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Large scale structure à …galaxy formation physics… à cosmology?
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We only see the tip of the iceberg!

Galaxies form at the centers of 
dark matter halos

NGC 1068 (HST)
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Large scale structure à …galaxy formation physics… à cosmology?

10 kpc

25 Mpc

Supermassive black holes (SMBH) grow at 
the centers of galaxies and likely affect 
their evolution via radiation, winds, jets…

Massive stars affect their surrounding 
interstellar medium through 
supernovae, radiation, winds…

~10 pc

NGC 602 (STScI)

NGC 1068 (HST)

ESA/V. Beckmann (NASA-GSFC)

We only see the tip of the iceberg!

Galaxies form at the centers of 
dark matter halos
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Galaxy surveys

Cosmic Microwave Background

Dream goal in galaxy 
formation simulations: 

predict detailed properties 
of  millions of  galaxies 
starting from cosmological 
initial conditions using   
‘ab-initio’ physics

Dream goal in Cosmology: 

Infer accurately and without 
bias the cosmological 
parameters using the full 
amount of  information in 
the observable Universe



PROBLEM 1:  Galaxy formation simulations rely on “sub-grid” 
models for unresolved processes that are still poorly understood
 

PROBLEM 2:  Lots of cosmological  information on small scales 
inaccessible due to impact of uncertain astrophysical processes

PROBLEM 3:  The optimal summary statistic to extract 
cosmological information is unknown 

PROBLEM 4:  Need to speed up simulations to predict 
cosmological observables for large cosmological volumes
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models for unresolved processes that are still poorly understood
 

PROBLEM 2:  Lots of cosmological  information on small scales 
inaccessible due to impact of uncertain astrophysical processes

PROBLEM 3:  The optimal summary statistic to extract 
cosmological information is unknown 

PROBLEM 4:  Need to speed up simulations to predict 
cosmological observables for large cosmological volumes

Run thousands of simulations spanning the full range of 
uncertainty in galaxy formation physics and train machine 
learning algorithms to extract the maximum amount of 
cosmological information at the field level while 
marginalizing over uncertainties in baryonic effects

The CAMELS approach
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The CAMELS suites
>10,000 cosmological boxes of (25Mpc/h)3

>5,000 variations of TNG, SIMBA, and ASTRID
Ø cosmological params (𝛺m , 𝜎8, …)
Ø astrophysical params (feedback)

>5,000 corresponding DM-only simulations
Additional simulation sets:

Ø Same ICs, varying one parameter 
Ø Fiducial model, varying the ICs

CAMELS-SAM (Lucía Perez)
1,000 DM-only simulations of (100Mpc/h)3

Ø 2 cosmological params (𝛺m , 𝜎8)
Ø Santa-Cruz SAM parameter variations 

variations

IllustrisTNG                                             SIMBA



SAM

New large-volume simulation ‘hump’ of CAMELS project
● CAMELS (Cosmology & Astrophysics with MachinE Learning Simulations): machine 

learning data sets to create predictions for observations, marginalize over astrophysics to learn 
cosmology, and identify useful summary statistics and analyses

● 1000+ N-body simulations: (100 h-1 Mpc)3 large ; N=6403 particles of ~1-6 x 
108 h-1 Msol ; 100 snapshots between 0<z<27

● Cosmological parameter space: Ωm (fraction of energy density in DM+baryons) 
& σ8  (~amplitude of density fluctuations)

● Run through the Santa Cruz Semi-Analytic Model:
“ASN”: mass outflow + reheating rates of cold gas due to SNe + stars
“AAGN”: AGN feedback, how much mass ejected in radio jets?

Data is public! camels-sam.readthedocs.io  |  arxiv.org/abs/2204.02408

Proof-of-concept in Perez+2022: constraining power of galaxy clustering statistics 
(3D two-point correlation function, count-in-cells, Void Probability Function) LH_643: Ωm = 0.131 ; σ8 = 0.986

Lucia A. Perez
Princeton Future Faculty in 
the Physical Sciences Fellow 
& CCA Flatiron Research 
Fellow



CAMELS public data repository 
https://camels.readthedocs.ioDraft version January 6, 2022
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The CAMELS project: public data release
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Ø Large number of labeled data products in 
the form of 1D, 2D, and 3D arrays

Ø Full documentation and metadata available

Ø Designed to enable a broad range of 
creative AI applications 

Ø Public access to full data, (limited) local 
computing, and tutorials

arXiv:2201.01300



Cosmology inference… from 2D maps:  (Paco, Yueying Ni, Jonah Rose)

