-
4:45 PM
SNAD: enabling discovery in the era of big data
-
Maria Pruzhinskaya
-
5:00 PM
DE-VAE: a representation learning architecture for a dynamic dark energy model
-
Davide Piras
(University of Geneva)
-
5:15 PM
A Bayesian Neural Network based ILC method to estimate accurate CMB polarization power spectrum over large angular scales
-
Sarvesh Kumar Yadav
(Raman Research Institute, Banglore, India)
-
5:18 PM
Multiview Symbolic Regression in astronomy
-
Etienne Russeil
(Laboratoire de Physique de Clermont (LPC))
-
5:21 PM
Machine learning for new physics
-
Agnès Ferté
(SLAC/Stanford U)
-
5:36 PM
Toward automated discovery of analytical physical laws from data using deep reinforcement learning
-
Wassim TENACHI
(Observatoire Astronomique de Strasbourg)
-
5:51 PM
Latent space out-of-distribution detection of galaxies for deblending in weak lensing surveys
-
Jelle Mes
(Leiden Observatory, Leiden University, The Netherlands)
-
5:54 PM
Fishnets: Mapping Information Geometry with Robust, Scalable Neural Compression
-
Benjamin Wandelt
(Institut d'Astrophysique de Paris / The Flatiron Institute)
Lucas Makinen
(Imperial College London)
-
5:57 PM
Extracting physical rules from ensemble machine learning for the selection of radio AGN.
-
Rodrigo Carvajal
-
6:00 PM
Opportunities and challenges of machine learning for astrophysics
-
Jason McEwen
(UCL)
-
6:03 PM
The terms Eisenstein and Hu missed
-
Deaglan Bartlett
(Institut d'Astrophysique de Paris)