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Scientific objectives of Crater Detection Algorithm

- Estimating the age of planetary surfaces (the more craters, the older the surface) (Fassett 2016; Hartmann 2005).

- This can provide insights into geological processes of planetary bodies and beyond (late heavy bombardment, recent volcanicit y and past presence of liquid 

water on Mars…).

- Secondary carter mapping is key to identifying the ejection site of Martian meteorites (Lagain et al. 2021):

- A large enough impact that can cause material to be ejected with enough velocity to escape Mars would also cause a ray patter n of secondaries (craters 

formed by failed meteorites). By examining the patterns of small craters we can identify candidate primary craters.

- In conjunction with other constraints (Cosmic Ray Exposure age and crystallisation age), we can narrow down the ejection site candidates to one-two for some 

samples, enabling us to improve our understanding of Mars and its differences to the Earth.

- Similarly, we can learn more about the evolution of other targets, such as Mercury and Ceres.

Why we do crater counting?

The CDA Story
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Discovering details about Mars’s turbulent past

• By combining the Mars 
crater database and 
resulting crater density 
map, information about 
TOF and composition we 
can identify the source of 
a major class of Martian 
meteorites. 

• Images/Ref: Lagain, A., 
Benedix, G. K., Servis, K., 
Baratoux, D., Doucet, L. S., 
Rajšic, A., ... & Miljković, K. 
(2021). The Tharsis mantle 
source of depleted 
shergottites revealed by 
90 million impact craters. 
Nature Communications, 
12(1), 6352.

Analysis

Big Data Astronomy
https://hive.curtin.edu.au/research/CDA-94M-release/
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Challenges for CDA

- Owing to crater degradation and depending on pixel size manually 

counted craters from imagery by experts may produce different 

results (Robbins et al. 2014) e.g.:

- At least 20% difference in the number of craters amongst experts in 

the above study, and 30% of difference in the crater size.

- These results indicate that validation and training can be challenging 

but an ML based approach can be useful but we need to keep in mind:

- Traditional measures of precision and recall will be low and :

- The final result will need to be validated independently using an 

independently labelled dataset.

Evaluation challenges

The CDA Story
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Challenges for CDA

- Experts would ordinarily take a few seconds to mark a crater but in order to reach the desired scale using automated methods, billions of 

detections are necessary. 

- Given the variable results between experts, speed of inference is of primary concern.

Fast labelling

The CDA Story



6

Nextflow version of CDA

• Modularity

• Reusability

• Configuration injection

• Readability

• More target platforms

• Visualisation

• Log and trace

Advantages of nextflow version:

The CDA Story

Previous versions of CDA:

• Monolithic container based version used with Themis data (Benedix et al. 2020)

• Shell script based version used for Jezero crater mapping (Servis et al. 2020)
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Workflows of CDA

The CDA Story

• Georeferencing: Taking a raw image from an orbiter and 

producing a georeferenced tile.

• Training: Using labelled tiles to train the algorithm

• Inference: Taking a trained network and producing a crater 

database. 

• Annotation: Taking an image and a crater database and 

producing an annotated image.

There are several high-level tasks that are coded as workflows:



8

ML workhorse (YOLO)

The CDA Story

• Uses Convolutional Neural Network (CNN) blocks.

• Object detection as regression, instead of classification:

• The network gives bounding box coordinates and class confidence 

(in this case we use only one class i.e. “crater”)

• Internally there are a number of anchor points in the pixel 

coordinates and an offset and size are produced as regression, 

along side the class confidence.

• Intended inference performance is real-time applications, such as 

self-driving cars, making it suitable for potentially millions of 

images (tiles in this case) that need to be evaluated.

Main characteristics of the architecture (Redmon et al. 2016):
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Training YOLO (Mars case) (Lagain et al. 2021b)

The CDA Story

• Training set from High-Resolution Imaging Science Experiment (25cm/px) (McEwen et al. 2023) on Mars Reconnaissance Orbiter :

• On such a small scale there are many non-crater features that we can train the network to avoid.

• Used the Jezero crater site (E77-5-N18-0) where 2142 craters were manually marked of which 550 were held out for validation.

• Extensive use of augmentation to expand the training dataset ( rotation, shear, scaling and translation).

• For Mars YOLOv3 was used.

• Evaluation of the final results was by labelling the intended target data set from Context Camera also on the Mars Reconnaissance 

Orbiter:

• Manually mapping 2000 craters on the CTX on different geological units.

• CTX resolution is 6m/px so a 10px diameter corresponds to 60m which was the lower limit evaluated. 

• It was noted that mid- and high-latitude (>50 deg) performance is lower due to the higher degree of crater degradation and the presence of 

glacial features (e.g. geysers, mud volcanoes…).

