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Epoch of ReionisaBon: 21 cm maps
Part	I Introduction Methods Results

time

time

The Epoch of Reionisation (EoR) is the period where the universe transitioned from a cold and neutral state to a hot and
ionised state due to the influence of the first sources of ionising photons (Stars, Galaxies,…)

During this epoch, the neutral hydrogen (HI) emits a radio signal (21 cm line) that will be observed with future radio

observatories (such as the Square Kilometre Array SKA).

Images obtained using 21cmFAST simulaBon code (Mesinger+2011, Murray+2020) 

Example of 21 cm maps
(pure signal)

In this simulation the reionisation

starts around z=15 and ends

around z=5.5

White regions are Ionised bubbles
of Hydrogen that grow and merge

together until all the Intergalactic

medium (IGM) is reionised.

Maps size is 128x128 [cMpc/h]

Color bar unit is [mK]
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What is the Reionisation time field !"#$%&?
It is the time at which a given region reionised where the
value of each pixel represents the time [Gyr] of
reionisation of this pixel

Local Reionisation process
The time of reionisation is not the same everywhere:
The reionisation process is local and depends on the
content of a given region.

Why this field?
'()*+, describes the whole reionisation history.
The Reionisation seeds/Last regions to reionise are
related to the minima/maxima of this field (likely
densest/emptiest regions).
We can study the topology of this field:
Typical size of ionised bubbles, Front speed, Abundance of
reionisation seeds. Thélie+ 2022,2023

[c
M

pc
/h

]

[cMpc/h]

Epoch of ReionisaVon in a single field: '()*+,

This is not an observable
How to recover it from observations?

Gyr

Part	I Introduction Methods Results
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Objectives 

Study the EoR

Reconstruct the Dme of 
reionisaDon field from 
21cm signal maps and 

using machine learning 
methods

What ?

Reconstruction

!"#$%&21 cm map '! ( = 11

Part	I Introduction Methods Results

Gy
r
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ObjecBves 

Using 21cmFAST 
(Mesinger+2011, 

Murray+2020)
simulation code to get a 

data set 

Implementing and 
training a convolutional 
neural network to infer 
!"#$%& from 21cm maps

How ?

Encoder Decoder

Input output

(8#)

Up sampling x4

Max pooling x4

(128#)

: 2D Convolution operations
'''# : size of images

Filter Number
32                                                  64                                128                        256         512             256                     128                                     64                                           32

(16#)(32#)(64#) (16#) (32#) (64#)(128#) (128#)

CNNInput Output

Predictor

21 cm map !"#$%&

Part	I Introduction Methods Results
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21cmFast simulaBon code & Unet Architecture
50 simulations lead to 768x50 = 38 400 images that compose 
the whole data set 
We need to divide this into 3 subsets:

• Training set (Learning phase: compute loss and update weights)

• Validation set (Learning phase: compute loss only)

• Test set            (Prediction phase: output maps inference)

A trained CNN at a given redshift = 1 predictor

For each field (x2)
For each z (x18)

In this work:
• ΛCDM cosmology (Planck+2020)
• Size of our simulaBons: 256$ pixels for 256$ cMpcℎ&'
• ResoluBon set at 1 cMpcℎ&'/pixel
• 18 redshiIs: z ( [5.5, 15]
For a given map: there is 18 version of it (1/redshi\)
describing its temporal evoluBon and these 18 maps
share 1 )*+,-. map.

