Github repository: WassimTenachi/PhySO

An open source …

Documentation: physo.readthedocs.io

… and documented package

[Tenachi et al 2023]

https://github.com/WassimTenachi/PhySO
https://physo.readthedocs.io/en/latest/
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Evaluating a candidate function !

1. Fitting free constants (")

2. Reward (#)

Normalized Root Mean Square Error

NRMSE = 1
&'

1
()*+,

-
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# = 1
1 + (#678

!1 2 = 9/ vs / "
(using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimization algorithm)

! ∈ [0,1]
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Loss details (1)

• Expressions of a given batch have different sizes
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àPlaceholder out of valid expression range are not
taken into account
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Loss details (2)

• Weighting is different along sequence dimension: via a !! coefficient 

" = "" + %/'+ $" / & ' '

(" () (* (+ (, (-

àWe give more importance to first symbols via ! = 0.7 < 1 to avoid searching
around the same initial nodes

[Landajuela et al 2021]
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Loss details (3)

• Weighting gradients accordingly with reward value

[Petersen et al 2019]
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Table 2. Exact symbolic recovery rate summary and ablation study on our panel of astrophysical examples (input variables and
free parameters are colored in red and blue respectively). The acronymns are as follows. �-prior : physical units prior; �-RNN
: physical units informed RNN; RNG : random number generator. By studying the performance in combinations of ablations
of the in situ units prior, the RNN’s ability to be informed of local units constraints, and of the RNN itself (i.e., replaced by a
random number generator), we show that all three are essential ingredients of the success of our �-SO algorithm.

tively learn units rules as shown in Figure 5 which gives
the fraction of physical expressions successfully gener-
ated over iterations of learning.
Finally, we also illustrate the generalization capabili-

ties o↵ered by virtue of finding the exact analytical ex-
pression compared to a good approximation in Figure
6, where we show that such analytical expressions can
vastly outperform a multilayer perceptron (MLP) neural
network.

6. DISCUSSION

Since the Deep Symbolic Regression framework (Pe-
tersen et al. 2019) and most other SR methods work
by maximizing fit quality, there are few constraints on
the arrangement of symbols. However, the paths in fit
quality and the paths in symbol arrangement toward the
global minima (perfect fit quality and perfect symbol ar-
rangement) are not necessarily correlated. This results
in the curse of accuracy guided SR, as small changes in
fit quality can hide dramatic changes in functional form
and vice-versa. In essence, one can improve fit quality
of candidates over learning iterations while getting fur-
ther away from the correct solution in symbolic arrange-
ment. Therefore strong constraints on the functional
form, such as the one we are proposing in our setup, are
of great value for guiding SR algorithms in the context of
physics. This is an advantage that physics has and that
�-SO leverages by: (i) reducing the search space and (ii)

Figure 5. RNN learning units rules. The black line shows
the evolution of the fraction of expressions that have bal-
anced units. As the training progresses, the algorithm learns
to respect the units constraints better. Here, we showcase
this trend on the relativistic energy of a particle test case
(averaged over multiple runs).

enabling the neural network to actively learn units rules
and leverage them to explore the space of solutions more
e�ciently. Although the possibility of making a physical

8 Tenachi et al.

galactic dynamics could be if we were provided a set
of potential values �, and cylindrical coordinate values
(R, z) of some mystery function that was actually a sim-
ple logarithmic potential model:

� =
1

2
v20 ln

✓
R2

c + R2 +
z2

q2

◆
, (2)

whose parameters are the velocity parameter v0, the core
radius Rc and the potential flattening q. Of course, we
will generally not know in advance either the number
of such parameters that the correct solution requires,
or their numerical values. Yet to be able to evaluate
the loss of the trial functions f , we need to assign val-
ues to all such free “constants” they may contain. We
accomplish this task by processing each trial function,
with the L-BFGS (Zhu et al. 1997) optimization routine
in pytorch, leveraging the fact that we can encode the
symbols of f using pytorch functions. Since pytorch has
in-built auto-di↵erentiation, finding the optimal value
of the constants via gradient descent is extremely e�-
cient. However, due to the number of trial expressions to
evaluate and considering that each expression must be
evaluated multiple times to optimize its free constants,
this optimization step is one of the main performance
bottlenecks of the �-SO algorithm.
Then, as in Petersen et al. (2019) for each candidate

f , we compute a reward R that is representative of fit
quality: R = 1/(1+NRMSE) where NRMSE is the root
mean squared error normalized by the deviation of the

target �y: NRMSE = 1
�y

q
1
N

PN
i=1(yi � f(xi))2. We

apply the policy gradients by means of an Adam opti-
mizer Kingma & Ba (2014) and use a long-short term
memory (LSTM) type RNN (Hochreiter & Schmidhuber
1997). Our additional learning hyper-parameters can be
found in Table 1. It is worth noting that the empirically
tuned batch size we found (10k) is larger than the one
found by Petersen et al. (2019) which was of 1k. We at-
tribute this to the very strong constraints o↵ered by our
�-SO setup which require a strong exploration counter-
part to avoid getting stuck in local minima.
It is also worth noting that in the reinforcement learn-

