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Cosmic photons with blackbody spectrum and  predicted 
on basis of models of Nucleosynthesis by
     Gamow, Alpher, Hermann (40-50’s),                Zel’dovitch (60’s),

              Dicke, Peebles (60’s)…

T ∼ "(10)K

Cosmic Microwave Background: an early prediction!
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The CMB is no pigeon shit!

While discussing about
dedicated experiment…

… contacted thanks to 
luck and coffee room 

discussions by…

Dicke, Peebles (60’s)…

Penzias & Wilson (1964)

Nobel prize Penzias & Wilson (1978)
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Prediction of non-trivial correlations in CMB anisotropies!

90’s: precise prediction of CMB spectra:
 Bertschinger, Hu, Kamionkowski, Ma, Seljak, 
Sujiyama, White, Zaldarriga + many others…

Confirmation by COBE, Boomerang, WMAP, Planck … 

Nobel prize Mather & Smoot 2006
Nobel prize Peebles 2019

↓

70-80’s : Peebles, Silk, Sunyaev and respective collaborators (70-80’s)…

…discuss information 
contain in CMB 

temperature spectrum and 
acoustic oscillations !
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The CMB is the Rosetta Stone of cosmology
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• Thomson scattering 
• Linear theory of stochastic cosmological perturbations 
• Spectrum of temperature anisotropies 
• Why can we measure independently the ΛCDM parameters ? 
• Polarisation 
• Tensors modes 
• CMB lensing 
• Spectral distortions
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• The Young Universe: Primordial Cosmology,  
    edited by R. Taillet (John Wiley & Sons, 2022) ISBN : 1789450322 
     Chapter 2: CMB, by JL 
• Chapter 5 of: Neutrino Cosmology, JL et al., CUP 2013 
     Chapter 5: CMB 
• The Ingredients of the Universe, Master course at RWTH Aachen U. 
    Link on Indico

→

→

Plan 

…following: 
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Thomson scattering

e-
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ICTP SAIFR, 23-26.07.2017
Ionisation fraction in the Universe

98 The Young Universe

reionization) and that, finally, it increases sharply during recombination (see
Figure 2.1(c)). The plateau value denoted by τreio is called the optical depth of
reionization. It quantifies the fog effect induced by reionization, which prevents us
from seeing perfectly the images coming from the recombination epoch. However,
the measured value, τreio ! 0.06 (see section 2.8.1.2), is much less than one, in
agreement with the fact that the universe is strongly transparent since recombination.
The time when τ(η) = 1, that is the “opaque universe-transparent universe”
transition, occurs during recombination and photon decoupling, at a redshift of the
order of z ! 1,080.

Figure 2.1. Evolution of characteristic quantities from an arbitrary time before
recombination to the present day: ionization fraction xe (a), Thomson scattering rate
Γγ compared to the Hubble rate in conformal time (b), optical depth τ (c) and visibility
function (d). The vertical lines indicate the times of decoupling (ηdec) and reionization
(ηreio) (figure obtained with CLASS (class-code.net)). For a color version of this figure,
see www.iste.co.uk/taillet/universe.zip

2.2.3. Visibility function

The visibility function g(η) represents the probability that a CMB photon observed
now had its last interaction with an electron at time η. A statistical reasoning shows
that there is a simple relation between this function and the optical depth:

xe = nfree
e− /ntotal

e−

conformal time →

 redshift←

recombination        reionization
z ≃ 1080 z ≃ 7H + γ ⟶ p+ + e− H + γ ⟶ p+ + e−
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Thomson scattering rate

98 The Young Universe

reionization) and that, finally, it increases sharply during recombination (see
Figure 2.1(c)). The plateau value denoted by τreio is called the optical depth of
reionization. It quantifies the fog effect induced by reionization, which prevents us
from seeing perfectly the images coming from the recombination epoch. However,
the measured value, τreio ! 0.06 (see section 2.8.1.2), is much less than one, in
agreement with the fact that the universe is strongly transparent since recombination.
The time when τ(η) = 1, that is the “opaque universe-transparent universe”
transition, occurs during recombination and photon decoupling, at a redshift of the
order of z ! 1,080.