- 2D projected maps of 27 fields (dark matter, gas, stars) with 100 kpc/pixel resolution
- It works!  2-3% error in 𝛺m and 𝜎8 with all fields combined (3-4% with HI only)
- Extracting information down to the smallest scales (1 pixel), marginalizing over baryonic effects
- But… only the total mass field is robust to differences in galaxy formation model (TNG vs SIMBA) 
… from summary statistics (Andrina Nicola, Lucía Perez, Ana María Delgado)

… from galaxy positions/velocities with GNN (Natalí de Santi, Helen Shao)

… and from a single galaxy! (Paco, Nicolas Echeverri-Rojas, Chaitanya Chawak)

Constraining feedback… 
… with SZ (Emily Moser, Pandey, Shivam), spectral distortions (Leander Thiele), Lyα (Megan Tillman, Blakesley Burkhart) 

Predicting galaxy/halo properties:  
- Finding universal Relations in (sub)halo properties (Helen Shao)
- Inferring halo masses from galaxy properties with GNN (Pablo Villanueva-Domingo)
- Halos mass and CGM properties from X-ray and HI maps (Naomi Gluck)
- Reducing the scatter in the SZ flux-mass relation (Digvijay Wadekar)

Emulation (Sultan Hassan, Chris Lovell, Yongseok Jo, Max Lee, Matt Gebhardt), Inpainting (Faizan Mohammad)

First CAMELS results very encouraging!

Not an exhaustive list!



Cosmological inference at the field level
Villaescusa-Navarro, Anglés-Alcázar, Genel, et al. (2021a,b,c)

The 2D total mass field is a robust predictor
- Extracting more information than power spectra
- Down to smallest scale (100 kpc/pixel)
- Marginalizing over baryonic effects Despite the large impact of baryons  

on the matter power spectrum
Delagado+2023, Gebhardt+2023, Pandey+20233

Gas spread correlates with 
matter power suppression

Gebhardt+2023



Example I: Gas temperature

Every map has 256×256 pixels, covers an area of 25×25 (ℎ!"Mpc)#, and
has a different cosmology & astrophysics. 15,000 images in total.

àTrain neural network on temperature maps to predict input 
cosmological parameters while marginalizing over sub-grid physics

Cosmological inference at the field level
Villaescusa-Navarro, Anglés-Alcázar, Genel, et al. (2021a,b,c)



à Inference from 2D Temperature maps is not robust to galaxy formation physics implementation

Differences between sub-grid models 
limit learning across them

Cosmological inference at the field level
Villaescusa-Navarro, Anglés-Alcázar, Genel, et al. (2021a,b,c)



Crucial to expand the range of models in the training set

Reach out if you would like to 
bring your model into the 
public CAMELS dataset!

Draft version April 6, 2023
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The CAMELS project: Expanding the galaxy formation model space

with new ASTRID and 28-parameter TNG and SIMBA suites
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ABSTRACT

We present CAMELS-ASTRID, the third suite of hydrodynamical simulations in the Cosmology
and Astrophysics with MachinE Learning (CAMELS) project, along with new simulation sets that ex-
tend the model parameter space based on the previous frameworks of CAMELS-TNG and CAMELS-
SIMBA, to provide broader training sets and testing grounds for machine-learning algorithms de-
signed for cosmological studies. CAMELS-ASTRID employs the galaxy formation model following
the ASTRID simulation and contains 2,124 hydrodynamic simulation runs that vary 3 cosmological
parameters (⌦m, �8, ⌦b) and 4 parameters controlling stellar and AGN feedback. Compared to the
existing TNG and SIMBA simulation suites in CAMELS, the fiducial model of ASTRID features the
mildest AGN feedback and predicts the least baryonic e↵ect on the matter power spectrum. The train-
ing set of ASTRID covers a broader variation in the galaxy populations and the baryonic impact on
the matter power spectrum compared to its TNG and SIMBA counterparts, which can make machine-
learning models trained on the ASTRID suite exhibit better extrapolation performance when tested
on other hydrodynamic simulation sets. We also introduce extension simulation sets in CAMELS
that widely explore 28 parameters in the TNG and SIMBA models, demonstrating the enormity of
the overall galaxy formation model parameter space and the complex non-linear interplay between
cosmology and astrophysical processes. With the new simulation suites, we show that building ro-
bust machine-learning models favors training and testing on the largest possible diversity of galaxy
formation models. We also demonstrate that it is possible to train accurate neural networks to infer
cosmological parameters using the high-dimensional TNG-SB28 simulation set.

