EXTRACTING PHYSICAL RULES FROM ENSEMBLE MACHINE LEARNING FOR THE SELECTION OF RADIO AGN

COMPETE

PORTUGAL 2020

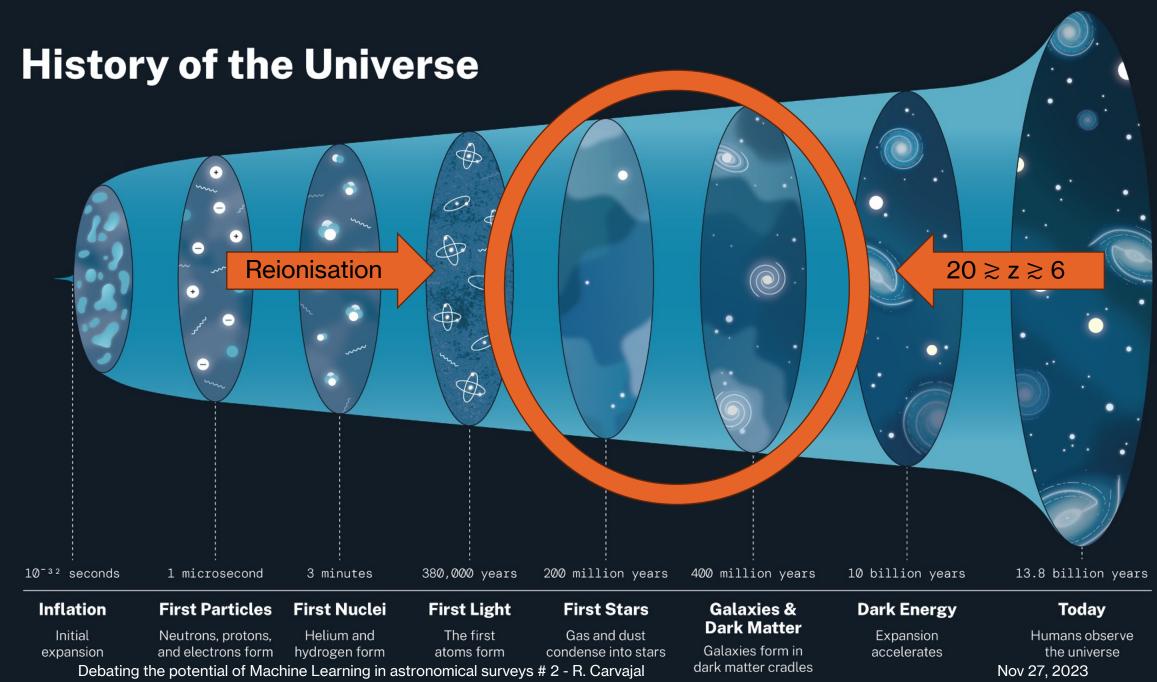
Rodrigo Carvajal (IA-FCUL, Portugal), I. Matute, J. Afonso, R. P. Norris, K. J. Luken, P. Sánchez-Sáez, P. A. C. Cunha, A. Humphrey, H. Messias, S. Amarantidis, D. Barbosa, H. A. Cruz, H. Miranda, A. Paulino-Afonso, and C. Pappalardo.

This work was supported by the Fundação para a Ciência e a Tecnologia (FCT) through the grant UIDP/04434/2020, UIDB/04434/2020, and the PhD Fellowship PD/BD/150455/2019 (PhD::SPACE Doctoral Network PD/00040/2012) and POCH/FSE (EC).

Debating the potential of Machine Learning in astronomical surveys # 2 - R. Carvajal

