The Dark Universe, Les Houches, 21-25.07.2025

CMB physics

J. Lesgourgues
Institut für Theoretische Teilchenphysik und Kosmologie (TTK),
RWTH Aachen University

Cosmic Microwave Background: an early prediction!

Cosmic photons with blackbody spectrum and $T \sim \mathcal{O}(10)K$ predicted on basis of models of Nucleosynthesis by Gamow, Alpher, Hermann (40-50's),

Dicke, Peebles (60's)...

The CMB is no pigeon shit!

Dicke, Peebles (60's)...

While discussing about dedicated experiment...

... contacted thanks to luck and coffee room discussions by...

Penzias & Wilson (1964)

Nobel prize Penzias & Wilson (1978)

Prediction of non-trivial correlations in CMB anisotropies!

70-80's: Peebles, Silk, Sunyaev and respective collaborators (70-80's)...

...discuss information contain in CMB temperature spectrum and acoustic oscillations!

90's: precise prediction of CMB spectra: Bertschinger, Hu, Kamionkowski, Ma, Seljak, Sujiyama, White, Zaldarriga + many others...

Confirmation by COBE, Boomerang, WMAP, Planck ...

Nobel prize Mather & Smoot 2006 Nobel prize Peebles 2019

The CMB is the Rosetta Stone of cosmology

Plan

- Thomson scattering
- Linear theory of stochastic cosmological perturbations
- Spectrum of temperature anisotropies
- Why can we measure independently the ΛCDM parameters?
- Polarisation
- Tensors modes
- CMB lensing
- Spectral distortions

...following:

- The Young Universe: Primordial Cosmology,
 edited by R. Taillet (John Wiley & Sons, 2022) ISBN: 1789450322
 - → Chapter 2: CMB, by JL
- Chapter 5 of: Neutrino Cosmology, JL et al., CUP 2013
 - → Chapter 5: CMB
- The Ingredients of the Universe, Master course at RWTH Aachen U. Link on Indico

Ionisation fraction in the Universe

Thomson scattering rate

Optical depth of cosmic fog

Visibility function

$$g(\eta) \equiv -\tau' e^{-\tau}$$

probability of last interaction at η = probability of interaction at η x (1-probability of interaction after η)

Mean free path and diffusion length

random walk

$$\lambda_{\rm d}(\eta) = a(\eta) \, r_{\rm d}(\eta) \simeq a(\eta) \left[\int_{\eta_{\rm ini}}^{\eta} d\tilde{\eta} \, c^{2} \Gamma_{\gamma}^{-1}(\tilde{\eta}) \right]^{1/2}$$

Linear cosmological perturbations

Bardeen decomposition

$$g_{\mu\nu}(\eta, \vec{x}) = \bar{g}_{\mu\nu}(\eta) + \delta g_{\mu\nu}(\eta, \vec{x}) \text{ and } T^{\mu\nu}(\eta, \vec{x}) = \bar{T}^{\mu\nu}(\eta) + \delta T^{\mu\nu}(\eta, \vec{x})$$

background perturbations

(for each species!)

James Bardeen 1986

FLRW background invariant under spatial rotations

 \Rightarrow irreducible representations of SO(3) \rightarrow decoupled sectors

⇒ Bardeen | scalars (gravity forces) : 4 d.o.f.

vectors (gravito-magnetism) : 4 d.o.f. tensors (gravitational waves) : 2 d.o.f.

Newtonian gauge

Gauge freedom: perturbations depends on choice of coordinates \$\square\$

Newtonian gauge: eliminate 2 scalar d.o.f. to stick to diagonal $\delta g_{\mu
u}$

$$ds^{2} = -(1 + 2\psi)dt^{2} + (1 - 2\phi)a^{2}(t)d\vec{x}^{2}$$
$$= a^{2}(\eta) \left[-(1 + 2\psi)d\eta^{2} + (1 - 2\phi)d\vec{x}^{2} \right]$$

Local distorsion of time
= generalised
gravitational potential

Local distorsion of expansion rate

Matter perturbations

 $\delta T_{\mu
u, X}$: still 4 d.o.f. per species X

 δ_X : relative fluctuation of energy density

 θ_X : divergence of bulk velocity

 δp_X : fluctuation of (isotropic) pressure

 σ_X : anisotropic stress = quadrupole of (anisotropic) pressure

Local pressure relates to local density (e.g. $\delta p_X = w_X \ \delta \rho_X$)

only 3 d.o.f.

