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Motivation
● Current and upcoming surveys 

(including DESI, Euclid, VRO, 
SKA) will provide massive amounts 
of data to probe new and existing 
questions in cosmology

● Making full use of the data 
provided by these surveys is a 
challenging task

(Image credit: Schlegel et al., BAAS (2019))
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Motivation
● Analyzing the raw data is computationally expensive, so 

the data is first reduced to a set of informative summary 
statistics:
○ Power spectrum
○ Bispectrum and higher-order correlation functions
○ Wavelet scattering coefficients
○ Overdensity probability distribution functions

● Potential considerations:
○ Might not encode all of the physically-relevant 

information from the input data
○ Even as a summary statistic, the data vectors might 

be very high-dimensional
● Our approach: Self-Supervised Learning with 

Physically-Motivated Augmentations

(Image credits: 
top: SDSS; bottom: Tegmark et al., ApJ (2003)) 4



(1) Pre-training:
○ Given two “views” (augmentations) X and X’ of an input vector I, the encoder is 

trained to produce low-dimensional summaries S and S’ of the input according to 
some loss function, typically computed on embeddings Z and Z’.

(2) Downstream task:
○ The summaries are used directly for downstream tasks (e.g. classification, 

parameter estimation) by training a simple neural network, such as an MLP with a 
few layers.

Self-Supervised Learning Pipeline

I
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(1) Pre-Training Step:
● Variance-Invariance-Covariance Regularization (VICReg) is a non-contrastive 

method constructed with a triple objective function: 

VICReg Loss = Invariance Loss + Variance Loss + Covariance Loss

● maximizes the similarity of the summaries corresponding to the same image
● minimizes the redundancy between different features of the summary vectors
● maintains variance between summaries within a training batch to avoid 

collapse to a trivial solution
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(2) Downstream Task:
● Cosmological parameter inference
● Train an inference network to infer cosmological parameters of interest (means θ 

and covariance Σ) by minimizing the negative log-likelihood function:



This Work

● Using physically-motivated augmentations = augmentations that correspond to the 
same underlying physics of interest

● SSL Applications:
○ Data compression
○ Marginalization over systematics and nuisance parameters
○ Parameter inference with sequential simulation-based inference (in the paper) 7



Self-Supervised Learning 
for Data Compression and 

Parameter Inference
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Lognormal Fields
● We generate lognormal overdensity fields δLN
● 10,000 different cosmologies: 

○ Vary ΩM∈ [0.15, 0.45] and σ8∈ [0.65, 0.95]
○ Remaining cosmological parameters are fixed

● Simulated field is a grid of N2=100x100 points with area 
L2=(1000 Mpc)2 
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ΩM, σ8

VICReg Setup
● Augmentations/views: different realizations of the same 

input cosmology with different initial conditions, rotated 
and flipped at random

● Encoder network: Compresses 100x100 maps to 
summaries of dim=16

● Inference network: Predicts means for ΩM, σ8 and 
covariance matrix Σ



Assessing the summaries: 
Inference on VICReg Summaries

● The inference network trained on the summaries is able to recover the true values of 
cosmological parameters with both accuracy and precision, with relative errors on ΩM and σ8 
equal to 5.2% and 1.3%, respectively. 
○ Similar errors from the supervised baseline model: 5.1% and 1.3% respectively
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Assessing the summaries: 
Comparison to Fisher Constraints
● Fisher information matrix for the lognormal maps:

● Cramer-Rao bound: 

● We train a normalizing flow to estimate the posterior 
distribution of the parameters, given a VICReg summary 
of a corresponding lognormal field.

