
Label-Efficient Learning at Galaxy Zoo

Mike Walmsley, with Micah Bowles, Inigo Slijepcevic, Anna Scaife

University of Toronto

zooniverse.org   @mike_walmsley_



Mike Walmsley et al

Live Demo

bit.ly/decals_viz

https://bit.ly/decals_viz


Mike Walmsley et al

Try it yourself: bit.ly/decals_viz



Mike Walmsley et al

Try it yourself: bit.ly/decals_viz



Mike Walmsley et al

Try it yourself: bit.ly/decals_viz



1. Multi-task                                   all GZ questions, all surveys              

2. Pretraining                                          contrastive + supervised

3. Segmentation                           pixelwise labels & prediction        
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Many Questions = More General Representation



Mike Walmsley et al

Live Demo #2

bit.ly/gz-explorer

https://bit.ly/gz-explorer
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O’Ryan+23

Bhambra+ 22

Scratch Zoobot

Scratch Scratch Final mask

Jürgen 
Popp
(prep.)

Omori+23

Input
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Quickstart example from github.com/mwalmsley/zoobot



1. Multi-task                                   all GZ questions, all surveys              

2. Pretraining                                          contrastive + supervised

3. Segmentation                           pixelwise labels & prediction        
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Make it bigger?

Foundation model ‘scaling laws’ 
also require data. But we’re now

No evidence that larger models 
work better.

More GPUs are not all you need.

Max-ViT 
Tiny

Max-ViT 
Small

PiT XS

EffNetB0

EffNetB4

EffNetv2B0,
EffNetB2
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Introduced by Grill (2020)

Contrastive Learning with BYOL
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For more, see Slĳepcevic et.  al. (2023)
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Adding a new supervised head to guide the contrastive representation
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Performance vs. Previous Best Methods

- Contrastive learning beats a few 

thousand labels

- Large-scale pretraining does 

better, even with ~50k labels

- Hybrid learning (both contrastive 

and pretraining) does best

arXiv:2206.11927

https://arxiv.org/abs/2206.11927
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Next - Masked AE

Work by Micah Bowles

Pixel masking is effective at 
large-scale pretraining on 
dense images

Fourier masking works better 
on sparse galaxy images

Pixel masked

Fourier masked

Input Reconstructed

Input Reconstructed

H
e 2021

B
ow

les (prep.)



1. Multi-task                                   all GZ questions, all surveys              

2. Pretraining                                          contrastive + supervised

3. Segmentation                           pixelwise labels & prediction        
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Input Volunteers

Masters+’21

sparcfire

Davis+’14

Walmsley &
Spindler 

(submitted)



Mike Walmsley et al

500 evaluations
100 galaxies
20 astronomers
Blinded trial

zooniverse.org/projects/
mikewalmsley/galaxy-judges

http://www.zooniverse.org/
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Image Prediction Bar extent 
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Repeat for many bars
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1. Multi-task                                   all GZ questions, all surveys              

2. Pretraining                                          contrastive + supervised

3. Segmentation                           pixelwise labels & prediction        



github.com/mwalmsley/zoobot

Zoobot: Adaptable Deep Learning Models for Galaxy Morphology                         
Walmsley et. al. (2023), JOSS

Towards Galaxy Foundation Models with Hybrid Contrastive Learning                   
Walmsley et. al. (2022), ICML ML4Astro

Building a Multi-Purpose Foundation Model for Radio Astronomy               
Slijepcevic et. al. (2023), RASTI

Neurips ML4Phys next week: (1) exploring latent space (2) segmentation

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=P3unBhsAAAAJ&citation_for_view=P3unBhsAAAAJ:IjCSPb-OGe4C
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Adaptable models

SSL Pretraining

Targeted labelling
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Does the galaxy image show {visual feature}
Barred?
How many arms?
Tidal streams?

Estimate {physical property} for this galaxy
Most recent merger?
Bulge mass?
Gas mass?

DECALS/DESI, HSC, 
EUCLID, RUBIN…

(and that's just the 
major ones)

Your survey here

We are trying to answer the same kind of 
questions across every survey 

Let's build a shared tool
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Live Demo

bit.ly/decals_viz

https://bit.ly/decals_viz


Mike Walmsley et al

“#starforming”

“#disturbed”

Forum #tag Query Closest

“#overlap”

“#dustlane”

“#irregular”

“#ring”





1. Simple yet extensible foundation                 software-like

2. Pre-trained to solve many tasks                                AI-like

3. The more people use it, the more it learns              AI-like
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GZ Hubble 
106k, z < 1

GZ CANDELS
50k, 1 < z < 3

Willett (2017)
Simmons (2017)

GZ2
210k, z < 0.15

Willett (2013)

GZ DECaLS
230k, z < 0.15

Walmsley 
(2022)

plus 1.3m unlabelled
from GZ DESI (z < 0.3)

