Label-Efficient Learning at Galaxy Zoo

Mike Walmsley, with Micah Bowles, Inigo Slijepcevic, Anna Scaife

University of Toronto

Live Demo

bit.ly/decals_viz

ZOØNIVERSE

Spiral arm count?

Spiral winding?

Merging?

ZOØNIVERSE

Spiral arm count?

Spiral winding?

Merging?

ZOØNIVERSE

Spiral arm count?

Spiral winding?

Merging?

1. Multi-task

all GZ questions, all surveys

2. Pretraining

contrastive + supervised

3. Segmentation

pixelwise labels & prediction

Many Questions = More General Representation

Live Demo #2

bit.ly/gz-explorer

Move Around

Click anywhere on the latent space to view galaxies.

Select Reduction

Featured v2

-

Location: (-0.109, 6.410)

Download CSV of the 1000 galaxies closest to your search

Move Around

Click anywhere on the latent space to view galaxies.

-

Select Reduction

Featured v2

Location: (2.809, 0.812)

Download CSV of the 1000 galaxies closest to your search

Scratch

Zoobot

Jürgen Popp (prep.) O'Ryan+23

Omori+23

Bhambra+ 22

```
import pandas as pd
from galaxy_datasets.pytorch.galaxy_datamodule import GalaxyDataModule
from zoobot.pytorch.training import finetune
```

```
# csv with 'ring' column (0 or 1) and 'file_loc' column (path to image)
labelled_df = pd.read_csv('/your/path/some_labelled_galaxies.csv')
```

```
datamodule = GalaxyDataModule(
   label_cols=['ring'],
   catalog=labelled_df,
   batch_size=32
)
```

```
# load trained Zoobot model
model = finetune.FinetuneableZoobotClassifier(checkpoint_loc, num_classes=2)
```

```
# retrain to find rings
trainer = finetune.get_trainer(save_dir)
trainer.fit(model, datamodule)
```

Quickstart example from github.com/mwalmsley/zoobot

1. Multi-task

all GZ questions, all surveys

2. Pretraining

contrastive + supervised

3. Segmentation

pixelwise labels & prediction

Make it bigger?

Foundation model 'scaling laws' also require data. But we're now

No evidence that larger models work better.

More GPUs are not all you need.

Contrastive Learning with BYOL

inference Representation Projection Head Con. `->' Representation Projection loss

Introduced by Grill (2020)

Mike Walmsley et al

ZOØNIVERSE

Adding a new supervised head to guide the contrastive representation

Performance vs. Previous Best Methods

- Contrastive learning beats a few thousand labels
- Large-scale pretraining does
 better, even with ~50k labels
- Hybrid learning (both contrastive and pretraining) does best

Next - Masked AE

Work by Micah Bowles

Pixel masking is effective at large-scale pretraining on **dense** images

Fourier masking works better on **sparse** galaxy images

1. Multi-task

all GZ questions, all surveys

2. Pretraining

contrastive + supervised

3. Segmentation

pixelwise labels & prediction

Input

Masters+'21

Walmsley & Spindler (submitted)

500 evaluations 100 galaxies 20 astronomers Blinded trial

zooniverse.org/projects/ mikewalmsley/galaxy-judges

Repeat for many bars

1. Multi-task

all GZ questions, all surveys

2. Pretraining

contrastive + supervised

3. Segmentation

pixelwise labels & prediction

github.com/mwalmsley/zoobot

Zoobot: Adaptable Deep Learning Models for Galaxy Morphology Walmsley et. al. (2023), JOSS

Towards Galaxy Foundation Models with Hybrid Contrastive Learning Walmsley et. al. (2022), ICML ML4Astro

Building a Multi-Purpose Foundation Model for Radio Astronomy Slijepcevic et. al. (2023), RASTI

Neurips ML4Phys next week: (1) exploring latent space (2) segmentation

Adaptable models

Targeted labelling

SSL Pretraining

We are trying to answer the same kind of questions across every survey

Does the galaxy image show {visual feature} Barred? How many arms? Tidal streams?

Estimate {physical property} for this galaxy Most recent merger? Bulge mass? Gas mass?