● For a fiducial cosmology with ΩM=0.3 and σ8=0.8, the 
Fisher constraints and posteriors from the normalizing 
flow show great agreement

11



CAMELS Total Matter Density Fields
● Two hydrodynamic suites of simulations, 

IllustrisTNG and SIMBA, from the CAMELS 
project (Villaescusa-Navarro et al., ApJ (2021))
○ Each simulation suite implements distinct 

galaxy formation model
● Total matter density maps represent spatial 

distribution of baryonic and dark matter at z=0
● 1,000 different cosmologies in each suite:

○ Cosmological parameters: ΩM∈ [0.1, 0.5] and 
σ8∈ [0.6, 1.0]

○ Astrophysical parameters:
■ Stellar feedback parameters ASN1, ASN2
■ AGN feedback parameters AAGN1, AAGN2
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CAMELS: VICReg Setup
● Augmentations/views: different spatial slices of the 

simulation boxes, rotated and flipped at random
● Due to the complexity of the maps, we modify the 

loss function to include 5 pairs of different 
augmentations from each cosmology to allow the 
network to learn from more variations:
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● Encoder network: 
○ Compresses 256x256 maps to summaries of 

dim=128
● Inference network: 

○ Predicts means and covariance matrix for 
cosmological parameters ΩM and σ8 from the 
summaries



Assessing the summaries: Inference on 
the VICReg Summaries

● Despite considerable reduction in the 
dimensionality of the data, the VICReg 
model still able to infer cosmological 
parameters for ΩM and σ8with 
percent-level accuracy:
○ SIMBA suite: 3.8% and 2.5% 
○ IllustrisTNG suite: 3.7% and 1.9% 

● Slightly lower errors from the baseline 
supervised model:
○ SIMBA suite: 3.3% and 2.3% 
○ IllustrisTNG suite: 3.3% and 1.8% 
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Self-Supervised Learning 
for Marginalization Over 

Systematics and Nuisance 
Parameters
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Baryonic Effects in Cosmology
● Baryonic effects modify total matter distribution on 

small scales:
○ AGN feedback, SNe feedback, Star formation

● These effects are, in general, complex and poorly 
understood:
○ Some of these effects cannot be resolved in 

simulations → different prescriptions 
(“sub-grid” models) for these processes

○ Different hydrodynamical simulations have 
different predictions on the resulting 
modifications to matter power spectrum PM(k) 

● Particularly important for future-generation 
weak-lensing surveys like VRO, Euclid, Roman 
which require accurate theoretical modelling of PM(k) 

(Image credit: Chisari  et al. 2019)
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Baryonic Effects as an Augmentation 

● It would be interesting to use different implementations of baryonic effects in hydrodynamical 
simulations  (e.g. SIMBA, IllustrisTNG) as different augmentations of the same cosmology (with 
the same initial conditions)

● Such a dataset is unavailable at present → We use a simple proof-of-principle example instead 
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Toy P(k) model

● A, B: “cosmological” parameters, D: “baryonic  physics” parameter
● Change in slope on small scales (k > kpivot = 0.5 h/Mpc) represents the effects of 

“baryonic physics”
○ Treat different realizations of “baryonic physics” as a possible augmentation

● Small scales still contain “cosmological” information via C
● No noise modelling, but we account for cosmic variance effects via 

Based on a model from 
Villaescusa-Navarro et al., ApJ (2022) 
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Dataset: Broken Power Law with 
varying D
● 1,000 different cosmologies (with 

different values of A, B)
○ A ∈ [0.1, 1.0]
○ B ∈ [−1., 0.0]
○ D ∈ [−0.5, 0.5]

● k ∈ [0.021, 0.994] h/Mpc 
● kpivot = 0.5 h/Mpc
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VICReg Setup
● Augmentations: variations in baryonic 

effects (different values of D)
● Encoder network compresses P(k) 

from dim=140 to dim=32
● Inference network predicts means and 

covariance matrix for A, B, D



Parameter Inference: 
Broken Power Law with varying D

20



Analyzing the Summaries
● Small scales still encode information about cosmological parameters A, B via C
● Do the summaries ignore the small scales? Or do they still use the information 

from them to infer cosmological parameters?
● How do the summaries S depend on the values of P(k) in different k-bins?

