

Convolutional Neural Networks for Exoplanet Detection in Photometric Light Curves From Massive Data Surveys

Stela Ishitani Silva, Greg Olmschenk, Richard K. Barry and MOA Collaboration NASA Goddard Space Flight Center Machine Learning in Astronomical Surveys #2 IAP/CCA - Nov 28, 2023

Image Credit: NASA/JPL-Caltech

Stela Ishitani Silva | Convolutional Neural Networks for Exoplanet Detection in Photometric Light Curves From Massive Data Surveys | ML-IAP/CCA 2023

Stela Ishitani Silva | Convolutional Neural Networks for Exoplanet Detection in Photometric Light Curves From Massive Data Surveys | ML-IAP/CCA 2023

Stela Ishitani Silva | Convolutional Neural Networks for Exoplanet Detection in Photometric Light Curves From Massive Data Surveys | ML-IAP/CCA 2023

Stela Ishitani Silva | Convolutional Neural Networks for Exoplanet Detection in Photometric Light Curves From Massive Data Surveys | ML-IAP/CCA 2023

Stela Ishitani Silva | Convolutional Neural Networks for Exoplanet Detection in Photometric Light Curves From Massive Data Surveys | ML-IAP/CCA 2023

Stela Ishitani Silva | Convolutional Neural Networks for Exoplanet Detection in Photometric Light Curves From Massive Data Surveys | ML-IAP/CCA 2023

Stela Ishitani Silva | Convolutional Neural Networks for Exoplanet Detection in Photometric Light Curves From Massive Data Surveys | ML-IAP/CCA 2023

Top-priority large space mission of the 2010 Astronomy and Astrophysics Decadal Survey

Roman

Hundred of millions of precise light curves! Top-priority large space mission of the 2010 Astronomy and Astrophysics Decadal Survey

Roman 200x Hubble's infrared view

Hundred of millions of precise light curves!

Top-priority large space mission of the 2010 Astronomy and Astrophysics Decadal Survey

Hundred of millions of precise light curves!

Top-priority large space mission of the 2010 Astronomy and Astrophysics Decadal Survey

Top-priority large space mission of the 2010 Astronomy and Astrophysics Decadal Survey Hundred of millions of precise light curves!
How to mine for microlensing exoplanets?

Stela Ishitani Silva | Convolutional Neural Networks for Exoplanet Detection in Photometric Light Curves From Massive Data Surveys | ML-IAP/CCA 2023

Neural Networks for Mining Photometric Light Curves in Massive Datasets

Greg Olmschenk, **Stela Ishitani Silva**, Gioia Rau, Richard K. Barry, *et a*l 2021 AJ 161 273 CNN for Planetary Transits

Neural Networks for Mining Photometric Light Curves in Massive Datasets

Greg Olmschenk, **Stela Ishitani Silva**, Gioia Rau, Richard K. Barry, *et al* 2021 AJ 161 273 CNN for Planetary Transits

Stela Ishitani Silva | Convolutional Neural Networks for Exoplanet Detection in Photometric Light Curves From Massive Data Surveys | ML-IAP/CCA 2023

Stela Ishitani Silva | Convolutional Neural Networks for Exoplanet Detection in Photometric Light Curves From Massive Data Surveys | ML-IAP/CCA 2023

Stela Ishitani Silva | Convolutional Neural Networks for Exoplanet Detection in Photometric Light Curves From Massive Data Surveys | ML-IAP/CCA 2023

Stela Ishitani Silva | Convolutional Neural Networks for Exoplanet Detection in Photometric Light Curves From Massive Data Surveys | ML-IAP/CCA 2023

net.kasi.re.kr/t Credit: https://ogle

Gravitational Microlensing 101

Animation credit: NASA/Exoplanet Exploration Program

Roma

Traditional selection approaches:

- Good for detecting single lens events
- Can miss multiple lenses events ٠
- Neural networks can be an alternative tool
 - Train with planetary and multiple lens events

Pre-Roman: The Microlensing **Observations in Astrophysics** (MOA) Dataset

Roma

Credit: https://ogle

Gravitational Microlensing 101

Traditional selection approaches:

- Good for detecting single lens events
- Can miss multiple lenses events ٠
- Neural networks can be an alternative tool
 - Train with planetary and multiple lens events