ing framework, the the reward function can be consid-
ered as as a black box, which does not have to be dif-
ferentiable, therefore one could use anything as the re-
ward. For example, we can also include the complexity
of the symbolic function in the reward function, so as
to have a criterion akin to Occam’s razor. But actually
one could in principle implement many ideas into the re-
ward function: symmetries, constraints on primitives or
derivatives, fitness in a di↵erential equation, the results
of some symbolic computation using external packages
such as Mathematica (Wolfram 2003) or SymPy (Meurer

Learning parameters

Batch size 10 000

Learning rate 0.0025

Entropy coe�cient 0.005

Risk factor 5 %

Table 1. Learning parameters.

et al. 2017), behavior of the function when implemented
an n-body simulation, and so on.

4. CASE STUDIES

We showcase our �-SO method on a panel of astro-
physical test cases: the relativistic energy of a particle
is examined in subsection 4.1, the law describing the ex-
pansion of the Universe in subsection 4.2, the isochrone
action from galactic dynamics in subsection 4.3 and ad-
ditional toy test cases given in 4.4. These examples show
that the method can successfully recover physical laws
and relations from real or synthetic data. We limit our-
selves to the exploration of 10 million trial expressions
which roughly takes ⇠ 4 hours on a modern laptop com-
puter and is only necessary for the most di�cult case
(the relativistic energy).
In addition, for some of these cases, we give the Pareto

front which shows the most accurate expression based
on RMSE (root mean squared error) for each level of
complexity. Although we note that there are sophisti-
cated schemes inspired by information theory to define
the complexity (Udrescu & Tegmark 2020; Bartlett et al.
2022; Schmidt & Lipson 2009), we defer such considera-
tions to a future study and simply define the complexity
of each token to be of 1 except for input variables which
we take to have complexity zero.
We also define the successful exact symbolic recovery

of an expression by its symbolic equivalence using the
SymPy symbolic simplification subroutine (Meurer et al.
2017) whenever possible and by a numerical criterion
akin to the one used in (La Cava et al. 2021; Matsubara
et al. 2022) R > 0.9999 along with manual verifications
in cases where it is impossible to automatically simplify
(e.g., when free constants are involved).
Finally, we agnostically rely on the same li-

brary of choosable tokens for all test cases:
{+, �, ⇥, /, 1/⇤,

p
⇤,⇤2, exp, log, cos, sin, 1} to which

we only add input variables and free or fixed constants
depending on the test cases.

4.1. Relativistic energy of a particle

, free constants & input variablesAllowing:
Nov 27 2023

Wassim Tenachi, Physical Symbolic Optimization

(Astro)-physical showcases & ablation study
RNN : vanilla model
Φ-RNN : model can observe physical units context
Φ-prior : physical units prior
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Table 2. Exact symbolic recovery rate summary and ablation study on our panel of astrophysical examples (input variables and
free parameters are colored in red and blue respectively). The acronymns are as follows. �-prior : physical units prior; �-RNN
: physical units informed RNN; RNG : random number generator. By studying the performance in combinations of ablations
of the in situ units prior, the RNN’s ability to be informed of local units constraints, and of the RNN itself (i.e., replaced by a
random number generator), we show that all three are essential ingredients of the success of our �-SO algorithm.

tively learn units rules as shown in Figure 5 which gives
the fraction of physical expressions successfully gener-
ated over iterations of learning.
Finally, we also illustrate the generalization capabili-

ties o↵ered by virtue of finding the exact analytical ex-
pression compared to a good approximation in Figure
6, where we show that such analytical expressions can
vastly outperform a multilayer perceptron (MLP) neural
network.

6. DISCUSSION

Since the Deep Symbolic Regression framework (Pe-
tersen et al. 2019) and most other SR methods work
by maximizing fit quality, there are few constraints on
the arrangement of symbols. However, the paths in fit
quality and the paths in symbol arrangement toward the
global minima (perfect fit quality and perfect symbol ar-
rangement) are not necessarily correlated. This results
in the curse of accuracy guided SR, as small changes in
fit quality can hide dramatic changes in functional form
and vice-versa. In essence, one can improve fit quality
of candidates over learning iterations while getting fur-
ther away from the correct solution in symbolic arrange-
ment. Therefore strong constraints on the functional
form, such as the one we are proposing in our setup, are
of great value for guiding SR algorithms in the context of
physics. This is an advantage that physics has and that
�-SO leverages by: (i) reducing the search space and (ii)

Figure 5. RNN learning units rules. The black line shows
the evolution of the fraction of expressions that have bal-
anced units. As the training progresses, the algorithm learns
to respect the units constraints better. Here, we showcase
this trend on the relativistic energy of a particle test case
(averaged over multiple runs).