Figure 2.1. Evolution of characteristic quantities from an arbitrary time before
recombination to the present day: ionization fraction xe (a), Thomson scattering rate
Γγ compared to the Hubble rate in conformal time (b), optical depth τ (c) and visibility
function (d). The vertical lines indicate the times of decoupling (ηdec) and reionization
(ηreio) (figure obtained with CLASS (class-code.net)). For a color version of this figure,
see www.iste.co.uk/taillet/universe.zip

2.2.3. Visibility function

The visibility function g(η) represents the probability that a CMB photon observed
now had its last interaction with an electron at time η. A statistical reasoning shows
that there is a simple relation between this function and the optical depth:

98 The Young Universe

reionization) and that, finally, it increases sharply during recombination (see
Figure 2.1(c)). The plateau value denoted by τreio is called the optical depth of
reionization. It quantifies the fog effect induced by reionization, which prevents us
from seeing perfectly the images coming from the recombination epoch. However,
the measured value, τreio ! 0.06 (see section 2.8.1.2), is much less than one, in
agreement with the fact that the universe is strongly transparent since recombination.
The time when τ(η) = 1, that is the “opaque universe-transparent universe”
transition, occurs during recombination and photon decoupling, at a redshift of the
order of z ! 1,080.

Figure 2.1. Evolution of characteristic quantities from an arbitrary time before
recombination to the present day: ionization fraction xe (a), Thomson scattering rate
Γγ compared to the Hubble rate in conformal time (b), optical depth τ (c) and visibility
function (d). The vertical lines indicate the times of decoupling (ηdec) and reionization
(ηreio) (figure obtained with CLASS (class-code.net)). For a color version of this figure,
see www.iste.co.uk/taillet/universe.zip

2.2.3. Visibility function

The visibility function g(η) represents the probability that a CMB photon observed
now had its last interaction with an electron at time η. A statistical reasoning shows
that there is a simple relation between this function and the optical depth:

Cosmological Microwave Background 97

where σT is the Thomson cross-section and nfree
e is the density of free electrons.

Switching to conformal time and decomposing nfree
e into the total electron density

ne and the fraction of ionized electrons xe, we obtain the interaction rate:

Γγ ≡ dN

dη
= σT a xe ne [2.5]

After positron annihilation, the conservation of the number of electron implies
ne ∝ a−3, so as long as the electrons are fully ionized, Γγ decreases as a−2. At
the time of recombination, the fraction of free electrons falls exponentially, then
stabilizes around a freeze-out value of the order of 10−4 (see Figure 2.1(a)). During
the exponential decay, the scattering rate becomes smaller than the Hubble rate (see
Figure 2.1(b)), which makes the photon–electron coupling inefficient and the universe
transparent. Most photons then travel freely and in a straight line toward us. They thus
transmit the image of our last scattering surface to us.

After decoupling, the interaction rate continues to decrease as Γγ ∝ a−2. Much
later, when the first stars are formed, their radiation dissociates the atoms and the
fraction of free electrons increases again to one: this is the epoch of reionization.
The rate Γγ also increases, but without reaching the Hubble rate (see Figure 2.1(b)),
because the electrons are now too diluted. The universe thus remains transparent, with
however a weak but not zero probability of Thomson interaction of the photons with
the free electrons of the intergalactic medium, which is equivalent to the presence of
a very diffuse fog.

2.2.2. Optical depth

The optical depth measures the thickness of this fog. It is obtained by integrating
the Thomson scattering rate between the observer and a given point of the universe
having emitted its image at a given time. The optical depth τ expressed with respect
to the conformal time η is thus:

τ(η) ≡
ˆ η0

η
dη Γγ(η) [2.6]

where η0 is the conformal time nowadays, called the conformal age of the universe.
With such a definition, it should be noted that the Thomson scattering rate also reads
Γγ = −τ ′.

