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“What is causality?

“Actual” Causality

/4

“Causality-in-mean’

Statistics

ACTIVITY:
QUESTIONS:

EXAMPLES:

3. COUNTERFACTUALS

Imagining, Retrospection, Undestanding

What if I bad dene ...7 Wiy?
(Was it X thar caused Y? Whar if X had not
occurred? Whar if 1 had acted differentdy?)

Was ir the aspirin that stopped my headache?
Would Kennedy be alive if Oswald had nor
killed him? What if T had not smoked for the
last 2 years?

ACTIVITY:
QUESTIONS:

EXAMPLES:

2. INTERVENTION

Doing, Intervenmg

What if 1do ...7 How?
(What would Y be il 1do X?
How can I make Y happen?)

If I take aspisia, will my |
What if we ban cigarettes?

ACTIVITY:
QUESTIONS:

EXAMPLES:

P. ASSOCIATION

Seeing, Observing

What if 1 see .7
(How are the vacables related?
How would seeing X change my belef in Y?)

Whar does a symprom rell me abour a diseasep
What does a survey rell us about the
clection results?

From Book of Why by Pearl
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Tools for causal discovery

e THEORY

Probabilistic graphical models + causal inference

e COMPUTATIONAL METHODS:

causal structure/parameter learning algorithms



Major ingredient of PGMs

Bayesian networks have 2
components:

e directed acyclic graph (DAG)

e Joint probability distribution
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The world of DAGs

We can indicate a graph with the tuple

:'V = {Ul...’UN} set of nodes
) set of arcs

aij = (v, V;

If a graph satisfies:
1. no undirected edges
2. mno loop
3. nocycle

is called a Directed Acyclic graph (DAG)



Building blocks of causal BNs

Triplets

Markov blanket
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Conditional independence is encoded in graph properties

Graphical Probabilistic
separation independence
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Causal Structure-learning algorithms:

There are three main classes of algorithms for causal discovery:
e constraint-based S Conditional Independence tests
e score-bhased —— score optimization + grid-search
e hybrid —— mixing score optim. with Cl tests

General assumptions:

1. Causal Markov
2. Causal sufficiency no collinear variables

3. Causal faithfulness 'no missing confounders
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ALGORITHM TYPES
Constraint-based algorithms

Global dis algorithms

B Lecal discovery algorthms.
Score-based algorithms
Approximate algorithrs
B Exact algorithms
Hybrid algorithms
Restrict / Maximise algorithms

Other hybrid algorithms

CAUSAL SUFFICENCY ASSUMPTION
[ Assume mo latent variables present

1~ Z1Assume latent variables are present
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The gABi library

@ gABiI Fuic
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gABi: graphical Automated Bayesian inference

Python package to perform Bayesian causal discovery on data, based on probabilistic graphical models.
This package has the following dependencies:

« decorator
ertools (built-in)

matplotiib ( built-in
networkx (version > 2.6)
joblib,
os
pandas
pypickle

« scipy

« statsmodels

- tgdm

- wget

« pyarrow

« Apache arrow

« pybind11

« dask

« mpidpy

Atthe moment the gABI package provides the parallel version of the following structure learning algorithms:

‘The algorithms depends on dask for the parallelization, and can be launched on CPUs and GPUs

¥ Fork 0

About

Python-C package for performing
bayesian automated inference on data,
based on probabilstic graphical
models.
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The gABI library provides

three constraint-based algorithms

for causal structure learning:
e PC
e kernel-PC
e JAMB




Comparison between PC-stable and kernel-PGC

Differences in
assumptions

differences in

implementation

Conditional
Independence
test

PC-stable is the most common constraint-based algorithm
and kernel-PC is its generalization to non-linear ANMs

non-linear relationship
gaussian/non-gaussian noise

generalized transitive phase

HSIC-gamma /DCC-gamma
HSIC-perm / DCC-perm

PC-stable

linear relationships
gaussian noise
gaussian data

transitive phase

Pearson Cl test
Fisher-Z



Digression on Cl tests

For LINEAR GAUSSIAN models described b

we use PARAMETRIC CI tests (e.g. Fisher-Z test, Exact-t test)

For NON-LINEAR ADDITIVE NOISE models described by
Xj = fi(Pa;) + N;

we use kernel NON-PARAMETRIC tests (e.g. HSIC-perm, HSIC-gamma, DCC-gamma)

but in practice...
e estimating conditional dependence for continuous domain is not straightforward

e many algorithms use linear statistical methods or discretization




Why kernel methods for testing CI?

basic idea (9, Zyx [y = Cov[f(X), g(Y)]
covariance structure on RKHS gives can be decomposed
info on dependence and conditional Syx = DY Ve xEY2

independence of original variables Varsciz = Vieoe— Varg Vi

Vwxiz =Xy / (Byx — EYZEZZZZA)Z_%Q

feature map DY) T feature map
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Kernel Cl tests: residuals gamma test

Test hypothesis:
Ho : X Il ¥|Z vs. Hi: X P ¥ |2
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Skeleton phase

build skeleton ()

v

Collider phase

skeleton to pdag()

v

Phases of the kernel-pc algorithm . cicons e apha, varans

CI tests
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First application:
what causes disk size
evolution ?

simulated data from

SAM : Santa-Cruz TNG

(Gabrielpillai, 2021)
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Pipeline of the analysis

Simulated galaxy catalog creation

preprocessing

subsampling

run kernel-PC on every subsample

estimate average reconstructed graph with 10 bootstrap

N WV W N

apply pySR to derive quantitative laws/relations
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After preprocessing -> we are
left with 26 vars out of 37

Name
M stwjz? D
Moyt flow
MHmerger

Zcold

Mre

acc

Spinfl

Ry /o
Mpn

M, ejected
]\Jstar

Obulge
My ge
Npmerge

star

description
stripping mass
outflow rate

mass ratio mergers
metallicity cold gas
reaccretion rate
halo spin

half-mass radius
BH mass

Ejected Mass
stellar mass

bulge vel. disp.
bulge mass

stellar mass from merg.

Name
SFRy,

Tmerge
Tmerge]\[

MEe.
Cn fw

SFR
Z star
]\;Tradz'o

acc

description

< SFR >igyr

T last merger

T last major merger
pristine accretion rate
halo concentration
cooling mass
metallicity hot gas
CG mass

disk vel.

Hot gas mass

Star formation rate
stellar metallicity
radio accretion rate




Skeleton building phase
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Skeleton building phase

step 0, N edges=325
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Average reconstructed BN

We adopt the approach proposed by
Friedman, Goldszmidt and Wyner (1999):
generating multiple network structures by
applying nonparametric bootstrap to the
data and estimating the relative frequency
of the feature of interest

Tm

M3, SFR1g)

SFR

Hm

BN averaged over 10 bootstrap
subsamples (N=4000)


https://www.bnlearn.com/documentation/references/bnlearn.html#bnboot

Future research directions

After concluding the current study on causal graphical tools applied to galaxy simulated data we
plan to move to real data, and we plan to integrate in the gABi package:

e treatment for latent variables (based on SEM packages, e.g. SEMOPY)
e treatment for time-series data (already under implementation)

For more general application we will add to gABi package:
treatment for mixed categorical/continuous variables
new CI tests: Shrinkage test

new possible moves for the CI sampling, like the so-called new edge reversal move
(Grzegorczyk

and Husmeier, 2008)

new structure-learning algorithms: layering-MCMC?¥, hill-climbing, greedy search

This will allow to perform Bayesian inference on time-series data, even in the case where latent confounders are
present.

LONG-TERM GOAL: causal model discovery on real data
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The End