enabling the neural network to actively learn units rules
and leverage them to explore the space of solutions more
e�ciently. Although the possibility of making a physical
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galactic dynamics could be if we were provided a set
of potential values �, and cylindrical coordinate values
(R, z) of some mystery function that was actually a sim-
ple logarithmic potential model:
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whose parameters are the velocity parameter v0, the core
radius Rc and the potential flattening q. Of course, we
will generally not know in advance either the number
of such parameters that the correct solution requires,
or their numerical values. Yet to be able to evaluate
the loss of the trial functions f , we need to assign val-
ues to all such free “constants” they may contain. We
accomplish this task by processing each trial function,
with the L-BFGS (Zhu et al. 1997) optimization routine
in pytorch, leveraging the fact that we can encode the
symbols of f using pytorch functions. Since pytorch has
in-built auto-di↵erentiation, finding the optimal value
of the constants via gradient descent is extremely e�-
cient. However, due to the number of trial expressions to
evaluate and considering that each expression must be
evaluated multiple times to optimize its free constants,
this optimization step is one of the main performance
bottlenecks of the �-SO algorithm.
Then, as in Petersen et al. (2019) for each candidate

f , we compute a reward R that is representative of fit
quality: R = 1/(1+NRMSE) where NRMSE is the root
mean squared error normalized by the deviation of the
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apply the policy gradients by means of an Adam opti-
mizer Kingma & Ba (2014) and use a long-short term
memory (LSTM) type RNN (Hochreiter & Schmidhuber
1997). Our additional learning hyper-parameters can be
found in Table 1. It is worth noting that the empirically
tuned batch size we found (10k) is larger than the one
found by Petersen et al. (2019) which was of 1k. We at-
tribute this to the very strong constraints o↵ered by our
�-SO setup which require a strong exploration counter-
part to avoid getting stuck in local minima.
It is also worth noting that in the reinforcement learn-

ing framework, the the reward function can be consid-
ered as as a black box, which does not have to be dif-
ferentiable, therefore one could use anything as the re-
ward. For example, we can also include the complexity
of the symbolic function in the reward function, so as
to have a criterion akin to Occam’s razor. But actually
one could in principle implement many ideas into the re-
ward function: symmetries, constraints on primitives or
derivatives, fitness in a di↵erential equation, the results
of some symbolic computation using external packages
such as Mathematica (Wolfram 2003) or SymPy (Meurer
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Learning rate 0.0025

Entropy coe�cient 0.005

Risk factor 5 %
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et al. 2017), behavior of the function when implemented
an n-body simulation, and so on.

4. CASE STUDIES

We showcase our �-SO method on a panel of astro-
physical test cases: the relativistic energy of a particle
is examined in subsection 4.1, the law describing the ex-
pansion of the Universe in subsection 4.2, the isochrone
action from galactic dynamics in subsection 4.3 and ad-
ditional toy test cases given in 4.4. These examples show
that the method can successfully recover physical laws
and relations from real or synthetic data. We limit our-
selves to the exploration of 10 million trial expressions
which roughly takes ⇠ 4 hours on a modern laptop com-
puter and is only necessary for the most di�cult case
(the relativistic energy).
In addition, for some of these cases, we give the Pareto

front which shows the most accurate expression based
on RMSE (root mean squared error) for each level of
complexity. Although we note that there are sophisti-
cated schemes inspired by information theory to define
the complexity (Udrescu & Tegmark 2020; Bartlett et al.
2022; Schmidt & Lipson 2009), we defer such considera-
tions to a future study and simply define the complexity
of each token to be of 1 except for input variables which
we take to have complexity zero.
We also define the successful exact symbolic recovery

of an expression by its symbolic equivalence using the
SymPy symbolic simplification subroutine (Meurer et al.
2017) whenever possible and by a numerical criterion
akin to the one used in (La Cava et al. 2021; Matsubara
et al. 2022) R > 0.9999 along with manual verifications
in cases where it is impossible to automatically simplify
(e.g., when free constants are involved).
Finally, we agnostically rely on the same li-

brary of choosable tokens for all test cases:
{+, �, ⇥, /, 1/⇤,
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⇤,⇤2, exp, log, cos, sin, 1} to which

we only add input variables and free or fixed constants
depending on the test cases.
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free parameters are colored in red and blue respectively). The acronymns are as follows. �-prior : physical units prior; �-RNN
: physical units informed RNN; RNG : random number generator. By studying the performance in combinations of ablations
of the in situ units prior, the RNN’s ability to be informed of local units constraints, and of the RNN itself (i.e., replaced by a
random number generator), we show that all three are essential ingredients of the success of our �-SO algorithm.

tively learn units rules as shown in Figure 5 which gives
the fraction of physical expressions successfully gener-
ated over iterations of learning.
Finally, we also illustrate the generalization capabili-

ties o↵ered by virtue of finding the exact analytical ex-
pression compared to a good approximation in Figure
6, where we show that such analytical expressions can
vastly outperform a multilayer perceptron (MLP) neural
network.