○ Distance Correlation 
■ captures both linear and non-linear dependence between random 

variables
○ Mutual Information

■ quantifies how much information one gains about a random variable X 
by observing another random variable Y
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Broken Power Law (BPL) with constant D 
(cosmic variance only)

Broken Power Law (BPL) with varying D 
(cosmic variance and baryonic effects)

Two Datasets for Comparison
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Distance Correlation and Mutual Information
● Both metrics follow similar trends
● Similar behaviour for the two datasets up to 

the pivot scale kpivot
○ On these scales, P(k) contains 

information only about `cosmological’ 
parameters

● Past the pivot scale, we also get information 
about `baryonic’ parameters:
○ For BPL w/ varying D,  `baryonic’ 

parameters are not of interest → dCorr 
and MI decrease

○ For BPL w/ constant D,  `baryonic’ 
parameters are relevant → dCorr and MI 
increase again
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Conclusions
● We have explored an SSL approach for constructing compact informative summary statistics 

and extended it by including augmentations that correspond to the same underlying physics 
of interest

● We demonstrated the applications of the method and its potential in cosmological context:
○ Data Compression
○ Marginalization over Nuisance Parameters and Systematics
○ Simulation-Based Inference (in the paper)

● Additional follow-up studies are necessary before deploying self-supervised learning methods 
on real cosmological data:
○ Complexifying the models:

■ Applying the self-supervised learning framework to cosmological power spectra (or 
other observables) with more realistic modelling of baryonic feedback (e.g. 
HMcode)

○ Finding a more principled way to decide on the optimal size of the summary vectors
○ Determining new ways to assess how informative and unbiased the summaries are
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Thank you! 
Questions?
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Supervised Learning
● In the supervised learning framework, 

a neural network model is trained to 
perform a specific task based on a 
dataset with associated labels

● Downsides:
○ Limited by the availability of 

quality labeled datasets 
○ New downstream tasks usually 

require new models to be trained 
from scratch
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(Image credits: javaTpoint)

https://www.javatpoint.com/supervised-machine-learning


Self-Supervised Learning 
SSL framework combines unsupervised and supervised learning:

(1) Learn to construct meaningful (lower-dimensional) summaries 
(or representations) of data from an unlabeled dataset

(2) Use the learnt summaries for a downstream supervised task of 
interest

● Advantages over supervised learning (SL) framework:
○ Can make use of both vast unlabeled datasets and smaller labeled datasets
○ Summaries can be used for a range of downstream tasks (as opposed to a 

specific predetermined task in supervised learning)
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Self-Supervised Learning in 
Astrophysics and Cosmology
● Galaxy morphology classification: 

○ Classifying SDSS galaxy images (Hayat et al., ApJL (2020))
○ Radio galaxy classification using data from FIRST survey (Slijpcevic et al., MNRAS 

(2020))
● Self-similarity search and anomaly detection:

○ Building self-similarity search tools for galaxy images from DES (Stein et al., 
NeurIPS 2021)

○ Detecting galaxies with tidal features using HSC images (Desmons et al., ICML 
2023)

● Neural posterior estimation: 
○ Estimating black hole merger parameters from the gravitational waves (Shen et al., 

Mach. Learn.: Sci. Technol. (2021))
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Collapse in Self-Supervised Learning
● Norm collapse: 

○ Key challenge in implementing self-supervised learning methods
○ The encoder learns a trivial solution: maps different input vectors to the same summaries

(Image credit: Jing et al., ICLR 2022)
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● Approaches to the collapse problems:
○ Contrastive methods:

■ Distinguish between negative and 
positive samples: 
● Push positives closer together and 

negatives further apart in the 
embedding space

○ Non-Contrastive methods:
■ Employ various regularization methods 

to prevent collapse
■ Examples: VICReg

● Dimensional collapse: 
○ Different dimensions of the summaries are redundant (encode the similar information)
○ Might lead to poorer performance as the network is not using its full capacity



VICReg Loss = Invariance Loss + Variance Loss + Covariance Loss

● Let 𝑍 = [𝑍1, ..., 𝑍𝑛], and 𝑍′ = [𝑍′1, ..., 𝑍′𝑛] be 
two batches of 𝑛 embeddings 