COFINANCIAMENTO / COFINANCIN

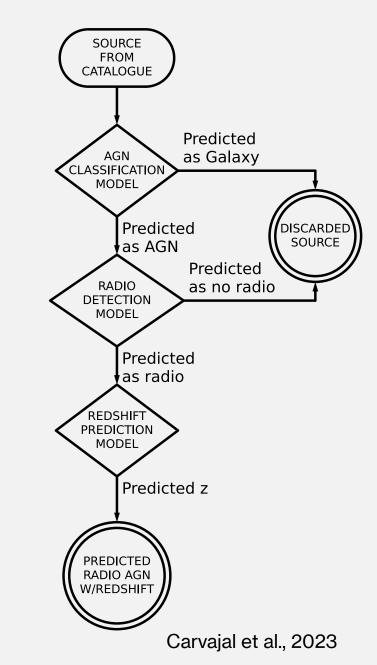
ia fC

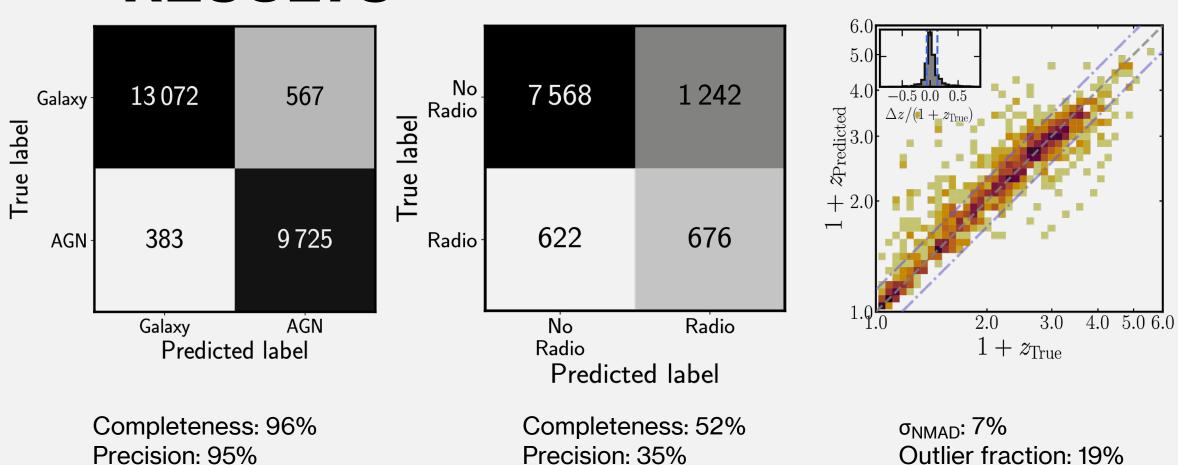

Credit: ESA/Hubble & NASA, Y. Chu

PD

Ciências

Results mostly from...


'Selection of powerful radio galaxies with machine learning' Carvajal et al. 2023 (A&A) arXiv:2309.11652



3

Prediction Pipeline

- AGN/Galaxy + Radio-detection + Redshift.
- Model stacking: CatBoost, XGBoost, RF, ET, GBC/GBR (tabular data).
- Training: Photometry from IR-detected sources in HETDEX Spring Field.
- WISE + Pan-STARRS + 2MASS + LoTSS detection.
- Validation: HETDEX & Stripe 82

RESULTS

Carvajal et al., 2023

12

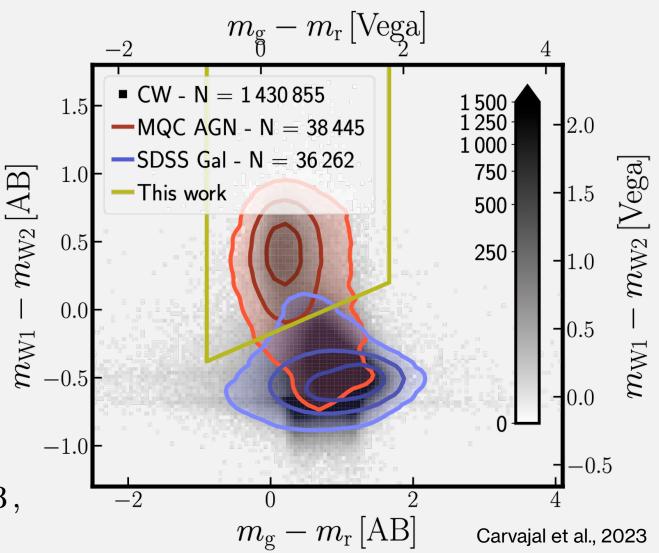
8 6

4

2

Elements per pixel

Feature Importances: SHAP values


- Properties with higher predicting power.
- Possible for individual sources.
- Example with AGN/Galaxy classification: W1-W2 & g-r.

	AGN-Galaxy model					
	Feature	SHAP value	Feature	SHAP value	Feature	SHAP value
	W1_W2	32.458	i_y	5.086	z_y	1.591
	g_r	11.583	y_₩1	4.639	H_W3	1.048
	W1_W3	8.816	band_num	4.050	W4mag	0.514
	r_i	7.457	y_₩2	3.228	H_K	0.466
	i_z	6.741	z_W2	2.348	W3_W4	0.466
	r_J	6.613	y_J	1.718	J_H	0.178
_	Radio detection model					
	Feature	SHAP value	Feature	SHAP value	Feature	SHAP value
	g_i	14.120	z_W1	6.751	W4mag	2.691
	W2_W3	13.201	r_i	5.577	band_num	2.661
	g_r	12.955	r_z	5.161	K_W4	0.939
	y_J	8.224	i_z	4.512	H_K	0.719
	K_W3	7.441	z_y	4.121	J_H	0.190
	W1_W2	6.874	y_W1	3.864		
	Redshift prediction model					
	Feature	SHAP value	Feature	SHAP value	Feature	SHAP value
	r	32.594	z_y	3.557	W4mag	1.639
	y_W1	20.770	y_J	3.010	g_W3	1.479
	W2_W3	12.462	band_num	2.595	K_W3	0.853
	$W1_W2$	5.692	i_y	2.381	K_W4	0.451
	r_i	4.381	H_K	2.230	J_H	0.146
	r_z	3.755	i_z	2.005		

A NEW COLOUR-COLOUR CRITERION

As efficient as previous IR colour-colour criteria.

$$egin{array}{rcl} g-r &> & -0.76\,, \ g-r &< & 1.8\,, \ W1-W2 &> & 0.227 imes(g-r)+0.43\,, \end{array}$$

To summarise...

- (Astro-) Physical rules can be extracted from traditional ML models.
- One step towards AGN (radio) Galaxy (IR+optical) connection.
- Possible to use in SKA and Pathfinders footprints and more.

Evolutionary Map of the Universe

Thank you!

'Selection of powerful radio galaxies with machine learning' R. Carvajal et al. 2023 (A&A) arXiv:2309.11652

racarvajal@ciencias.ulisboa.pt racarvajal.github.io