18 21cm maps
For

1 /01234 map

Part	I Introduction Methods Results

Mesinger+2011, Murray+2020

31 500 maps
At a given
redshift

Input 31 500 mapsOutput
input 128 output

64

32

16

8

16

32

64

128

64

32

16

8

16

32

64

DecoderEncoder
2D convolutions

Max Pooling

Up Sampling

Skip connection

*

*

* Dropout

1 predictor per observation redshift = 18 predictors
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Reconstruction of reionisation time map

Predictor z = 11

Example of predicGon with predictor at z = 11:
• Large scale well predicted
• Blurrier/smoother version of the true field
• DifficulGes to recover extrema

The 21cm map is the
current state of HI at a
given redshift:

The predictor is able to
predict when a pixel in
the 21 cm map will
reionise in the future
(or has reionised in the
past)

Part	I Introduction Methods Results
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Reconstruction of reionisation time map
Example of prediction with predictor at z = 11:

• Large scale well predicted
• Blurrier/smoother version of the true field
• Difficulties to recover extrema

Maxima for !"#$%&

Minima for !"#$%&

Predictor z = 11

This operation can be made at 18 different
Redshifts with 18 predictors.

Is there a best observation redshift for 
reionisation time prediction?

Part	I Introduction Methods Results
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The higher the better

The lower the beCer

Comparison between redshiHs of observaKon
!" coefficient computed on the validation set:

• For z < 7:
The performances are bad:
ó Non-zero signal fraction < 40% in 21 cm maps
ó There is zero signal inside ionised bubbles that became

large at this range of redshift
• Optimal performance for z = 11:

In our simulations: This is the best compromise between
ó Number of ionised bubbles that is sufficient to locate the

reionisation seeds
ó Size of bubbles that is not too large to get a significant

amount of signal fraction
• For z > 11

performances get slightly worse with increasing redshift:
fewer ionised bubbles = We can locate fewer sources

#$ = 1 − Σ(*+,- − .+/,)$
Σ(.+/, −< .+/, >)$

!" should be 1 for a perfect reconstruction

The performances are globally satisfying:
à 21 cm maps contain the reionisation time information

Part	I Introduction Methods Results
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New predictor for z = 8 trained with noisy 21cm maps made with SKA characteristics using tools21cm (Giri+2020), 
assuming (Prelogovic+2022, Ghara+2016, Giri+2018): 

• Daily scan of 6h and 10s integration time and for a total of 1000h of observation
• A maximum baseline of 2 km
• Angular resolution of ∆θ ∼ 2.8 arcmin ó 7.35 cMpc at this redshift

Instrumental effects and CNN’s performance

The prediction is significantly altered compared to the perfect observation scenario:
• Large-scale structures are less prominent, appearing buried or obscured and a lot blurrier

Part	I Introduction Methods Results

z = 8: 

Best compromise between
reconstruction performance
and noise

21 cm map 
+

Instrumental effects
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Part	I Introduction Methods Results

!"#$%& allows to reconstruct the average neutral
fraction history '()(!)

For 21 cm maps without noise: (red)
The predictor gives a satisfying reionisation
history

For noisy observations: (blue)
The predictor starts the reionisation later and
tends to finish it earlier than true field.

-> It suffers from the smoothing since the
extrema are erased.

Nevertheless the reconstruction of the global
reionisation history is satisfying

Instrumental effects and CNN’s performance
fracLon of neutral Hydrogen

Fully neutral

time

Fully ionised
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Questions 

What happens when some data is given to a “wrong” predictor 
(with wrong underlying model)?? 

-> Ideally data given to a predictor with the right model should give  
the same !"#$%& map no ma9er the redshi: of observa=on

à We may compare results at 2 redshi: of observa=on

If we notice an inconsistency between 2 reconstructions at 
2 different observation redshifts,
Can we then use it to exclude predictors ?? 

à A model is linked to each predictor: excluding a  
predictor means excluding a model

We test this method to exclude WDM models (work in progress)

Part	II Introduction Methods Results
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Part	II Introduction Methods Results

CDM Model VS Predictors 
We arbitrarily set one model as reference: CDM is in this study our mock observations.

By training CNN for all DM models (CDM, 3keV, 5keV, 7keV) and z = 8, 11: We get a list of predictors that have their own cosmological model.

With the mock observations (CDM), we infer !"#$%& for each predictor (even though the model does not fit the observations model).

We compare the outputs and estimate whether the predictor model fits the observation -> Model Exclusion.