• Overall the F1 score was 0.75 for the evaluation using CTX bearing in mind that we set the intersection over union for considering some 

crater as the same at 0.3. 
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Inference execution of CDA for Mars

• ~15000 original size images 5m/px from Murray Lab

• Downsample each to 40m/px and 160m/px =  ~45000 images

• Tile each (8-2000 tiles) = a few tens of millions of tiles

• Mark each tile producing ~0-100 detections on each

• “Untile” each group of detections

• Run Non-max suppression on groups of nine adjacent scenes (target plus surrounds)

Covering the entire surface of Mars to 5m/px Additional considerations

• Executions fail but we don’t want to start 

from scratch after a fix.

• Execution needs to be done in groups, 

otherwise there would be too many jobs 

on the cluster, but groups need to be 

identifiable for debugging and individually 

repeatable.

• Dev/Test on local docker but deployment 

on slurm/singularity

The CDA Story
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Inference workflow of CDA

The CDA Story

For each scene

Object 
detections 
for image

Original 
GeoTIFF

YOLOv3

Object 
detection
s for tile

Object 
detection
s for tile

Object 
detection
s for tile

Tile image
(imagemagick)

960x960 
jpeg tiles

960x960 
jpeg tiles

960x960 
jpeg tiles

High-res 
GeoTIFF

Downsample 
(GDAL) Lower res 

GeoTIFFs

Untile

Non-max 
suppression

Object 
detections 
for scene

Object 
detections 
for image

• Downsampling is needed in order to detect craters that are not visible due to being too large and only a small 

portion of them being on the highest resolution .
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Nextflow version of CDA

• Execution graph

• Report

• Timeline

Execution graph

The CDA Story
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Magnus/Zeus (now decommissioned)

Magnus Zeus

Big Data Astronomy
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You dropped something!

• Here is where we 

believe the 

depleted 

shergottites most 

likely came from. 

Long story short

Big Data Astronomy
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Discovering details about Mars’s turbulent past

• The finding implies a major thermal anomaly (a plume), that has been active in the Tharsis 

region throughout the history of Mars.

• This is likely similar to the process underlying volcanism in Hawaii, but:

• Since Mars has no tectonic plates that plume of magma has been rising for billions of years 

undisturbed and caused the Tharsis region to form and grow.

• This activity stopped 340Ma ago (later activity may have existed but are not recorded in the 

group of meteorites considered here)

Significance

Big Data Astronomy
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Discovering details about Mars’s turbulent past

• Using our database and TOF analysis and 

some newer simulations we were also able 

to identify the source of the Black Beauty 

meteorite as the Karratha  crater.

• Ref: Lagain, A., Bouley, S., Zanda, B., Miljković, K., Rajšić, A., 

Baratoux, D., ... & Bland, P. A. (2022). Early crustal processes 

revealed by the ejection site of the oldest martian meteorite. 

Nature Communications, 13(1), 3782.

Another stray rock!

Big Data Astronomy
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Further targets

• Moon (Fairweather et al. 2022, 2023)

• Multiple bodies (Earth, Mars, Moon) (Lagain et al. 2022)

• Others pending publication 

We have already used this workflow on other rocky bodies to calibrate model ages and understand whether the overall flux has 
changed

Big Data Astronomy
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Thank you
• Benedix, G. K., Lagain, A., Chai, K., et al. 2020, 2007

• Fairweather, J. H., Lagain, A., Servis, K., et al. 2022, Earth and Space Science, 9, e2021EA002177

• Fairweather, J. H., Lagain, A., Servis, K., & Benedix, G. K. 2023, Earth and Space Science, 10, e2023EA002865

• Lagain, A., Benedix, G. K., Servis, K., et al. 2021a, Nat Commun, 12, 6352

• Lagain, A., Benedix, G., Servis, K., et al. 2021b, https://meetingorganizer.copernicus.org/EPSC2021/EPSC2021-12.html

• Lagain, A., Bouley, S., Zanda, B., et al. 2022a, Nat Commun, 13 (Nature Publishing Group), 3782

• Lagain, A., Kreslavsky, M., Baratoux, D., et al. 2022b, Earth and Planetary Science Letters, 579, 117362

• Servis, K., Lagain, A., Benedix, G., et al. 2020, https://meetingorganizer.copernicus.org/EGU2020/EGU2020-6269.html

Big Data Astronomy

• Fassett, C. I. 2016, Journal of Geophysical Research: Planets, 121, 1900

• Hartmann, W. K. 2005, Icarus, 174, 294

• McEwen, A. S., Byrne, S., Hansen, C., et al. 2023, Icarus, 115795

• Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Las Vegas, NV, USA: 

IEEE), 779

• Robbins, S. J., Antonenko, I., Kirchoff, M. R., et al. 2014, Icarus, 234, 109x
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