● Each embedding 𝑍𝑖 is a 𝑑-dimensional vector
● 𝑍𝑖 and 𝑍′i are embeddings of the two 

transformed views of the same image 

❏ The invariance component s(Z, Z’) 
measures the similarity between 
the outputs of the encoder Z, Z’ 
corresponding to the same image 

31



VICReg Loss = Invariance Loss + Variance Loss + Covariance Loss

● Let 𝑍 = [𝑍1, ..., 𝑍𝑛], and 𝑍′ = [𝑍′1, ..., 𝑍′𝑛] be 
two batches of 𝑛 embeddings 

● Each embedding 𝑍𝑖 is a 𝑑-dimensional vector
● 𝑍𝑖 and 𝑍′i are embeddings of the two 

transformed views of the same image 

❏ The variance ν(Z, Z’) component is 
intended to avoid the norm collapse 

❏ Measures the overall variance in a 
given batch across d different 
dimensions in the embedding space 

❏ Encourages the variance along each 
dimension to be close to some constant 
𝛾

where 
● 𝑍𝑗 is a vector that consists of the values of 

the embeddings 𝑍 at 𝑗-th dimension 
●  
● γ, ε are hyperparameters 32



VICReg Loss = Invariance Loss + Variance Loss + Covariance Loss

● Let 𝑍 = [𝑍1, ..., 𝑍𝑛], and 𝑍′ = [𝑍′1, ..., 𝑍′𝑛] be 
two batches of 𝑛 embeddings 

● Each embedding 𝑍𝑖 is a 𝑑-dimensional vector
● 𝑍𝑖 and 𝑍′i are embeddings of the two 

transformed views of the same image 

❏ The covariance c(Z) component is 
intended to avoid the dimensional 
collapse 

❏ Decorrelates different features of the 
summaries

❏ Drives the covariance matrix C(𝑍) to 
be close to a diagonal matrix
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VICReg Loss = Invariance Loss + Variance Loss + Covariance Loss
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λ, μ, η: hyperparameters controlling the weights of the terms



Self-Supervised Learning 
for Data Compression

35



Assessing the summaries: Fisher Information
● Fisher information Fαβ(θ) is a way of 

measuring of the amount of information a 
data vector d carries about parameters θ.

● Fαβ(θ) can be computed as the variance of 
the score of the likelihood at fiducial 
parameters θfid:
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● Cramer-Rao bound: The inverse of the Fisher 
matrix is the lower bound on variance of any 

unbiased estimator of θ:  σθ≥ [F-1/2]θθ

(Image credit:Zack Li)

https://github.com/xzackli/fishchips-public/blob/master/notebooks/Introduction%20to%20Fisher%20Forecasting.ipynb


Assessing the summaries:
Fisher Constraints for Lognormal Fields
Computing Fisher matrix from lognormal fields:

● We expect the lognormal fields to preserve the 
Fisher information content of underlying 
Gaussian fields.

● We estimate the Fisher information matrix for 
lognormal fields by computing the Fisher 
information matrix for the associated Gaussian 
fields (with power spectrum PG(k)):
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Assessing the summaries:
Fisher Constraints for the VICReg Summaries
Assuming Gaussian likelihood, the Fisher matrix 
elements can be computed as:
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Assessing the summaries:
Comparison of Fisher Constraints
● Fisher information matrix for the lognormal 

maps:

● Fisher information matrix for the summaries of 
the lognormal maps:

● Cramer-Rao bound: 
● For a fiducial cosmology with ΩM=0.3 and 

σ8=0.8,  we find good agreement between Fisher 
constraints on the cosmological parameters
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Assessing the summaries:
Comparison of Fisher Constraints
● We expect the lognormal fields to preserve the 

information content of underlying Gaussian fields
● Fisher information matrix for Gaussian fields:

● Fisher information matrix for the summaries 
(assuming Gaussian likelihood):