CD
M

 z 
= 

11
CD

M
 z 

= 
8
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We arbitrarily set one model as reference: CDM is in this study our mock observa1ons.

By training CNN with DM models (3keV, 5keV, 7keV, CDM) and z = 8, 11: We get a list of predictors that have their own model.

With the mock observaOons (CDM), we infer !"#$%& for each predictor (even though the model does not fit the observaOons model).

We compare the outputs and es1mate whether the predictor model fits the observa1on -> Model Exclusion.

Part	II Introduction Methods Results

CDM Model VS Predictors 

Predictor z = 11

Predictor z = 8
CDM

WDM 3keV
WDM 5keV
WDM 7keV

CDM
WDM 3keV
WDM 5keV
WDM 7keV

Example:  We have 2 Predictors for the model WDM 3 keV
1 for each redshift (8 and 11)

Lower limit on the thermal relic WDM par1cle mass: 

Iršič+2023: 5.7 keV (Ly ⍺)
Enzi+2021: 6.048 keV (Strong Grav. lensing, Ly ⍺, MW satellites)
Nadler+2020a: 6.5 keV (MW satellites) 

IdenOcal CDM model as previously
WDM models have a similar reionisa1on scenario

CD
M

 z
 =

 1
1

CD
M

 z
 =

 8
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Part	II Introduction Methods Results

CDM Model VS Predictors 

Predictor z = 11

Predictor z = 8

CDM
WDM 3keV
WDM 5keV
WDM 7keV

CDM
WDM 3keV
WDM 5keV
WDM 7keV

We arbitrarily set one model as reference: CDM is in this study our mock observa1ons.

By training CNN with DM models (3keV, 5keV, 7keV, CDM) and z = 8, 11: We get a list of predictors that have their own model.

Thanks to the mock observaWons (CDM), we infer !"#$%& with each predictor (For the 4 DM models and for the 2 redshi]s).

We compare the outputs and es1mate whether the predictor model fits the observa1on -> Model Exclusion.

CD
M

 z
 =

 1
1

CD
M

 z
 =

 8
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Part	II Introduction Methods Results

We arbitrarily set one model as reference: CDM is in this study our mock observations.

By training CNN with DM models (3keV, 5keV, 7keV, CDM) and z = 8, 11: We get a list of predictors that have their own model.

Thanks to the mock observations (CDM), we infer !"#$%& with each predictor (For the 4 DM models and for the 2 redshifts).

We compare the predictions and estimate whether the predictor fits the observation -> Model Exclusion.

CDM Model VS Predictors 

Predictor z = 11

Predictor z = 8
CDM

WDM 3keV
WDM 5keV
WDM 7keV

CDM
WDM 3keV
WDM 5keV
WDM 7keV

Comparator

CD
M

 z 
= 

11
CD

M
 z 

= 
8

For a predictor
matched with the
observation model,
'()*+, from 2 -+./
should be (statistically)
identical
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Part	II Introduction Methods Results

Autoconsistency check with !"#$%& isocontours

Fewer ionised regions

More neutral regions

WDM models have fewer contours
at early times and more contours
at late times than CDM

-> Fewer ionised regions at early
times

-> More neutral regions at
the end of reionisation

Distribution of isocontours for true fieldsReionisa3on Time Field isocontours taken at t = [0.4, 0.6] Gyr
Depicts the interface between ionised and neutral regions/bubbles at a given 3me

By measuring the contours, we extract informaRon on the distribuRon and the size 
of ionised/neutral bubbles (Thélie+ 2023)



HIEGEL Julien  - 01/12/2023 - Paris Machine Learning – IAP 18 / 19

Part	II Introduction Methods Results

For a given predictor, as the predic'ons should be sta's'cally iden'cal we should have the same isocontours for z=11 and z=8

Then we compare the isocontours total length from !"#$=11 and !"#$ =8 to test the auto consistency of a model: Here even the CDM isn’t
perfectly auto consistent

