Machine Learning for New Physics

Agnès Ferté
SLAC/KIPAC

Search for new physics with cosmological surveys

The H_{0} tension

Neutrinos, dark matter

The σ_{8} tension

Accelerated expansion

Current search of new physics with galaxy surveys

Precise measurements of summary statistics

Parameter estimation:
likelihood sampling

$$
L(D \mid p) \sim \exp \left(-\frac{1}{2}\left[(D-M(p))^{T} C^{-1}(D-M(p))\right]\right)
$$

Samplers comparison in
Lemos, Weaverdyck et al (incl. AF), MNRAS, 2023
=> Polychord validated for DES Y3 3x2pt sampling

The case of beyond- \wedge CDM models with DES Y3 weak lensing

DES Y3 extensions (co-leads Jessie Muir and AF): DES collaboration, PRD, 2023

Robust analysis of 7 models:

- Blinded analysis:
- tests of systematics,
- scale cuts validation.
- 6 cosmological parameters + extended parameters + 22 nuisance parameters.
- Run 700+ chains on HPC Use of NERSC, TACC, GATTACA @ JPL, Sherlock @ Stanford.

The Stage-IV experimental landscape

Goals are:

- Dark energy, modified gravity,
- Cosmic inflation.

Baseline analyses will still rely on parameter estimation from precise measurements of summary statistics.

Challenges and where Machine Learning can help

Challenges:

- More complex parameter space,
- Expensive likelihood evaluation.
\rightarrow ML to enable faster analysis of measurements to constrain new physics parameters

Emulators of summary statistics
CosmoPower
A. Spurio Mancini et al, MNRAS, 2022 Application to f(R): REACTEMU-FR A. Spurio Mancini and Bose, OJA, 2023

Being used in DES Y6 (by Sujeong Lee) but need to retrain to adapt to our parameter space.

Improving the sampling in a large parameter space

Nautilus: inference using deep learning J. Lange, 2023

Great improvements for DES Y6 shear but polychord still performs better for $3 \times 2 \mathrm{pt}$.

How to explore theory space with future surveys?

Ishak et al, 1905.09687, 2019

Theoretical perspective to decide which model to constrain

Phenomenological parametrization, EFT, ...

Gravity models impact probes differently: How do models compare at the level of probes?

Map MG models onto 2D map using Self-Organizing Map

1. Producing the training set

Cosmology: fixed parameters

2. Training the SOM

$10^{2} \quad \ell$

Theoretical predictions of cosmic shear

- 5 redshift bins
- 15 values of multipole ell
=> 225 elements per data set
6×6 SOM grid

Understanding MG models impact on cosmic shear with SOM

- Dark energy and modified gravity should both be tested,
- Dilaton has a unique signature,
- Application to σ_{8} tension.

From AF, Hemmati et al, OJA, 2023

Outlooks to enable detection of new physics with future surveys using ML

- ML to accelerate analysis and decide on theories to explore.
- Deep learning cosmology.

DESLearning. Co-Pls Tomasz Kacprzak and AF, for NERSC-NESAP to accelerate the training on GPUs.

- For MG, analysis using summary statistics and deep learning: need modeling developments.