Pre-Roman: The Microlensing **Observations in Astrophysics** (MOA) Dataset

First high cadence microlensing survey towards the Galactic bulge

Credit: https://ogle.astrouw.edu.p/ Greun: MONOSIC Oredit: https://kintnet.kasi.re

Gravitational Microlensing 101

- Traditional selection approaches:
 - Good for detecting single lens events
 - Can miss multiple lenses events
- Neural networks can be an alternative tool
 - Train with planetary and multiple lens events

Pre-*Roman*: The Microlensing Observations in Astrophysics (MOA) Dataset

- First high cadence microlensing survey towards the Galactic bulge
- Sumi et al 2023 predicts ~21 free-floating planets per star

Gravitational Microlensing 101

- Traditional selection approaches:
 - Good for detecting single lens events
 - Can miss multiple lenses events ٠
- Neural networks can be an alternative tool
 - Train with planetary and multiple lens events

Pre-Roman: The Microlensing **Observations in Astrophysics** (MOA) Dataset

- First high cadence microlensing survey towards the Galactic bulge
- Sumi et al 2023 predicts ~21 free-floating planets per star
- 2.4 million light curves from 2006 to 2014

Gravitational Microlensing 101

Traditional selection approaches:

- Good for detecting single lens events
- Can miss multiple lenses events ٠
- Neural networks can be an alternative tool
 - Train with planetary and multiple lens events

Pre-Roman: The Microlensing **Observations in Astrophysics** (MOA) Dataset

- First high cadence microlensing survey towards the Galactic bulge
- Sumi et al 2023 predicts ~21 free-floating planets per star
- 2.4 million light curves from 2006 to 2014
- 23,000 human-inspected labels

KMTNet - SSO

Gravitational Microlensing 101

- Traditional selection approaches:
 - Good for detecting single lens events
 - Can miss multiple lenses events
- Neural networks can be an alternative tool
 - Train with planetary and multiple lens events

Pre-Roman: The Microlensing **Observations in Astrophysics** (MOA) Dataset

- First high cadence microlensing survey towards the Galactic bulge
- Sumi et al 2023 predicts ~21 free-floating planets per star
- 2.4 million light curves from 2006 to 2014
- 23,000 human-inspected labels
- 6,105 gravitational microlensing events

Stela Ishitani Silva | Convolutional Neural Networks for Exoplanet Detection in Photometric Light Curves From Massive Data Surveys | ML-IAP/CCA 2023

Stela Ishitani Silva | Convolutional Neural Networks for Exoplanet Detection in Photometric Light Curves From Massive Data Surveys | ML-IAP/CCA 2023

Stela Ishitani Silva | Convolutional Neural Networks for Exoplanet Detection in Photometric Light Curves From Massive Data Surveys | ML-IAP/CCA 2023

Stela Ishitani Silva | Convolutional Neural Networks for Exoplanet Detection in Photometric Light Curves From Massive Data Surveys | ML-IAP/CCA 2023

		Pro	elim	inary	y Res	sults	Ishitani Silva et al. in prep
10 times - Cro	oss-validation						
MOA Dataset 549,444 Light Curv with Labels Training set: 80% Validation set: 10%		es train		Convolution Neural Netwo Equal-rate exposu ensing VS Non-mi	al ork in m are: crolensing	lightcurve illiseconds	List of Neural Network Confidence Scores for Each Light Curve
· · ·	Test set: 10%		·				
		Thresholds	True positives	False positives	True negatives	False negatives	
		0.1	6068	150830	392509	37	
		0.2	6003	55592	487747	102	의 관계 전 명령 전 전 영양이다. 2011년 1월 1997년 1월 1 2월 1997년 1월 1
		0.3	5930	34384	508955	175	
		0.4	5826	23194	520145	279	
		0.5	5632	14685	528654	473	
		0.6	5348	7895	535444	757	
		0.7	5122	3827	539512	983	
2 A 10	a ta ta a ta ta	0.8	4948	2019	541320	1157	
		0.9	4718	1339	542000	1387	

Stela Ishitani Silva | Convolutional Neural Networks for Exoplanet Detection in Photometric Light Curves From Massive Data Surveys | ML-IAP/CCA 2023

Stela Ishitani Silva | Convolutional Neural Networks for Exoplanet Detection in Photometric Light Curves From Massive Data Surveys | ML-IAP/CCA 2023

Stela Ishitani Silva | Convolutional Neural Networks for Exoplanet Detection in Photometric Light Curves From Massive Data Surveys | ML-IAP/CCA 2023