7keV Predictor
Has the same level of auto

consistency as CDM

5keV & 3keV Predictors
Seem to present a larger level of

inconsistency between

isocontours at z=11 and 8: we can

possibly exclude these predictors

on the basis of this staQsQc

We are working on other
methods or metrics to be able to
exclude models in a more

systemaQc way

∆ & = &(( − &*

Autoconsistency check with +,-."/ isocontours total Length L
Work In progress (Hiegel+ in prep)
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Conclusions

Reionisa(on (me recovery: arXiv:2307.00609

The reionisa(on (me field informa(on is encoded in the 21 cm signal and we can reconstruct !"#$%& from 
21 cm maps

The predictor performance depends on '()* for a given reionisaHon scenario and there is an opHmal +%,-.
We get good reconstruc(on at large scales, however there is small scales issues

PredicHons with noisy observa(on are in broad agreement with ground truth at large scales but the smallest 
scales are totally missing on the predicHon

Model Exclusion applied to WDM models: Work in progress

We can exclude models of WDM with 2 observaHons but it requires more inves(ga(ons to get more 
quan(ta(ve results
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Perspec?ves

How to recover smallest scales and increase general performance ??

Generative Adversarial Networks (GANs) might be a solution (Ullmo+ 2020)
Implementing Attention Block to improve feature extraction can boost the performance (Chen+ 2016)

How can we Validate/exclude the underlying model of a predictor ??

What metric (e.g. P(k), Npeak) can we use to exclude models ? 
Can we give a score that tells the confidence we have in a given predictor

Is this exclusion process viable with noise?
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Overview of the Universe history

ESO, credit: NAOJ

z + 1 ó

Cosmic Dawn
End of Epoch of Reionisation (EoR) :

last big transition of the universe

Future

First emiTed light



HIEGEL Julien  - 01/12/2023 - Paris Machine Learning – IAP 22 / 19

Epoch of ReionisaBon: 21 cm maps
Part	I Introduction Methods Results

time

time

Emitted Photon:
f	 =	1	420	MHz
λ	=	21	cm

è
HI HI

Spin flip

!

Will be redshifted at lower Frequency where it
can be observed in the range 50-350MHz with
the Square Kilometre Array (SKA, Braun+ 2019)

Images obtained using 21cmFAST simulation code (Mesinger+2011, Murray+2020) 
Example of 21 cm maps 
In this simulation the reionisation starts
around z=15 and ends around z=5.5

Blue regions (negative values) means the
"#$ is colder than "%&' and the 21 cm line
is seen in absorption

Red regions (positive values) means the
"#$ is warmer than "%&' and the 21 cm
line is seen in emission

White regions are Ionised bubbles of
Hydrogen that grow and merge together
until all the Intergalactic medium (IGM) is
reionised.

Maps size is 128x128 [cMpc/h]
Color bar unit is [mK]
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21cm signal and Square Kilometer Array (SKA)

SKA-low antennas – Credit: hKps://www.skao.int/en/explore/telescopes/ska-low

HI HI

Spin flip

!

Emitted Photon:
f	=	1	420	MHz
λ	=	21	cm

SKA-low (late 2020s):

130k+ Antennas in Australia

0.4 "#$ collecting area

Frequency range: 50-350MHz

It is the necessary range to

observe the 21cm line through

the EoR

Will be redshiWed 
at 

lower Frequency
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Objectives 

A single map describes 
the whole history of 

reionisa6on

e.g. First/last sources 
related to minima/maxima 

of !"#$%& (likely the 
densest/empOest regions)

e.g. Isocontour length
=

Typical size of bubbles

Why ?

!"#$%&

It depicts the history of reionisaOon of a given region in the sky 

Minima

Maxima

Thélie+2022,2023

Part	I Introduction Methods Results
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MSE – Coefficient of Determination !"