6. DISCUSSION

Since the Deep Symbolic Regression framework (Pe-
tersen et al. 2019) and most other SR methods work
by maximizing fit quality, there are few constraints on
the arrangement of symbols. However, the paths in fit
quality and the paths in symbol arrangement toward the
global minima (perfect fit quality and perfect symbol ar-
rangement) are not necessarily correlated. This results
in the curse of accuracy guided SR, as small changes in
fit quality can hide dramatic changes in functional form
and vice-versa. In essence, one can improve fit quality
of candidates over learning iterations while getting fur-
ther away from the correct solution in symbolic arrange-
ment. Therefore strong constraints on the functional
form, such as the one we are proposing in our setup, are
of great value for guiding SR algorithms in the context of
physics. This is an advantage that physics has and that
�-SO leverages by: (i) reducing the search space and (ii)

Figure 5. RNN learning units rules. The black line shows
the evolution of the fraction of expressions that have bal-
anced units. As the training progresses, the algorithm learns
to respect the units constraints better. Here, we showcase
this trend on the relativistic energy of a particle test case
(averaged over multiple runs).

enabling the neural network to actively learn units rules
and leverage them to explore the space of solutions more
e�ciently. Although the possibility of making a physical
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galactic dynamics could be if we were provided a set
of potential values �, and cylindrical coordinate values
(R, z) of some mystery function that was actually a sim-
ple logarithmic potential model:

� =
1

2
v20 ln

✓
R2

c + R2 +
z2

q2

◆
, (2)

whose parameters are the velocity parameter v0, the core
radius Rc and the potential flattening q. Of course, we
will generally not know in advance either the number
of such parameters that the correct solution requires,
or their numerical values. Yet to be able to evaluate
the loss of the trial functions f , we need to assign val-
ues to all such free “constants” they may contain. We
accomplish this task by processing each trial function,
with the L-BFGS (Zhu et al. 1997) optimization routine
in pytorch, leveraging the fact that we can encode the
symbols of f using pytorch functions. Since pytorch has
in-built auto-di↵erentiation, finding the optimal value
of the constants via gradient descent is extremely e�-
cient. However, due to the number of trial expressions to
evaluate and considering that each expression must be
evaluated multiple times to optimize its free constants,
this optimization step is one of the main performance
bottlenecks of the �-SO algorithm.
Then, as in Petersen et al. (2019) for each candidate

f , we compute a reward R that is representative of fit
quality: R = 1/(1+NRMSE) where NRMSE is the root
mean squared error normalized by the deviation of the

target �y: NRMSE = 1
�y

q
1
N

PN
i=1(yi � f(xi))2. We

apply the policy gradients by means of an Adam opti-
mizer Kingma & Ba (2014) and use a long-short term
memory (LSTM) type RNN (Hochreiter & Schmidhuber
1997). Our additional learning hyper-parameters can be
found in Table 1. It is worth noting that the empirically
tuned batch size we found (10k) is larger than the one
found by Petersen et al. (2019) which was of 1k. We at-
tribute this to the very strong constraints o↵ered by our
�-SO setup which require a strong exploration counter-
part to avoid getting stuck in local minima.
It is also worth noting that in the reinforcement learn-

ing framework, the the reward function can be consid-
ered as as a black box, which does not have to be dif-
ferentiable, therefore one could use anything as the re-
ward. For example, we can also include the complexity
of the symbolic function in the reward function, so as
to have a criterion akin to Occam’s razor. But actually
one could in principle implement many ideas into the re-
ward function: symmetries, constraints on primitives or
derivatives, fitness in a di↵erential equation, the results
of some symbolic computation using external packages
such as Mathematica (Wolfram 2003) or SymPy (Meurer

Learning parameters

Batch size 10 000

Learning rate 0.0025

Entropy coe�cient 0.005

Risk factor 5 %

Table 1. Learning parameters.

et al. 2017), behavior of the function when implemented
an n-body simulation, and so on.

