

Hybrid SBI or How I learned to stop worrying and learn the likelihood

Chirag Modi

Center for Computational Astrophysics Center for Computational Mathematics Flatiron Institute with Oliver Philcox arXiv: 2309.10270

Cosmological analysis until now

Workhorse tool: analytical methods such as perturbation theory (PT / EFT of LSS)

Highly successful for-

1

- low-order clustering statistics such as the two- and three-point functions
- linear and quasi-linear scales.

$$\begin{split} P_g(k,\mu) = & Z_1^2(\mathbf{k}) P_{\rm lin}(k) + 2 \int_{\mathbf{q}} Z_2^2(\mathbf{q},\mathbf{k}-\mathbf{q}) P_{\rm lin}(|\mathbf{k}-\mathbf{q}|) P_{\rm lin}(q) \\ &+ 6 Z_1(\mathbf{k}) P_{\rm lin}(k) \int_{\mathbf{q}} Z_3(\mathbf{q},-\mathbf{q},\mathbf{k}) P_{\rm lin}(q) \\ &- 2 \tilde{c}_0 k^2 P_{\rm lin}(k) - 2 \tilde{c}_2 f \mu^2 k^2 P_{\rm lin}(k) - 2 \tilde{c}_4 f^2 \mu^4 k^2 P_{\rm lin}(k) \,, \\ &- \tilde{c} f^4 \mu^4 k^4 (b_1 + f \mu)^2 P_{\rm lin}(k) + P_{\rm shot} \,, \end{split}$$

Analytic model based on renormalized PT loop integrals

$$\ln \mathcal{L}(\mathcal{D}|\mathbf{p}) = -\frac{1}{2} \sum_{\text{samp}} \sum_{\ell,\ell'} \sum_{i,j}^{k_{\text{max}}} \left[P_{\ell}^{\mathcal{D}}(k_i) - P_{\ell}(k_i;\mathbf{p}) \right] \\ \times \operatorname{Cov}^{-1} \left[P_{\ell}(k_i), P_{\ell'}(k_j) \right] \left[P_{\ell'}^{\mathcal{D}}(k_j) - P_{\ell'}(k_j;\mathbf{p}) \right], \quad (19)$$

Gaussian Likelihood

Ivanov et.al. 2020, Philcox & Ivanov 2022, D'Amico et.a.l. 2022 etc.

Why simulation-based inference?

We would like to -

- go beyond 2/3-point analysis (higher order statistics, learnt neural statistics)
- push to smaller scales

Standard analysis is challenging

- Need theoretical models and analytic likelihood distribution.
- PT/EFT breaks down on small scales
- Including survey systematics is difficult

Computational modeling is easier, and can be more accurate, so we would like to use simulations.

Simulation-based inference

Generating simulations is equivalent to sampling from the joint distribution

Training data = $\{x_i, \theta_i\} \sim p(x, \theta) = p(x|\theta) \times p(\theta)$

1. Neural likelihood estimation: Learn the likelihood function as a parametric distribution $q_{\phi}(x|\theta)$

2. Neural posterior estimation:

Learn the posterior distribution as a parametric distribution $q_{\phi}(\theta|x)$

Application on data: SimBIG

Data: 100,000 BOSS-SGC galaxies

Statistics:

- Power spectrum multipole
- Bispectrum
- Wavelet scattering transform
- CNN (field level)

Takeaway: Using higher order statistics & accessing data on the small scales improves constraints.

arXiv: 2211.00660 arXiv: 2211.00723 Credits: Changhoon Hahn, Pablo Lemos, Bruno Régaldo-Saint Blancard

Application on data: SimBIG

Data: 100,000 BOSS-SGC galaxies

Statistics:

- Power spectrum multipole
- Bispectrum
- Wavelet scattering transform
- CNN (field level)

Takeaway: Using higher order statistics & accessing data on the small scales improves constraints.

arXiv: 2211.00660 arXiv: 2211.00723 Credits: Changhoon Hahn, Pablo Lemos, Bruno Régaldo-Saint Blancard

Are we ready for the upcoming surveys?