!" coefficient computed on the validation set:

• Bad performances for low redshift: z < 6.5 ó signal fraction < 40%

• Optimal performance for z = 11

• For z > 11, performances get worse with increasing redshift

#=55

The determina,on coefficient is defined as : 

!" = 1 − Σ()*+, − -*.+)"
Σ(-*.+ −< -*.+ >)"

This coefficient tends to 1 for a perfect correlaYon

between the predicYon and the ground truth
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2D Power Spectrum of reconstructed !"#$%&

Small Scales k > 2e-1 '()'*+h:
Huge difficulties to recover the power for all ,%-.:

57% for z = 8
12% for z = 6

Intermediate Scales:
Impossibilities to recover the power at this range for lowest ,%-. :

28% for z = 6 at k = 7e-2 '()'*+h
for Larger ,%-. the power remaining tends to align with the truth:

85% for z = 8 at k = 7e-2 '()'*+h

Large Scales k < 3e-2 '()'*+h:
Predictors for all ,%-. succeed in recovering the larger scales:

more than 95% for z = 8

7e-23e-2 2e-1

['()'*+h]

Part	I Introduction Methods Results
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Late reionisa+on model

Fraction of  Neutral Hydrogen (Q"#)

Cross markers: 
computed from T21 maps as the signal fraction, a 

given marker depicts the fraction of HI $%& at a given 
redshift using observations at this same redshift

à This information is contained in the 
line of sight

Dashed area and dotted lines: 
Computed from time of reionisation maps as the 

cumulative PDF
à This information is contained in the 

sky

Reconstruction for observation at redshift<8 fails at early and
late times

z>8 predictors give a relevant history of reionisation.

Line of sight and plane of the sky are in agreement

Part	I Introduction Methods Results
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True Versus PredicBon
Predictor z = 11

Major number of predicted pixels fiNng

with the truth

Missing first sources and last regions to

reionise

Predictor z = 15

Major number of predicted pixels fitting

with the truth

More information for the first sources

than for z = 11

Missing last regions to reionise

Predictor z = 5.5

Spread distribuBon ó predicBons

doesn’t match the truth

Gets informaBon about last regions to

reionise and their value
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Part	II Introduction Methods Results

In WDM models: There is fewer 
structures than for CDM depending 
on the mass of the WDM parJcle

What happens for the 21 cm signal?

21 cm map at z = 11

As the mass of WDM parJcle
decreases:

-> Missing regions

-> In general the distribuJon of
temperature is different because
the reionisaJon Jming is
different

CDM7keV5keV3keV
WDM Models
21 cm Maps
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Part	II Introduction Methods Results

Similar reionisa,on scenario

Same parameters as previously used
for CDM scenario (!30) except for
3keV: ! = 32

ReionisaMon begins and ends
around the same Mmes z = 15 and 5
respecMvely

WDM models have a delayed mean
reionisa,on ,me

CDM7keV5keV3keV
WDM Models
Reionisation Time Field
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Part	II Introduction Methods Results

Similar reionisation scenario

Same parameters as previously used
for CDM scenario (!30) except for
3keV: ! = 32

Reionisation begins and ends
around the same times z = 15 and 5
respectively

WDM models have a delayed mean
reionisation time

CDM7keV5keV3keV
WDM Models
Reionisation Time Field
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Part	II Introduction Methods Results

Similar reionisation scenario

Same parameters as previously used
for CDM scenario (!30) except for
3keV: ! = 32

Reionisation begins and ends
around the same times z = 15 and 5
respectively

WDM models have a slight delayed
mean reionisation time

CDM7keV5keV3keV
WDM Models
ReionisaNon Time Field
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Part	II Introduction Aims Results

Predic?ons: CDM vs WDM Predictors 
In prac?ce:

- Predic?ons for z=11 and z=8 should be sta,s,cally similar à 7keV and CDM look similar
- Predic?ons for all models should give the same result à Not the case for z = 11
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Part	II Introduction Aims Results

Power Spectrum: Comparison to true CDM
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Part	II Introduction Aims Results

Power Spectrum: WDM vs CDM

We compare predic'ons of each model with predicKons of CDM -> CDM is the reference, we should get similar results.