4. CASE STUDIES

We showcase our �-SO method on a panel of astro-
physical test cases: the relativistic energy of a particle
is examined in subsection 4.1, the law describing the ex-
pansion of the Universe in subsection 4.2, the isochrone
action from galactic dynamics in subsection 4.3 and ad-
ditional toy test cases given in 4.4. These examples show
that the method can successfully recover physical laws
and relations from real or synthetic data. We limit our-
selves to the exploration of 10 million trial expressions
which roughly takes ⇠ 4 hours on a modern laptop com-
puter and is only necessary for the most di�cult case
(the relativistic energy).
In addition, for some of these cases, we give the Pareto

front which shows the most accurate expression based
on RMSE (root mean squared error) for each level of
complexity. Although we note that there are sophisti-
cated schemes inspired by information theory to define
the complexity (Udrescu & Tegmark 2020; Bartlett et al.
2022; Schmidt & Lipson 2009), we defer such considera-
tions to a future study and simply define the complexity
of each token to be of 1 except for input variables which
we take to have complexity zero.
We also define the successful exact symbolic recovery

of an expression by its symbolic equivalence using the
SymPy symbolic simplification subroutine (Meurer et al.
2017) whenever possible and by a numerical criterion
akin to the one used in (La Cava et al. 2021; Matsubara
et al. 2022) R > 0.9999 along with manual verifications
in cases where it is impossible to automatically simplify
(e.g., when free constants are involved).
Finally, we agnostically rely on the same li-

brary of choosable tokens for all test cases:
{+, �, ⇥, /, 1/⇤,

p
⇤,⇤2, exp, log, cos, sin, 1} to which

we only add input variables and free or fixed constants
depending on the test cases.
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Table 2. Exact symbolic recovery rate summary and ablation study on our panel of astrophysical examples (input variables and
free parameters are colored in red and blue respectively). The acronymns are as follows. �-prior : physical units prior; �-RNN
: physical units informed RNN; RNG : random number generator. By studying the performance in combinations of ablations
of the in situ units prior, the RNN’s ability to be informed of local units constraints, and of the RNN itself (i.e., replaced by a
random number generator), we show that all three are essential ingredients of the success of our �-SO algorithm.

tively learn units rules as shown in Figure 5 which gives
the fraction of physical expressions successfully gener-
ated over iterations of learning.
Finally, we also illustrate the generalization capabili-

ties o↵ered by virtue of finding the exact analytical ex-
pression compared to a good approximation in Figure
6, where we show that such analytical expressions can
vastly outperform a multilayer perceptron (MLP) neural
network.

6. DISCUSSION

Since the Deep Symbolic Regression framework (Pe-
tersen et al. 2019) and most other SR methods work
by maximizing fit quality, there are few constraints on
the arrangement of symbols. However, the paths in fit
quality and the paths in symbol arrangement toward the
global minima (perfect fit quality and perfect symbol ar-
rangement) are not necessarily correlated. This results
in the curse of accuracy guided SR, as small changes in
fit quality can hide dramatic changes in functional form
and vice-versa. In essence, one can improve fit quality
of candidates over learning iterations while getting fur-
ther away from the correct solution in symbolic arrange-
ment. Therefore strong constraints on the functional
form, such as the one we are proposing in our setup, are
of great value for guiding SR algorithms in the context of
physics. This is an advantage that physics has and that
�-SO leverages by: (i) reducing the search space and (ii)

Figure 5. RNN learning units rules. The black line shows
the evolution of the fraction of expressions that have bal-
anced units. As the training progresses, the algorithm learns
to respect the units constraints better. Here, we showcase
this trend on the relativistic energy of a particle test case
(averaged over multiple runs).

enabling the neural network to actively learn units rules
and leverage them to explore the space of solutions more
e�ciently. Although the possibility of making a physical
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galactic dynamics could be if we were provided a set
of potential values �, and cylindrical coordinate values
(R, z) of some mystery function that was actually a sim-
ple logarithmic potential model:
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whose parameters are the velocity parameter v0, the core
radius Rc and the potential flattening q. Of course, we
will generally not know in advance either the number
of such parameters that the correct solution requires,
or their numerical values. Yet to be able to evaluate
the loss of the trial functions f , we need to assign val-
ues to all such free “constants” they may contain. We
accomplish this task by processing each trial function,
with the L-BFGS (Zhu et al. 1997) optimization routine
in pytorch, leveraging the fact that we can encode the
symbols of f using pytorch functions. Since pytorch has
in-built auto-di↵erentiation, finding the optimal value
of the constants via gradient descent is extremely e�-
cient. However, due to the number of trial expressions to
evaluate and considering that each expression must be
evaluated multiple times to optimize its free constants,
this optimization step is one of the main performance
bottlenecks of the �-SO algorithm.
Then, as in Petersen et al. (2019) for each candidate

f , we compute a reward R that is representative of fit
quality: R = 1/(1+NRMSE) where NRMSE is the root
mean squared error normalized by the deviation of the

target �y: NRMSE = 1
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apply the policy gradients by means of an Adam opti-
mizer Kingma & Ba (2014) and use a long-short term
memory (LSTM) type RNN (Hochreiter & Schmidhuber
1997). Our additional learning hyper-parameters can be
found in Table 1. It is worth noting that the empirically
tuned batch size we found (10k) is larger than the one
found by Petersen et al. (2019) which was of 1k. We at-
tribute this to the very strong constraints o↵ered by our
�-SO setup which require a strong exploration counter-
part to avoid getting stuck in local minima.
It is also worth noting that in the reinforcement learn-

ing framework, the the reward function can be consid-
ered as as a black box, which does not have to be dif-
ferentiable, therefore one could use anything as the re-
ward. For example, we can also include the complexity
of the symbolic function in the reward function, so as
to have a criterion akin to Occam’s razor. But actually
one could in principle implement many ideas into the re-
ward function: symmetries, constraints on primitives or
derivatives, fitness in a di↵erential equation, the results
of some symbolic computation using external packages
such as Mathematica (Wolfram 2003) or SymPy (Meurer