If we start from the present time and go back in time, it can be seen that the
optical depth increases until the beginning of reionization, then stabilizes around a
plateau value (due to a very low Thomson scattering rate between recombination and

∝ a−2xe

recombination                reionization

decoupling

e-

!
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Optical depth of cosmic fog

98 The Young Universe
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the measured value, τreio ! 0.06 (see section 2.8.1.2), is much less than one, in
agreement with the fact that the universe is strongly transparent since recombination.
The time when τ(η) = 1, that is the “opaque universe-transparent universe”
transition, occurs during recombination and photon decoupling, at a redshift of the
order of z ! 1,080.
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where σT is the Thomson cross-section and nfree
e is the density of free electrons.

Switching to conformal time and decomposing nfree
e into the total electron density

ne and the fraction of ionized electrons xe, we obtain the interaction rate:
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After decoupling, the interaction rate continues to decrease as Γγ ∝ a−2. Much
later, when the first stars are formed, their radiation dissociates the atoms and the
fraction of free electrons increases again to one: this is the epoch of reionization.
The rate Γγ also increases, but without reaching the Hubble rate (see Figure 2.1(b)),
because the electrons are now too diluted. The universe thus remains transparent, with
however a weak but not zero probability of Thomson interaction of the photons with
the free electrons of the intergalactic medium, which is equivalent to the presence of
a very diffuse fog.

2.2.2. Optical depth

The optical depth measures the thickness of this fog. It is obtained by integrating
the Thomson scattering rate between the observer and a given point of the universe
having emitted its image at a given time. The optical depth τ expressed with respect
to the conformal time η is thus:

τ(η) ≡
ˆ η0

η
dη Γγ(η) [2.6]

where η0 is the conformal time nowadays, called the conformal age of the universe.
With such a definition, it should be noted that the Thomson scattering rate also reads
Γγ = −τ ′.

If we start from the present time and go back in time, it can be seen that the
optical depth increases until the beginning of reionization, then stabilizes around a
plateau value (due to a very low Thomson scattering rate between recombination and
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Visibility function

98 The Young Universe
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g(η) ≡ −τ ′e−τ [2.7]

This probability is indeed normalized to one:

lim
η→0

ˆ η0

η
g(η) = e−τ(η0) − lim

η→0
e−τ(η) = 1− 0 [2.8]

The evolution of the Thomson scattering rate, described above, is such that the
visibility function has two peaks (see Figure 2.1(d)): a narrow and very high
recombination peak, and a broad but much lower reionization peak (in the figure, its
amplitude is multiplied by 100). Between these peaks, the interaction rate is
negligible and the visibility function is zero. The probability that a CMB photon has
experienced its last interaction either during recombination or during reionization is
given by the integral of g(η) under each of the peaks. The integral of the reionization
peak gives a probability of 1− e−τreio # 6%: in other words, about 94% of the CMB
photons traveled to us without interacting.

2.2.4. Diffusion length

Given that photons do not decouple instantaneously, their mean free path gradually
goes from zero to infinity at the time of recombination. Each Thomson scattering sends
them back in a random direction, so that their trajectory resembles a Brownian motion.
The diffusion length of the photons is defined as the distance they travel between an
arbitrary time ηini, chosen well before recombination, and a time η. The finite value
of this length just before decoupling plays an important role in the CMB spectrum.
The comoving diffusion length rd satisfies in the first approximation2 a random walk
distribution:

r2d(η) #
ˆ η

ηini

dη̃ Γγ(η̃) r
2
lpm(η̃) [2.9]

where rlpm = c/Γγ = Γ−1
γ is the comoving mean free path of the photons, that is, the

path traveled between two Thomson interactions that occur at a frequency Γγ . Finally,
the physical diffusion length λd is given by:

λd(η) = a(η) rd(η) # a(η)

[ˆ η

ηini

dη̃ Γ−1
γ (η̃)

]1/2
[2.10]