Walmsley (submitted)

and

arXiv:2206.11927

https://arxiv.org/abs/2206.11927
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Shared Datasets

Convenient access to GZ 
images for ML practitioners

torch.Dataset, 
tf.data.Dataset, 
pl.DataModule

Self-downloading

See also GalaxyMNIST



Mike Walmsley et al

Learned representation 
(features before dense layers, PCA+UMAP)

Galaxies arranged by representation

Meaningful Internal Representation
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Pick a galaxy... ...show the closest galaxies in 
representation space

Query A Closest to A

Query B Closest to B

Similarity Search
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“#tidal”

“#asteroid”

Forum #tag Query Closest

“#wrongsize”

“#interacting”

“#lenticular”

“#hot”
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Try it yourself: bit.ly/decals_viz



Mike Walmsley et al(illustrative figures only)

Start with a few hundred labelled examples

Finetune the representation for your problem

Transfer Learning
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GAN-created radio galaxies. 
Not real!

Inigo Val (in prep.)

GAN-created SDSS galaxies. 
Not real!

Fussell & Moews (2018)

Generative Learning



Max prob. “ring”, validation set Min prob. “ring”, validation set

Automatic selection cuts: featured > 0.6, face-on > 0.7, has spiral arms < 0.5. 
Training set: 212 rings

Transfer Learning
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Winding angle vs. bulge size, measured by volunteers or deep learning

Dataset: zenodo.org/record/4196267

For more, see arxiv:2102.08414 (GZ DECaLS Data Release)



1. Need calibrated predictions from noisy labels
a. Active learning

2. The tasks keep changing
a. Multi-task learning

3. 99% of new data will remain unlabelled
a. Hybrid supervised-contrastive learning
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Selected Galaxies for “Smooth?”

Low mutual informationHigh mutual information
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Try it yourself: bit.ly/decals_viz
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Non-spiral rings 
(green)

Spiral rings
(also green)



Use Symmetry

Helps constrain model 
parameters

More constraints = less 
training data needed

Micah Bowles
micah.bowles@

postgrad.manchester
.ac.uk

http://www.youtube.com/watch?v=uamO7y_zRbg
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Live Demo #2!

bit.ly/decals_similarity

https://bit.ly/decals_similarity
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Galaxies with posteriors for loose (upper), medium (centre) or tightly-wound (lower) spiral arms
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(Supervised) Deep Learning in One Slide
Model

- Some function f(image) 
- f has learnable parameters aka “weights”
- Optimise the weights for max 

performance on training images

Convolutional Neural Network

- Specific type of black box model
- Millions of weights

What if I get stuck in a local minima?

How do we define max performance?
(aka the “loss function”)

How do I know it learned what I want?

How do I avoid learning spurious correlations?
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Multiple Answers

Add a few dimensions...



Mike Walmsley et al

Anomaly Finding
CNN Representation +
Astronomaly UI (Lochner+ 21)
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Loss for All Questions

For more, see arxiv:2102.08414 (GZ DECaLS Data Release)
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15 “Models” (BCNN)

Posteriors for Votes

1 Model

 

Train many models
Dropout on each

For more, see arxiv:2102.08414
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Deep Learning in One Slide

Machine Learning Model

- Some function f(image) 
- f has learnable parameters aka weights
- Optimise the weights for max 

performance on training images

Convolutional Neural Network (“CNN”)

- Specific type of black box model
- Millions of weights (“deep”)
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Posteriors for Votes

 

1 Model
For more, see arxiv:2102.08414
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Performance

~ 99% accurate on every question 
for galaxies where the volunteers 
are confident

Classification metrics on confident galaxies 
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Probabilistic to Bayesian CNN

 

 

See Y. Gal et al 
(2016)

 

What about the models we might have trained, but didn’t?

Unknown!
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Learning to reconstruct images
Spindler (2020)

See also Gheller (2022)

Clustering image patches
Martin (2020)

See also Hocking (2017)
See also Self-Organising Maps

No Labels Needed?
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GZ Hubble 
106k, z < 1

GZ CANDELS
50k, 1 < z < 3

Willett (2017)
Simmons (2017)

GZ2
210k, z < 0.15

Willett (2013)

GZ DECaLS
230k, z < 0.15

Walmsley 
(2022)

GZ DESI
375k, z < 0.3

plus 1.3m unlabelled

Walmsley (in prep.)

and



1. Build a Bayesian Galaxy Zoo model

2. Mess around



Diagram of a 
generative 
adversarial network 
(GAN)

● Generative adversarial networks (GANs) can generate semantically different 
yet realistic looking data.

● We can create pseudo-infinite number of realistic images by feeding in a 
different random vector.

● All we need to do is feed in the data we wish to imitate - no need for labels or 
physical parameters.