Learning parameters

Batch size 10 000

Learning rate 0.0025

Entropy coe�cient 0.005

Risk factor 5 %

Table 1. Learning parameters.

et al. 2017), behavior of the function when implemented
an n-body simulation, and so on.

4. CASE STUDIES

We showcase our �-SO method on a panel of astro-
physical test cases: the relativistic energy of a particle
is examined in subsection 4.1, the law describing the ex-
pansion of the Universe in subsection 4.2, the isochrone
action from galactic dynamics in subsection 4.3 and ad-
ditional toy test cases given in 4.4. These examples show
that the method can successfully recover physical laws
and relations from real or synthetic data. We limit our-
selves to the exploration of 10 million trial expressions
which roughly takes ⇠ 4 hours on a modern laptop com-
puter and is only necessary for the most di�cult case
(the relativistic energy).
In addition, for some of these cases, we give the Pareto

front which shows the most accurate expression based
on RMSE (root mean squared error) for each level of
complexity. Although we note that there are sophisti-
cated schemes inspired by information theory to define
the complexity (Udrescu & Tegmark 2020; Bartlett et al.
2022; Schmidt & Lipson 2009), we defer such considera-
tions to a future study and simply define the complexity
of each token to be of 1 except for input variables which
we take to have complexity zero.
We also define the successful exact symbolic recovery

of an expression by its symbolic equivalence using the
SymPy symbolic simplification subroutine (Meurer et al.
2017) whenever possible and by a numerical criterion
akin to the one used in (La Cava et al. 2021; Matsubara
et al. 2022) R > 0.9999 along with manual verifications
in cases where it is impossible to automatically simplify
(e.g., when free constants are involved).
Finally, we agnostically rely on the same li-

brary of choosable tokens for all test cases:
{+, �, ⇥, /, 1/⇤,
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⇤,⇤2, exp, log, cos, sin, 1} to which

we only add input variables and free or fixed constants
depending on the test cases.
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Table 2. Exact symbolic recovery rate summary and ablation study on our panel of astrophysical examples (input variables and
free parameters are colored in red and blue respectively). The acronymns are as follows. �-prior : physical units prior; �-RNN
: physical units informed RNN; RNG : random number generator. By studying the performance in combinations of ablations
of the in situ units prior, the RNN’s ability to be informed of local units constraints, and of the RNN itself (i.e., replaced by a
random number generator), we show that all three are essential ingredients of the success of our �-SO algorithm.

tively learn units rules as shown in Figure 5 which gives
the fraction of physical expressions successfully gener-
ated over iterations of learning.
Finally, we also illustrate the generalization capabili-

ties o↵ered by virtue of finding the exact analytical ex-
pression compared to a good approximation in Figure
6, where we show that such analytical expressions can
vastly outperform a multilayer perceptron (MLP) neural
network.

6. DISCUSSION

Since the Deep Symbolic Regression framework (Pe-
tersen et al. 2019) and most other SR methods work
by maximizing fit quality, there are few constraints on
the arrangement of symbols. However, the paths in fit
quality and the paths in symbol arrangement toward the
global minima (perfect fit quality and perfect symbol ar-
rangement) are not necessarily correlated. This results
in the curse of accuracy guided SR, as small changes in
fit quality can hide dramatic changes in functional form
and vice-versa. In essence, one can improve fit quality
of candidates over learning iterations while getting fur-
ther away from the correct solution in symbolic arrange-
ment. Therefore strong constraints on the functional
form, such as the one we are proposing in our setup, are
of great value for guiding SR algorithms in the context of
physics. This is an advantage that physics has and that
�-SO leverages by: (i) reducing the search space and (ii)

Figure 5. RNN learning units rules. The black line shows
the evolution of the fraction of expressions that have bal-
anced units. As the training progresses, the algorithm learns
to respect the units constraints better. Here, we showcase
this trend on the relativistic energy of a particle test case
(averaged over multiple runs).