Let's build a shared tool

DECALS/DESI, HSC, EUCLID, RUBIN... (and that's just the major ones)

Live Demo

bit.ly/decals_viz

- 1. Simple yet extensible foundation software-like
- 2. Pre-trained to solve many tasks

3. The more people use it, the more it learns Al-like

arXiv:2206.11927

ZOØNIVERSE

Walmsley (2022) Willett (2017) Simmons (2017)

i ____ README.md

galaxy-datasets

ML-friendly datasets for major Galaxy Zoo citizen science campaigns.

- PyTorch Datasets and PyTorch Lightning DataModules
- TensorFlow tf.data.Dataset's
- Framework-independent (i.e. TensorFlow-friendly) download and augmentation code

You may also be interested in Galaxy MNIST as a simple dataset for teaching/debugging.

Name	Method	PyTorch Dataset	Published	Downloadable	Galaxies
Galaxy Zoo 2	gz2	GZ2			~210k (main sample)
GZ Hubble*	gz_hubble	GZHubble			~106k (main sample)
GZ CANDELS	gz_candels	GZCandels			~50k
GZ DECaLS GZD-5	gz_decals_5	GZDecals5			~230k (GZD-5 only)
GZ Rings	gz_rings	GZRings	×		~93k
GZ DESI	gz_desi	GZDesi	×	WIP	WIP
CFHT Tidal*	tidal	Tidal			1760 (expert)

Shared Datasets

0

Convenient access to GZ images for ML practitioners

torch.Dataset, tf.data.Dataset, pl.DataModule

Self-downloading

See also GalaxyMNIST

Learned representation (features before dense layers, PCA+UMAP) Galaxies arranged by representation

Similarity Search

ZOØNIVERSE

Closest to B

×

ZOØNIVERSE

Spiral arm count?

To use this filter, set "Has Spiral Arms = Yes"to > 0.5

Start with a few hundred labelled examples

Finetune the representation for your problem

(illustrative figures only)

Generative Learning

ZOØNIVERSE

GAN-created SDSS galaxies. Not real!

Fussell & Moews (2018)

GAN-created radio galaxies. Not real!

Inigo Val (in prep.)

Transfer Learning

Automatic selection cuts: featured > 0.6, face-on > 0.7, has spiral arms < 0.5. Training set: **212 rings**

Max prob. "ring", validation set

Min prob. "ring", validation set

Winding angle vs. bulge size, measured by volunteers or deep learning

Dataset: zenodo.org/record/4196267

Need calibrated predictions from noisy labels Active learning

- 2. The tasks keep changing a. Multi-task learning
- 3. 99% of new data will remain unlabelled
 a. Hybrid supervised-contrastive learning

Selected Galaxies for "Smooth?"

High mutual information

Low mutual information

×

ZOØNIVERSE

Spiral arm count?

To use this filter, set "Has Spiral Arms = Yes"to > 0.5

Use Symmetry

Helps constrain model parameters

More constraints = less training data needed

Micah Bowles micah.bowles@ postgrad.manchester .ac.uk

bit.ly/decals_similarity

ZOØNIVERSE

Similarity Search

by Mike Walmsley (@mike_walmsley_)

Important Notes	+
Search	
11.7309	
Dec (deg)	0
184.6750	
RA (deg)	0

Closest Galaxy

RA: 184.67458. Dec: 11.73206. Search Vizier

Similar Galaxies

Show table

RA (deg)
190.975458
Dec (deg)
16.547361
Search
Important Notes

Closest Galaxy

+

RA: 190.97546. Dec: 16.54736. Search Vizier

Similar Galaxies

Show table

RA (deg)			
124.417	040		
Dec (deg)			
4.49787	2		
Search			
Important	Notes		

Closest Galaxy

RA: 124.41704. Dec: 4.49787. Search Vizier

Similar Galaxies

Show table

A (deg)	0
180.431121	
vec (deg)	()
0.183135	
Search	
mportant Notes	+

Closest Galaxy

+

+

RA: 180.43112. Dec: 0.18313. Search Vizier

Similar Galaxies

Show table

Galaxies with **posteriors** for loose (upper), medium (centre) or tightly-wound (lower) spiral arms

(Supervised) Deep Learning in One Slide

Model

- Some function f(image)
- f has learnable parameters aka "weights"
- Optimise the weights for max
 performance on training images

Convolutional Neural Network

- Specific type of **black box** model
- Millions of weights

What if I get stuck in a local minima?