2. A finer approximation is derived in the study conducted by Hu (1995).

probability of last interaction at  
= probability of interaction at  

x (1-probability of interaction after ) 

η
η

η
recombination                reionization

94%

6%
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r2d(η) #
ˆ η

ηini

dη̃ Γγ(η̃) r
2
lpm(η̃) [2.9]

where rlpm = c/Γγ = Γ−1
γ is the comoving mean free path of the photons, that is, the

path traveled between two Thomson interactions that occur at a frequency Γγ . Finally,
the physical diffusion length λd is given by:

λd(η) = a(η) rd(η) # a(η)

[ˆ η

ηini
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[2.10]

2. A finer approximation is derived in the study conducted by Hu (1995).
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Linear cosmological perturbations
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ICTP SAIFR, 23-26.07.2017Bardeen decomposition

FLRW background invariant under spatial rotations 
 irreducible representations of SO(3)  decoupled sectors 
 Bardeen   scalars (gravity forces) : 4 d.o.f. 

                      vectors (gravito-magnetism) : 4 d.o.f. 
                      tensors (gravitational waves) : 2 d.o.f.

⇒ →
⇒

100 The Young Universe

All quantities derived in this section refer to the average behavior of particles
at a time η in a homogeneous universe. However, to understand the anisotropies of
the CMB, we need to develop a mathematical framework in order to calculate the
evolution of density fluctuations in the universe. We shall therefore introduce the
theory of cosmological perturbations.

2.3. Linear cosmological perturbations

2.3.1. Why linear perturbations?

The cosmological model offers a coherent and very well observationally tested
framework, in which the primordial universe is very homogeneous, with tiny density
fluctuations. These then grow by gravitational collapse, until they form the strong
inhomogeneities observed at present (filaments, vacuums, halos, galaxies, etc.). The
best experimental evidence for this paradigm is precisely the observation of CMB
anisotropies, which directly shows that the relative density fluctuations at the time of
photon decoupling were only of the order of 10−5.

Therefore, the primordial universe can be very well described by a linear
perturbation theory. Subsequently, nonlinear perturbations appear first on small
scales and then reach gradually larger scales. Currently, the scale separating the
linear regime from the nonlinear regime is of the order of a few tens of megaparsecs.
However, the main CMB observables (such as the temperature spectrum) depend
essentially on the evolution of the perturbations at very early times: before, during
and shortly after recombination3. All currently observable scales were then in the
linear regime. As such, the physics of the CMB relies on linear differential equations,
which allows us to make very robust predictions.

2.3.2. Classification of perturbations

We can therefore decompose the metric gµν and the total stress-energy tensor Tµν

of the universe into homogeneous quantities and perturbations of order one:

gµν(η,"x) = ḡµν(η) + δgµν(η,"x) and Tµν(η,"x) = T̄µν(η) + δTµν(η,"x) [2.11]

3. The CMB maps (after foreground cleaning) are also influenced, to a lesser extent, by recent
effects, such as the late integrated Sachs–Wolfe effect and gravitational lensing, which we
describe in the following sections. Fortunately, the integrated Sachs–Wolfe effect only involves
fluctuations on very large scales, always very clearly in the linear regime. The gravitational
lensing effect is dominated by somewhat smaller scales, but still relatively well described by
the linear theory. In high-precision calculations, small nonlinear corrections to the already small
lensing effect are usually taken into account, but this is not essential.

background

perturbations 

10 d.o.f
(for each species!)

James Bardeen 1986
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Gauge freedom: perturbations depends on choice of coordinates 
 

Newtonian gauge: eliminate 2 scalar d.o.f. to stick to diagonal 
⇓

δgμν

102 The Young Universe

In the perturbed metric δgµν , these four components have the following physical
meaning (in the same order as above):

– the local relative distortion ψ of mean time. Due to density fluctuations, different
comoving observers perceive time slightly differently, as dt̃(#x) = (1 + ψ(t,#x))dt;

– the local relative distortion φ of the average scale factor a(t), the “perturbed
scale factor” being given by ã(t,#x) = (1− φ(t,#x)) a(t);

– a privileged spatial direction in the definition of the metric, generating a
“coordinate flow”;

– another preferred spatial direction, generating a “coordinate shear effect”.