enabling the neural network to actively learn units rules
and leverage them to explore the space of solutions more
e�ciently. Although the possibility of making a physical
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galactic dynamics could be if we were provided a set
of potential values �, and cylindrical coordinate values
(R, z) of some mystery function that was actually a sim-
ple logarithmic potential model:
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whose parameters are the velocity parameter v0, the core
radius Rc and the potential flattening q. Of course, we
will generally not know in advance either the number
of such parameters that the correct solution requires,
or their numerical values. Yet to be able to evaluate
the loss of the trial functions f , we need to assign val-
ues to all such free “constants” they may contain. We
accomplish this task by processing each trial function,
with the L-BFGS (Zhu et al. 1997) optimization routine
in pytorch, leveraging the fact that we can encode the
symbols of f using pytorch functions. Since pytorch has
in-built auto-di↵erentiation, finding the optimal value
of the constants via gradient descent is extremely e�-
cient. However, due to the number of trial expressions to
evaluate and considering that each expression must be
evaluated multiple times to optimize its free constants,
this optimization step is one of the main performance
bottlenecks of the �-SO algorithm.
Then, as in Petersen et al. (2019) for each candidate

f , we compute a reward R that is representative of fit
quality: R = 1/(1+NRMSE) where NRMSE is the root
mean squared error normalized by the deviation of the

target �y: NRMSE = 1
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apply the policy gradients by means of an Adam opti-
mizer Kingma & Ba (2014) and use a long-short term
memory (LSTM) type RNN (Hochreiter & Schmidhuber
1997). Our additional learning hyper-parameters can be
found in Table 1. It is worth noting that the empirically
tuned batch size we found (10k) is larger than the one
found by Petersen et al. (2019) which was of 1k. We at-
tribute this to the very strong constraints o↵ered by our
�-SO setup which require a strong exploration counter-
part to avoid getting stuck in local minima.
It is also worth noting that in the reinforcement learn-

ing framework, the the reward function can be consid-
ered as as a black box, which does not have to be dif-
ferentiable, therefore one could use anything as the re-
ward. For example, we can also include the complexity
of the symbolic function in the reward function, so as
to have a criterion akin to Occam’s razor. But actually
one could in principle implement many ideas into the re-
ward function: symmetries, constraints on primitives or
derivatives, fitness in a di↵erential equation, the results
of some symbolic computation using external packages
such as Mathematica (Wolfram 2003) or SymPy (Meurer
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Batch size 10 000
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Entropy coe�cient 0.005

Risk factor 5 %
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et al. 2017), behavior of the function when implemented
an n-body simulation, and so on.
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We showcase our �-SO method on a panel of astro-
physical test cases: the relativistic energy of a particle
is examined in subsection 4.1, the law describing the ex-
pansion of the Universe in subsection 4.2, the isochrone
action from galactic dynamics in subsection 4.3 and ad-
ditional toy test cases given in 4.4. These examples show
that the method can successfully recover physical laws
and relations from real or synthetic data. We limit our-
selves to the exploration of 10 million trial expressions
which roughly takes ⇠ 4 hours on a modern laptop com-
puter and is only necessary for the most di�cult case
(the relativistic energy).
In addition, for some of these cases, we give the Pareto

front which shows the most accurate expression based
on RMSE (root mean squared error) for each level of
complexity. Although we note that there are sophisti-
cated schemes inspired by information theory to define
the complexity (Udrescu & Tegmark 2020; Bartlett et al.
2022; Schmidt & Lipson 2009), we defer such considera-
tions to a future study and simply define the complexity
of each token to be of 1 except for input variables which
we take to have complexity zero.
We also define the successful exact symbolic recovery

of an expression by its symbolic equivalence using the
SymPy symbolic simplification subroutine (Meurer et al.
2017) whenever possible and by a numerical criterion
akin to the one used in (La Cava et al. 2021; Matsubara
et al. 2022) R > 0.9999 along with manual verifications
in cases where it is impossible to automatically simplify
(e.g., when free constants are involved).
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Table 2. Exact symbolic recovery rate summary and ablation study on our panel of astrophysical examples (input variables and
free parameters are colored in red and blue respectively). The acronymns are as follows. �-prior : physical units prior; �-RNN
: physical units informed RNN; RNG : random number generator. By studying the performance in combinations of ablations
of the in situ units prior, the RNN’s ability to be informed of local units constraints, and of the RNN itself (i.e., replaced by a
random number generator), we show that all three are essential ingredients of the success of our �-SO algorithm.

tively learn units rules as shown in Figure 5 which gives
the fraction of physical expressions successfully gener-
ated over iterations of learning.
Finally, we also illustrate the generalization capabili-

ties o↵ered by virtue of finding the exact analytical ex-
pression compared to a good approximation in Figure
6, where we show that such analytical expressions can
vastly outperform a multilayer perceptron (MLP) neural
network.