Keywords: Cosmological parameters — Galaxy processes — Computational methods

1. INTRODUCTION

Corresponding author: Yueying Ni

yueying.ni@cfa.harvard.edu

Traditional methods used to extract information from
cosmological surveys typically rely on studying the prop-
erties of the Universe (e.g. galaxy distribution, neu-
tral hydrogen distribution) on su�ciently large scales so
that uncertainties from astrophysical phenomena such
as feedback from supernovae (SNe) and supermassive
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3 “Building robust machine-learning 
models favors training and testing 
on the largest possible diversity of 
galaxy formation models” 



Robust field-level likelihood-free inference with galaxiesNatalí de Santi

Flatiron Institute
University of São Paulo

natalidesanti@gmail.com

Dataset: Galaxies from Astrid
Machine Learning Method: 

Graph Neural Networks
Objective: 𝛀m inference

● Information came from 
galaxy positions and 
velocities;

● The broader variation in 
Astrid allowed a robust 
model across 5 different 
sub-grid physics sets;

● First steps to apply this 
machinery on real data.arXiv: 2302.14101



Graph Neural Networks 
trained on positions, 
velocities, and stellar 
masses of galaxies to 
predict halo mass





CAMELS enables testing new ideas:  Cosmology with a single galaxy?
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6 Villaescusa-Navarro et al.

Figure 2. We trained neural networks using galaxies from 850 IllustrisTNG simulations, and have reserved all the galaxies
from 50 additional IllustrisTNG simulations for the test set. For each galaxy of a given simulation of the test set we compute
the posterior mean and standard deviation. The bottom panels show the results for 150 individual galaxies of three di↵erent
simulations with three di↵erent values of ⌦m (shown with a horizontal solid line) color coded according to the value of the stellar
mass of the galaxy. Galaxies are organized according to their stellar mass; galaxies on the left are small while the ones on the
right are large. We have then computed the posterior mean and standard deviation from all galaxies in a simulation (Eq. 11)
and plot the results in the top panel. The black points in that panel show the results for the simulations in the bottom panels.
The numbers inside the top panel show the accuracy and precision of the model. All results are at z = 0. As can be seen, our
network is able to infer the value of ⌦m for the vast majority of galaxies in a given simulation.

set,

µ̄i =
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NX

j=1

µi,j �̄ =
1

N

NX

j=1

�i,j , (11)

where i denotes the considered parameter (e.g. ⌦m) and
j runs over all N galaxies of a given simulation. In the
top panel of Fig. 2 we show the above values for each of
the simulations in the test set. In the bottom right part
of that panel we quote the accuracy and precision of the
model. As can be seen, on average for all galaxies, the
network is able to infer the value of ⌦m with an accuracy
of 0.034 and a 10.5% precision.

We perform the following exercise to investigate in
more detail whether our model works for all galaxies or
just a subset of them. First, we select three di↵erent sim-
ulations of the test set with di↵erent values of ⌦m: one
low, one high, and one intermediate. From each of those
simulations we randomly select 150 galaxies. For each of
those galaxies we compute the posterior mean and stan-
dard deviation of ⌦m. In the bottom panels of Fig. 2
we show the results. The constraints are color-coded ac-
cording to the stellar mass of the galaxies. Those plots
show that our network not only works for a subset of
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Most important to measure 𝛺m
maximum circular velocity 
stellar mass
stellar metallicity
Stellar effective radius

accuracy =
precision =

Posterior mean 𝛺m and standard deviation for individual galaxies 

Villaescusa-Navarro+2022
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The CAMELS project: 
Cosmology and Astrophysics with MachinE Learning Simulations 

Ø Largest suite of cosmological  hydrodynamic simulations with thousands of 
model variations designed for machine learning applications

Ø Encouraging results extracting cosmological information at the field level 
down to small scales even where astrophysical effects are significant

Ø Many possible applications in galaxy formation and cosmology           
(inference, emulating/accelerating simulations, learning physics with AI,…)

Ø Full dataset publicly available:  https://camels.readthedocs.io

Ø Challenges: larger-volume simulations, extending parameter space, 
interpolation between models, robustness, synthetic observations… 

Villaescusa-Navarro, Anglés-Alcázar, Genel, et al. (2021,2022,2023)
Perez+2023 (arXiv:2204.02408), Ni+2023 (arXiv:2304.02096)