3keV is way below 
the CDM (>20%) for 

both redshiU: This 

model can already be 

excluded from this 

preliminary study.

5keV behave weirdly 

for z =11: it is a first 

hint but it is not 

enough to exclude it

7keV is close to CDM: 

cannot conclude yet
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Part	II Introduction Aims Results

Integrated Power
From CDM predictions: We can obtain the mean and std of the power spectrum and integrate it for a given k range: 

–> We obtain our reference where the predictions should be located. (red and blue bands)
We perform the same transformation for the predictions of each model

Integrated in k range: [2e-1:5e-1]Integrated in k range: [1e-2:1e-1]



HIEGEL Julien  - 01/12/2023 - Paris Machine Learning – IAP 37 / 19

Integrated in k range: [1e-2:1e-1]

Part	II Introduction Aims Results

CDM matches with the reference (Fortunately, the reference is the CDM !)
7keV matches as well with the reference: Cannot conclude anything 
5keV matches when z=8 but differs for z=11: Need to confirm with another metric
3keV is off limits: This model is excluded 

Issue with this metric:
What is the meaning of an integrated power? 
Results are dependent of the k range chosen

Integrated Power

Integrated in k range: [2e-1:5e-1]
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21cmFast simulation code: !"#$%& Vs '"#$%&
!"#$%& '"#$%&

PD
F

PD
F

Tighter

More 
contrast

Larger distribution
More symmetrical

More gaussian

Less contrast
Smoother
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Redshi@ of reionisaCon Time of reionisaCon 

21cmFast simulation code: !"#$%& Vs '"#$%&
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Convolutional Neural Network: U-net Architecture
input 128 output

64

32

16

8

16

32

64

128

64

32

16

8

16

32

64

DecoderEncoder
2D convolutions

Max Pooling

Up Sampling

Skip connection

*

*

* Dropout
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21cmFast simulation code: image extraction process
For a single simula-on (= 1 box of volume 256$):

• Divide it into 8 cubes of size 128$

For each of cube:
• Extract 32 evenly spaced (4 pixels) slices (128') in each direcQon

(x,y,z)

ResulQng in 96 images for each cube of size 128$
Leading to 768 images for 8 cubes (= 1 simula-on)

To account for different redshiWs used in the training of the CNN, this

number is mulQplied by 18

There are 2 cosmological models, further increasing the total number of

images by a factor 2

The dataset used in this work consists of 50 simula-ons, resulQng in a total

of 38 400 images / field (x2) / redshiE (x18) / reionisa-on model (x2)

Note: for ()*+,- we don’t mulQply by 18

Example of the process to extract

Images from a box of size 16$
using a spacing of 2 pixels
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Convolutional Neural Network: Training Phase

The update of the weight happens each time a 
batch of input passes through the CNN by 

computing the error (MSE) done comparing its 
prediction with ground truth

1 predictor / redshift and / model

Predictions of the algorithm 
are not yet in their final form 

since they will continue to 
evolve until the learning phase 

is done

CNN

31 500 maps
At a given
redshiR

31 500 maps

= 1 predictor 

OutputInput
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ConvoluBonal Neural Network: Valida&on Phase

During the ValidaBon phase that takes place aLer each 
epoch, the algorithm compute the MSE and the !"

coefficient on images that the predictor has never seen

Nevertheless, the weights are not updated at this step

These maps are disBnct from 
maps in the training set

3 500 maps
At a given
redshift

3 500 maps

CNN
In training

process

OutputInput
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Convolutional Neural Network: Testing Phase

The testing phase takes place when the predictors 
are set. It is now used to predict the time of 

reionisation from the temperature brightness.

These maps are distinct from 
maps in the training and 

validation set

We now can use the predicted fields to measure 
parameters and compare it via several metrics to 

the ground truth given by the simulation

Final

predicQons

3 400 maps
At a given

redshiR

3 400 maps

Predictor
At a given

redshiR

OutputInput

Final 
predictions