Next generation of surveys

SBI for surveys like DESI, LSST, Euclid etc.

- 1) We will require simulations with larger volume, better mass resolution.
- 2) We need *increasingly accurate* forward models.

Current computational landscape: Quijote latin hypercube simulations

- \rightarrow ~10 million CPU hours
- \rightarrow Small volume: 1 Gpc/h smaller than BOSS survey volume
- \rightarrow Coarse resolution: 1 Mpc/h with 5 snapshots

Next generation of surveys

SBI for surveys like DESI, LSST, Euclid etc.

- 1) We will require simulations with larger volume, better mass resolution.
- 2) We need increasingly accurate forward models.

Current computational landscape: Quijote latin hypercube simulations

- \rightarrow ~10 million CPU hours
- \rightarrow Small volume: 1 Gpc/h smaller than BOSS survey volume
- \rightarrow Coarse resolution: 1 Mpc/h with 5 snapshots

Computationally prohibitive to scale to the next (current?) generation of cosmological surveys.*

How do we scale?

*for more introspection, consider the carbon cost shown in Rupert's talk.

Recap: Motivation

SBI is needed to push to smaller scales with higher-order statistics

- higher-order statistics extract more information from non-Gaussian fields
- cannot be modeled analytically

Recap: Motivation

SBI is needed to push to smaller scales with higher-order statistics

- higher-order statistics extract more information from non-Gaussian fields
- cannot be modeled analytically

On the largest scales, simulation-based approaches are not necessary.

- the density field is close to Gaussian and can be modeled using PT
- traditional statistics like the P(k), B(k) are close to optimal (Cabass et al. 2023)

Recap: Motivation

SBI is needed to push to smaller scales with higher-order statistics

- higher-order statistics extract more information from non-Gaussian fields
- cannot be modeled analytically

On the largest scales, simulation-based approaches are not necessary.

- the density field is close to Gaussian and can be modeled using PT
- traditional statistics like the P(k), B(k) are close to optimal (Cabass et al. 2023)

Combine PT on large scales with SBI on small scales Hybrid SBI (HySBI)

HySBI: formalism

Data-vector **x** can be split into two components $x = \{x_L, x_S\}$ -- large scales x_L , and small scales x_S

 $\mathbf{p}(\mathbf{x}|\boldsymbol{\theta}) = \mathbf{p}(\mathbf{x}_{L}|\boldsymbol{\theta}) \times \mathbf{p}(\mathbf{x}_{S}|\mathbf{x}_{L},\boldsymbol{\theta})$

HySBI: formalism

Data-vector **x** can be split into two components $\mathbf{x} = \{\mathbf{x}_1, \mathbf{x}_s\}$ -- large scales \mathbf{x}_1 , and small scales \mathbf{x}_s

 $p(\mathbf{x}|\boldsymbol{\theta}) = p(\mathbf{x}_{L}|\boldsymbol{\theta}) \times p(\mathbf{x}_{S}|\mathbf{x}_{L}, \boldsymbol{\theta})$

 $p(\mathbf{x}_{L}|\boldsymbol{\theta})$: model analytically with perturbation theory \mathbf{x}_{i} : classical statistics such as the P(k), B(k)

p(x_s | x_L, θ) : learnt with SBI simulating only a small sub-volume at high-fidelity, instead of the full survey volume x_s : any statistic of choice

(P(k), B(k), wavelets, neural statistics)

HySBI: no free lunch*

Two new issues:

(1) Learning $\mathbf{p}(\mathbf{x}_{s} | \mathbf{x}_{l}, \boldsymbol{\theta})$ requires new, customized simulations

- depends on x
- need access to the correct large-scale statistics \mathbf{x}_{L} corresponding to \mathbf{x}_{s} ... without simulating the entire volume at *full-fidelity*
- simulations with separate evolution on large and small scales, e.g., S-COLA, zoom-ins

HySBI: no free lunch*

Two new issues:

(1) Learning $\mathbf{p}(\mathbf{x}_{s} | \mathbf{x}_{l}, \boldsymbol{\theta})$ requires new, customized simulations