Perfect fluids (strong interactions)

Pressure is isotropic ($\sigma_X = 0$)

only 2 d.o.f.

Comoving Fourier space

Thereafter: only flat cosmologies for simplicity

Dmoving Fourier space
$$\delta_X(\eta, \vec{k}) = \int \frac{d^3\vec{x}}{(2\pi)^{3/2}} \delta_X(\eta, \vec{x}) e^{-i\vec{k}\cdot\vec{x}}$$
 Wavelengths $\lambda(\eta) = a(\eta) \ 2\pi/k$

Wavelengths
$$\lambda(\eta) = a(\eta) \ 2\pi/k$$

Decelerated expansion \Rightarrow grow slower than Hubble radius $R_H(\eta) = c \, a(\eta) / \dot{a}(\eta)$

Condition for Hubble crossing : $k \sim aH \sim 1/\eta$

Linearised Einstein Equations

• from
$$G_0^0 = 8\pi G \, T_0^0$$
 :
$$\frac{2}{a^2} \left[k^2 \phi + 3 \frac{a'}{a} \left(\phi' + \frac{a'}{a} \psi \right) \right] = -8\pi G \sum_X \bar{\rho}_X \delta_X$$

dominates on sub-Hubble

Poisson equation:

$$-\frac{k^2}{a^2}\phi = 4\pi G \bar{\rho}_{\text{total}} \delta_{\text{total}}$$

dominates on super-Hubble

Using Friedmann:

$$2\psi = -\delta_{\text{total}}$$

$$\bullet \ \text{from} \ G^i_j = 8\pi G \, T^i_j: \qquad \frac{2}{3} \frac{k^2}{a^2} (\phi - \psi) = 8\pi G \sum_X (\bar{\rho}_X + \bar{p}_X) \sigma_X$$

perfect fluids
$$\Rightarrow \sigma_X = 0 \Rightarrow \phi = \psi$$

other scalar equations redundant with upcoming equations of motion (Bianchi identity)

Equations of motion

Without details: each decoupled species fulfils energy/momentum conservation:

$$\bigstar$$
 continuity equation: $\delta_X' = -(1+w_X)(\theta_X - 3\phi') - 3\frac{a'}{a}(c_{sX}^2 - w_X)\delta_X$

◆ Euler equation:

$$\theta_X' = -\frac{a'}{a}(1 - 3c_{aX}^2)\theta_X + \frac{c_{sX}^2}{1 + w_X}k^2\delta_X - k^2\sigma_X + k^2\psi$$

(featuring sound speed c_s and adiabatic sound speed c_a)

In Λ CDM:

- CDM: negligible pressure/stress: closed system
- e-/baryons: negligible pressure/stress but Thomson scattering: $+\frac{4}{3}\frac{\bar{\rho}_{\gamma}}{\bar{\rho}_{\rm b}}\tau'(\theta_{\rm b}-\theta_{\gamma})$
- photons, neutrinos: when not strongly coupled, anisotropic stress
 - → need Boltzmann equation

$$\frac{d}{d\eta}f_{\gamma} = C\left[f_{\gamma}, f_{e}\right] \qquad \frac{d}{d\eta}f_{\nu} = 0$$