● Cramer-Rao bound: 
● For a fiducial cosmology with ΩM=0.3 and σ8=0.8,  

we find excellent agreement between Fisher 
constraints on the cosmological parameters
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Self-Supervised Learning 
for Parameter Inference 

with Sequential 
Simulation-Based 

Inference (SBI)
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Simulation-Based Inference
● SBI is a broad set of methods designed to infer parameters of interest θ when the 

likelihood p(xobs|θ) describing the observed data xobs is unknown or intractable
○ Rely on forward models (simulators) which implicitly define the likelihood
○ Neural SBI methods enable efficient and accurate posterior inference, even for 

complex high-dimensional distributions
○ Bottleneck: computational complexity of the simulator

● One potential application of the self-supervised compression scheme is using it to build 
an emulator of summaries to address the computational bottleneck:
○ (1) Train an emulator on the summaries S

■ Should be easier and faster than training an emulator to produce the 
uncompressed data (e.g. maps) due to lower-dimensionality of S

○ (2) Use the emulator as the forward model in the inference process
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Emulated Summaries
● Data: lognormal maps
● Emulator: a stack of masked autoregressive flows
● Observed data: a random realization of a 

lognormal maps with ΩM=0.3 and σ8=0.8
● Training settings: 

○ Sequential Neural Posterior Estimation 
(SNPE)

○ 10 rounds of inference with 1000 simulations 
per round

● Posteriors:
○ The constraints obtained using the inference 

network are consistent with the 
SNPE-informed constraints, with true values 
well within the posterior contours
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Self-Supervised Learning for Marginalization 
Over Systematics and Nuisance Parameters
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Robustness of ML models 
● Some studies have found machine 

learning models that are robust to 
variations in ‘sub-grid’ physics across 
different simulations.

● Villaescusa-Navarro et al. 2021: 
○ CNNs trained on mass density 

maps from one suite simulation, 
tested on maps from the other 
(SIMBA and IllustrisTNG)

○ Were able to recover 
percent-level errors on  ΩM and 
σ8 
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Robustness of ML models 
● Others, however, do not generalize 

well when applied to data from new, 
previously unseen suites of 
simulation

● Villanueva-Domingo et al. 2022:
○ Constructed Graph Neural 

Networks (GNNs) using 
information about positions 
and properties of galaxies to 
predict ΩM and σ8 from 
simulations suites

○ Models fail to generalize, even 
when using additional 
information about the galaxies
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Distance Correlation (dCorr)
● Distance correlation is a measure of dependence between two random vectors X, Y

○ Captures both linear and non-linear dependence between the vectors
○ Only zero if the two vectors are independent (otherwise, 0< dCorr ≤ 1)
○ The two vectors do not have to have the same dimensionality
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● Distance correlation can be computed as follows:

where the distance variance is defined as an element-wise product of doubly-centered 
distance matrices A,B:

                                                               where                                                      ,

and the distance matrix is                                    with        ,         ,        defined as the row, 
column, and overall means of the distance matrix.



Pearson Correlation 
Coefficient

Distance 
Correlation 
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Mutual Information (MI)

● MI is another measure of mutual dependence (beyond linear) between random variables
○ Quantifies how much information one gains about a random variable X by observing 

another random variable Y
○ Can be expressed in terms of entropy: I(X, Y) = H(X) - H(X|Y) = I(Y, X)
○ MI is non-negative I(X, Y) ≥ 0; I(X, Y) = 0 only if X and Y are independent
○ In general, estimating MI for variables in higher-dimensional spaces is challenging

● We estimate MI with a variational method approach called MINE (Mutual Information 
Neural Estimation)
○ The idea of MINE is to estimate a lower bound on the MI (the Donsker-Varadhan 

bound) by training a neural network with the corresponding cost function
49



Self-Supervised Learning for Data 
Compression and Parameter Inference
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Contributions of different loss terms 
(lognormal fields dataset)
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Testing on Out of Distribution 
Data (Trained on SIMBA, 
Tested on IllustrisTNG)
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Testing on Out of 
Distribution Data 

(Trained on IllustrisTNG, 
Tested on SIMBA)
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