ML-IAP/CCA-2023

Contribution ID: 30

Type: Fractional talk

Neutrino mass constraint from an Implicit Likelihood Analysis of BOSS voids

Tuesday, November 28, 2023 4:38 PM (7 minutes)

Cosmic voids identified in the spatial distribution of galaxies provide complementary information to twopoint statistics. In particular, constraints on the neutrino mass sum, $\sum m_{\nu}$, promise to benefit from the inclusion of void statistics. We perform inference on the CMASS NGC sample of SDSS-III/BOSS with the aim of constraining $\sum m_{\nu}$. We utilize the void size function, the void-galaxy cross power spectrum, and the galaxy auto power spectrum. To extract constraints from these summary statistics we use a simulation-based approach, specifically implicit likelihood inference. We populate approximate gravity-only, particle neutrino cosmological simulations with an expressive halo occupation distribution model. With a conservative scale cut of $k_{\text{max}} = 0.15 h \text{Mpc}^{-1}$ and a Planck-inspired Λ CDM prior, we find upper bounds on $\sum m_{\nu}$ of 0.43 and 0.35 eV from the galaxy auto power spectrum and the full data vector, respectively (95 % credible interval). We observe hints that the void statistics may be most effective at constraining $\sum m_{\nu}$ from below. We also substantiate the usual assumption that the void size function is Poisson distributed.

Primary author: THIELE, Leander (Princeton University)

Co-authors: PISANI, Alice; WANDELT, Benjamin; HAHN, ChangHoon; SPERGEL, David; MASSARA, Elena; HO, Shirley

Presenter: THIELE, Leander (Princeton University)

Session Classification: Contributed talks

Track Classification: New York