Summary: perturbed degrees of freedom and equations of motion

Equation of motion

Gravitational potential $\psi(\eta, \vec{x})$

Einstein 00: $\phi, \psi \leftrightarrow \delta$

Scale factor distortion $\phi(\eta, \vec{x})$

Einstein ij: $(\phi - \psi) \longrightarrow \sigma$

CDM density/velocity $\delta_c(\eta, \vec{x})$, $\theta_c(\eta, \vec{x})$

continuity δ'_c + Euler θ'_c

Baryon density/velocity $\delta_{\rm b}(\eta,\vec{x})$, $\theta_{\rm b}(\eta,\vec{x})$

Continuity $\delta_{\rm b}'$ + Euler $\theta_{\rm b}'$ (incl. Thomson)

Photons $f_{\gamma}(\eta, \vec{x}, p, \hat{n})$

Boltzmann
$$\frac{d}{d\eta}f_{\gamma}=$$
 Thomson [Boltzmann $\frac{d}{d\eta}f_{\nu}=0$]

[Neutrinos $f_{\nu}(\eta, \vec{x}, p, \hat{n})$]

[Boltzmann
$$\dfrac{d}{d\eta}f_{
u}=0$$
]

Photon phase-space distribution

Blackbody shape:
$$f_{\gamma}(\eta,\vec{x},p,\hat{n})=rac{1}{e^{rac{p}{T(\eta,\vec{x},\hat{n})}}-1}$$

Up to very good approximation: preserved even when leaving thermal equilibrium, but becomes direction-dependent due to gravitational interactions:

redshifting along geodesics:
$$\frac{d \ln(a\,p)}{d\eta} = \phi' - \hat{n} \cdot \vec{\nabla} \psi$$
 dilation dilation gravitational Doppler

Then:
$$T(\eta, \vec{x}, \hat{n}) = \bar{T}(\eta) \left(1 + \Theta(\eta, \vec{x}, \hat{n})\right)$$

Linearised Boltzmann equation

Temperature fluctuation: $T(\eta, \vec{x}, \hat{n}) = \bar{T}(\eta) \left(1 + \Theta(\eta, \vec{x}, \hat{n})\right)$

Monopole and dipole of Θ account for local density & bulk velocity:

$$\Theta(\eta, \vec{x}, \hat{n}) = \frac{1}{4} \delta_{\gamma}(\eta, \vec{x}) + \hat{n} \cdot \vec{v}_{\gamma}(\eta, \vec{x}) + \text{higher multipoles}$$

Linearised Boltzmann:

$$\Theta' + \hat{n} \cdot \overrightarrow{\nabla} \Theta - \phi' + \hat{n} \cdot \overrightarrow{\nabla} \psi = - \frac{\Gamma_{\gamma}}{\Gamma_{\gamma}} \left(\hat{n} \cdot (\overrightarrow{v}_{\gamma} - \overrightarrow{v}_{b}) + \text{higher multipoles} \right)$$

$$\text{dilation}$$

$$\text{gravitational Doppler}$$

$$\text{Thomson scattering}$$

Thomson scattering wants to align velocity of photons vs. electron/baryons, and to wash out higher multipoles!

Boltzmann hierarchy

Start from linearised Boltzmann and perform:

- 1. Fourier transformation
- 2. Legendre expansion $\Theta(\eta, \vec{k}, \hat{n}) = \sum_{l} (-i)^l (2l+1) \Theta_l(\eta, \vec{k}) P_l(\hat{k} \cdot \hat{n})$

$$\delta'_{\gamma} + \frac{4}{3}\theta_{\gamma} - 4\phi' = 0$$
 relates to Θ_2
$$\theta'_{\gamma} + k^2 \left(-\frac{1}{4}\delta_{\gamma} + \sigma_{\gamma} \right) - k^2 \psi = \tau'(\theta_{\gamma} - \theta_{b})$$

$$\Theta'_{l} - \frac{kl}{2l+1}\Theta_{l-1} + \frac{k(l+1)}{2l+1}\Theta_{l+1} = \tau'\Theta_{l} \quad \forall l \geq 2$$

⇒ Solved together with previous equations by Einstein-Boltzmann solvers (CMBFAST, CAMB, CLASS...)