- depends on x
- need access to the correct large-scale statistics \mathbf{x}_{L} corresponding to \mathbf{x}_{s} ... without simulating the entire volume at *full-fidelity*
- simulations with separate evolution on large and small scales, e.g., S-COLA, zoom-ins

(2) Super sample effects

- evolution in sub-volume is affected by large scale modes from the full box
- small scale statistics **x**_s are noisy

HySBI: proof-of-principle

Setup: Infer Ω_m and σ_8 from three-dimensional dark matter density field

x_L : power spectrum (k < 0.15 h/Mpc)

$$\mathbf{p}(\mathbf{x}_{L} | \boldsymbol{\theta}): \quad -2\log p(\boldsymbol{x}_{L} | \boldsymbol{\theta}) = \sum_{k} \left[\frac{P_{\text{loop}}(k) - 2c_{s}^{2} P_{\text{ct}}(k) - \hat{P}(k)}{\sigma_{P}(k)} \right]^{2} (2)$$

 x_s : power spectrum (0.15 < k < 0.5 h/Mpc), wavelet coefficients

 $p(x_s | x_L, \theta)$: split 1 Gpc/h Quijote simulations into 8 sub-volumes measure x_s in the sub-volumes (only for training)

HySBI: proof-of-principle

Setup: Infer $\Omega_{_{
m m}}$ and $\sigma_{_{
m 8}}$ from three-dimensional dark matter density field

x_L: power spectrum (k < 0.15 h/Mpc)

$$\mathbf{p}(\mathbf{x}_{L} | \boldsymbol{\theta}): \quad -2\log p(\boldsymbol{x}_{L} | \boldsymbol{\theta}) = \sum_{k} \left[\frac{P_{\text{loop}}(k) - 2c_{s}^{2} P_{\text{ct}}(k) - \hat{P}(k)}{\sigma_{P}(k)} \right]^{2} (2)$$

 x_s : power spectrum (0.15 < k < 0.5 h/Mpc), wavelet coefficients

 $p(x_s | x_L, \theta)$: split 1 Gpc/h Quijote simulations into 8 sub-volumes measure x_s in the sub-volumes (only for training)

Results:

- HySBI outperforms traditional analysis
- Global NLE with P(k) better than HySBI because PT marginalizes over c

HySBI: super-sample effects

0.80

0.70

0.30

ິ 0.75 ງ ອິ HySBI with power spectrum

PT P(k) $(k_{max}=0.15)$ PT P(k) $(k_{max}=0.15)$ HySBI (8) HySBI (8) HySBI (4) HySBI (4) - HySBI (2) HySBI (2) - HySBI (1) HySBI (1) 0.750 ം 0.725 0.700 0.675 0.35 0.40 0.70 0.75 0.30 0.35 0.40 0.70 0.75 Ω_m σ_8 Ω_m σ_8 uncertainties are inflated by uncertainties are inflated by 5 - 10% for $\Omega_{\rm m}$ 20 - 50% for $\Omega_{\rm m}$ 40 - 120% for *o* 40 - 100% for σ_8 upon using 4, 2, 1 sub-volumes upon using 4, 2, 1 sub-volumes

HySBI with wavelets

Significant gains with using only one-eighth of the simulation volume!

Summary

- SBI is one the most promising techniques to go beyond current cosmological analyses
- We do not have the computational resources to generate training dataset for upcoming surveys
- **Hybrid SBI** combine PT on large scales with SBI on small scales, trained on small sub-volumes
 - a <u>realistic</u> path for scaling SBI to large survey volumes
- Beyond proof of principle:
 - Customized simulations with approximate large-scale evolution & accurate small-scale simulations
 - multi-grid force computation (FlowPM), S-COLA, zoom-in simulations
 - Consistently treat nuisance parameters for observables like galaxies
 - Bias parameters and counter-terms in PT/EFT, and HOD parameters for SBI, led by Gemma Zhang
 - Correctly account for systematic effects like survey masks that mix small and large scales