6. DISCUSSION

Since the Deep Symbolic Regression framework (Pe-
tersen et al. 2019) and most other SR methods work
by maximizing fit quality, there are few constraints on
the arrangement of symbols. However, the paths in fit
quality and the paths in symbol arrangement toward the
global minima (perfect fit quality and perfect symbol ar-
rangement) are not necessarily correlated. This results
in the curse of accuracy guided SR, as small changes in
fit quality can hide dramatic changes in functional form
and vice-versa. In essence, one can improve fit quality
of candidates over learning iterations while getting fur-
ther away from the correct solution in symbolic arrange-
ment. Therefore strong constraints on the functional
form, such as the one we are proposing in our setup, are
of great value for guiding SR algorithms in the context of
physics. This is an advantage that physics has and that
�-SO leverages by: (i) reducing the search space and (ii)

Figure 5. RNN learning units rules. The black line shows
the evolution of the fraction of expressions that have bal-
anced units. As the training progresses, the algorithm learns
to respect the units constraints better. Here, we showcase
this trend on the relativistic energy of a particle test case
(averaged over multiple runs).

enabling the neural network to actively learn units rules
and leverage them to explore the space of solutions more
e�ciently. Although the possibility of making a physical
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whose parameters are the velocity parameter v0, the core
radius Rc and the potential flattening q. Of course, we
will generally not know in advance either the number
of such parameters that the correct solution requires,
or their numerical values. Yet to be able to evaluate
the loss of the trial functions f , we need to assign val-
ues to all such free “constants” they may contain. We
accomplish this task by processing each trial function,
with the L-BFGS (Zhu et al. 1997) optimization routine
in pytorch, leveraging the fact that we can encode the
symbols of f using pytorch functions. Since pytorch has
in-built auto-di↵erentiation, finding the optimal value
of the constants via gradient descent is extremely e�-
cient. However, due to the number of trial expressions to
evaluate and considering that each expression must be
evaluated multiple times to optimize its free constants,
this optimization step is one of the main performance
bottlenecks of the �-SO algorithm.
Then, as in Petersen et al. (2019) for each candidate

f , we compute a reward R that is representative of fit
quality: R = 1/(1+NRMSE) where NRMSE is the root
mean squared error normalized by the deviation of the

target �y: NRMSE = 1
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apply the policy gradients by means of an Adam opti-
mizer Kingma & Ba (2014) and use a long-short term
memory (LSTM) type RNN (Hochreiter & Schmidhuber
1997). Our additional learning hyper-parameters can be
found in Table 1. It is worth noting that the empirically
tuned batch size we found (10k) is larger than the one
found by Petersen et al. (2019) which was of 1k. We at-
tribute this to the very strong constraints o↵ered by our
�-SO setup which require a strong exploration counter-
part to avoid getting stuck in local minima.
It is also worth noting that in the reinforcement learn-

ing framework, the the reward function can be consid-
ered as as a black box, which does not have to be dif-
ferentiable, therefore one could use anything as the re-
ward. For example, we can also include the complexity
of the symbolic function in the reward function, so as
to have a criterion akin to Occam’s razor. But actually
one could in principle implement many ideas into the re-
ward function: symmetries, constraints on primitives or
derivatives, fitness in a di↵erential equation, the results
of some symbolic computation using external packages
such as Mathematica (Wolfram 2003) or SymPy (Meurer

Learning parameters

Batch size 10 000

Learning rate 0.0025

Entropy coe�cient 0.005

Risk factor 5 %

Table 1. Learning parameters.

et al. 2017), behavior of the function when implemented
an n-body simulation, and so on.

4. CASE STUDIES

We showcase our �-SO method on a panel of astro-
physical test cases: the relativistic energy of a particle
is examined in subsection 4.1, the law describing the ex-
pansion of the Universe in subsection 4.2, the isochrone
action from galactic dynamics in subsection 4.3 and ad-
ditional toy test cases given in 4.4. These examples show
that the method can successfully recover physical laws
and relations from real or synthetic data. We limit our-
selves to the exploration of 10 million trial expressions
which roughly takes ⇠ 4 hours on a modern laptop com-
puter and is only necessary for the most di�cult case
(the relativistic energy).
In addition, for some of these cases, we give the Pareto

front which shows the most accurate expression based
on RMSE (root mean squared error) for each level of
complexity. Although we note that there are sophisti-
cated schemes inspired by information theory to define
the complexity (Udrescu & Tegmark 2020; Bartlett et al.
2022; Schmidt & Lipson 2009), we defer such considera-
tions to a future study and simply define the complexity
of each token to be of 1 except for input variables which
we take to have complexity zero.
We also define the successful exact symbolic recovery

of an expression by its symbolic equivalence using the
SymPy symbolic simplification subroutine (Meurer et al.
2017) whenever possible and by a numerical criterion
akin to the one used in (La Cava et al. 2021; Matsubara
et al. 2022) R > 0.9999 along with manual verifications
in cases where it is impossible to automatically simplify
(e.g., when free constants are involved).
Finally, we agnostically rely on the same li-

brary of choosable tokens for all test cases:
{+, �, ⇥, /, 1/⇤,

p
⇤,⇤2, exp, log, cos, sin, 1} to which

we only add input variables and free or fixed constants
depending on the test cases.

4.1. Relativistic energy of a particle

, free constants & input variablesAllowing:
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