How do we define max performance? (aka the "loss function")

How do I know it learned what I want?

How do I avoid learning spurious correlations?

Multiple Answers

$$\mathcal{L} = \int \text{Beta}(\rho | \alpha, \beta) \text{Bin}(k | \rho, N) d\alpha d\beta$$

Add a few dimensions...

$$\mathcal{L}_q = \int \text{Dirichlet}(\vec{\rho} | \vec{\alpha}) \text{Multi}(\vec{k} | \vec{\rho}, N) d\vec{\alpha}$$

Anomaly Finding

ZOØNIVERSE

CNN Representation + Astronomaly UI (Lochner+ 21)

Loss for All Questions

~

$$\mathcal{L}_q = \int \text{Beta}(\rho | \alpha, \beta) \text{Bin}(k | \rho, N) d\alpha d\beta$$

Posteriors for Votes

- Our CNN can learn from uncertain labels and make probabilistic predictions p(k|w)
- Marginalising over weights (BCNN) lets us predict votes over all CNN we might have trained

$$p(k|D) = \int p(k|w) \ p(w|D)dw$$

Train many models

Dropout on each

For more, see arxiv:2102.08414

Deep Learning in One Slide

Machine Learning Model

- Some function f(image)
- f has learnable parameters aka weights
- **Optimise** the weights for **max performance** on training images

Convolutional Neural Network ("CNN")

- Specific type of **black box** model
- Millions of weights ("deep")

Posteriors for Votes

 Our CNN can learn from uncertain labels and make probabilistic predictions p(k|w)

1 Model

For more, see arxiv:2102.08414

	60,000,000							
	50,000,000							9
ies	40,000,000							
Salax	30,000,000							
0	20,000,000							
	10,000,000							
	0	GZ2	GZ Hubble	GZ CANDELS	GZ Illustris	GZ DeCALS	LSST	EUCLID

Performance

~ 99% accurate on every question for galaxies where the volunteers are confident

Question	Count	Accuracy	Precision	Recall	F1
Smooth Or Featured	3495	0.9997	0.9997	0.9997	0.9997
Disk Edge On	3480	0.9980	0.9980	0.9980	0.9980
Has Spiral Arms	2024	0.9921	0.9933	0.9921	0.9924
Bar	543	0.9945	0.9964	0.9945	0.9951
Bulge Size	237	1.0000	1.0000	1.0000	1.0000
How Rounded	3774	0.9968	0.9968	0.9968	0.9968
Edge On Bulge	258	0.9961	0.9961	0.9961	0.9961
Spiral Winding	213	0.9906	1.0000	0.9906	0.9953
Spiral Arm Count	659	0.9863	0.9891	0.9863	0.9871
Merging	3108	0.9987	0.9987	0.9987	0.9987

Classification metrics on confident galaxies

Probabilistic to Bayesian CNN

What about the models we might have trained, but didn't?

Galaxy x
CNN weights w
Training data
$$D_{train}$$

CNN output $f^w(x)$
Dropout dist. q_{θ}^*
Forward pass t of T

$$p(y = c | x, D_{train}) = \int f^{w}(x) p(w | D_{train}) dw$$
Unknown!

Approximate $p(w | D_{train})$ with Dropout

$$\approx \int q_{\theta}^{*}(w) \, dw$$
$$\approx \frac{1}{T} \sum_{t=1}^{T} f^{w_{t}}(x)$$

See Y. Gal et al (2016)

No Labels Needed?

Clustering image patches Martin (2020) See also Hocking (2017) See also Self-Organising Maps

Learning to reconstruct images Spindler (2020) See also Gheller (2022)

plus 1.3m unlabelled

Walmsley (in prep.)

GZ2GZ DECaLSGZ Hubble210k, z < 0.15</td>230k, z < 0.15</td>106k, z < 1</td>

GZ CANDELS 50k, 1 < z < 3

Willett (2013)

Walmsley (2022) Willett (2017) Simmons (2017)

1. Build a Bayesian Galaxy Zoo model

2. Mess around

Diagram of a generative adversarial network (GAN)

- Generative adversarial networks (GANs) can generate semantically different yet realistic looking data.
- We can create pseudo-infinite number of realistic images by feeding in a different random vector.
- All we need to do is feed in the data we wish to imitate no need for labels or physical parameters.