The last two effects would deserve more explanation, but this will not be necessary
to understand this chapter. As a matter of fact, since we are working within the
framework of general relativity, we can without any problem redefine the coordinate
system to simplify the perturbed metric, without affecting the background metric. This
operation is called a gauge transformation. One of the many possibilities for such a
transformation is to redefine the coordinate system at each point to cancel out the third
and fourth components of the scalar perturbations of the metric. This gives a relatively
simple expression for the perturbed Friedmann–Lemaètre flat metric:

ds2 = −(1 + 2ψ)dt2 + (1− 2φ)a2(t)d#x 2

= a2(η)
[
−(1 + 2ψ)dη2 + (1− 2φ)d#x 2

]
[2.12]

which involves only the local distortions of time and scale factor. This choice
corresponds to the gauge indifferently called longitudinal (because the non-diagonal
perturbations are zero) or Newtonian (because in the small-scale limit compared to
the curvature radii of space–time, the two potentials ψ and φ are equal and act as the
Newtonian gravitational potential).

In the perturbed stress-energy tensor δTµ
ν , the scalar perturbations have the

following physical meaning (still in the same order as above, with definitions valid
both in conformal and proper time):

– the energy density perturbation δρ = −δT 0
0 = −ḡ00δT 00;

– the pressure perturbation δp = δT i
i = ḡiiδT ii, where i is fixed (i = 1,2 or 3);

– the potential v of the curl-free component of the fluid bulk velocity vi, which
contributes to the curl-free component (δT 0

i)‖ of the stress-energy tensor as (δT 0
i)‖ =

(ρ̄+ p̄)∂iv, with vi = ḡij∂jv;
– the potential s of shear forces in the fluid, which contributes to the longitudinal

and traceless component (δT i
j)‖ of the stress-energy tensor as (δT i

j)‖ = (ρ̄ +

p̄)ḡik(∂k∂j − 1
3δkj∆) s. Such shear forces are equivalent to an anisotropic pressure

with the geometry of a quadrupole (i.e. with a stronger pressure originating from two
opposite directions).

Local distorsion  
of expansion rate

Local distorsion of time 
= generalised 

gravitational potential
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ICTP SAIFR, 23-26.07.2017Matter perturbations
 : still 4 d.o.f. per species   δTμν,X X

⇓

 : relative fluctuation of energy density 
 : divergence of bulk velocity 

 : fluctuation of (isotropic) pressure 
 : anisotropic stress = quadrupole of (anisotropic) pressure

δX
θX
δpX
σX

Local pressure relates to local density (e.g. ) 
 

only 3 d.o.f. 

Perfect fluids (strong interactions)  
 

Pressure is isotropic ( ) 
 

only 2 d.o.f.

δpX = wX δρX
⇓

⇓
σX = 0

⇓
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104 The Young Universe

systems for each Fourier mode. For example, for a fluctuation of density δX , we
write the transformation as:

δX(η,#k) =

ˆ
d3#x

(2π)3/2
δX(η,#x)e−i!k·!x [2.15]

The quantity 2π/k, where k ≡ |#k|, represents a comoving wavelength. The
physical wavelength increases with the expansion of the universe, λ(t) = a(t) 2πk ,
while the Hubble radius grows as RH = a/ȧ. During radiation and matter
domination, the expansion is decelerated, which implies that λ(t) grows slower than
RH(t). Actually, λ(t)/RH(t) ∝ ȧ(t) has a negative derivative. Since the radius of
the observable universe is given by the current Hubble radius (within a numerical
factor), the observable Fourier modes are currently of the sub-Hubble type, that is to
say, they verify λ < RH . However in the past, these modes must have been
super-Hubble (λ > RH ), as shown in Figure 2.2. Inflation explains how to produce
primordial fluctuations possessing properties in agreement with observations at
wavelengths much longer than the Hubble radius (see Chapter 3). These modes then
enter the Hubble radius one by one, starting with the smallest wavelengths. A Fourier
mode enters the Hubble radius when:

λ(t) = RH(t) ⇔ 2π

k
a(t) =

1

H(t)
⇔ k ∼ a(t)H(t) =

a′(η)

a(η)
[2.16]

Figure 2.2. Evolution of several physical lengths with respect to conformal time η in the
standard cosmological model: wavelengths λ = a 2π

k of the typically observable modes
in the CMB spectrum, and Hubble radius RH . For a color version of this figure, see
www.iste.co.uk/taillet/universe.zip

coming wavevector

comoving coordinate

                                            Wavelengths   

Decelerated expansion  grow slower than Hubble radius  

Condition for Hubble crossing : 

λ(η) = a(η) 2π/k
⇒ RH(η) = c a(η)/ ·a(η)

k ∼ aH ∼ 1/η
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COMMENT ON FIGURE 2.2.– The vertical lines show the time of equality between
radiation and matter (R/M) and between matter and Λ (M/Λ), as well as the time of
photon decoupling (figure obtained with CLASS (class-code.net)).

The observable Fourier modes in the CMB anisotropy spectrum correspond very
roughly to four decades below the current Hubble radius, 10−4RH(t0) < λ(t0) <
RH(t0). Of these wavelengths, the longer ones entered the Hubble radius during
matter domination and the shorter ones during radiation domination.

The Friedmann equation shows that a(η) ∝ η during radiation domination, while
a(η) ∝ η2 during matter domination. In both cases, within a factor of two, a′

a is of
the order of η−1. Consequently, the condition for a mode to be in the super-Hubble
regime, that is, with a wavelength well above the Hubble radius, reads approximately:

λ " RH ⇔ k $ aH ⇔ kη $ 1 [2.17]

2.3.4. Linearized Einstein equation

In order to describe the effects of gravitation in a perturbed universe, the
perturbed Friedmann metric and stress-energy tensor need to be inserted into the
Einstein equation. This yields 10 linear equations that can be separated into four
equations for the scalar modes, four for vector modes and two for tensor modes.

For the scalar sector, the most useful equations in this chapter9 are (in conformal
time and in comoving Fourier space):

2

a2

[
k2φ+ 3

a′

a

(
φ′ +

a′

a
ψ

)]
= −8πG

∑

X

ρ̄XδX [2.20]

2

3

k2

a2
(φ− ψ) = 8πG

∑

X

(ρ̄X + p̄X)σX [2.21]

9. The two equations given here correspond respectively to the Einstein equation for δG0
0

(δG0
0 = 8πGδT 0

0) and for − a2

k2 (kikj − 1
3δijk

2)ḡjk(δGi
k)‖. The components, respectively,

associated with δGi
i with fixed i and with −ikiḡ

ij(δG0
i)‖ are:

2
a2

[
φ′′ +

a′

a
(ψ′+2φ′) +

(
2
a′′

a
− a′2

a2

)
ψ

]
= 8πG

∑

X

ρ̄Xc2sXδX [2.18]

2
k2

a2

(
φ′ +

a′

a
ψ

)
= 8πG

∑

X

(ρ̄X+p̄X)θX [2.19]

but we only make use of them in section 2.5.1 on initial conditions.

dominates on sub-Hubble 
 

Poisson equation : 

 

⇓

− k2

a2 ϕ = 4πG ρ̄total δtotal

dominates on super-Hubble 
 

Using Friedmann : 

 

⇓

2ψ = − δtotal

 from  :∙ Gi
j = 8πG Ti

j
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(ρ̄X+p̄X)θX [2.19]

but we only make use of them in section 2.5.1 on initial conditions.

perfect fluids    ⇒ σX = 0 ⇒ ϕ = ψ

 other scalar equations redundant with upcoming equations of motion (Bianchi identity)∙
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Without details: each decoupled species fulfils energy/momentum conservation:  
✦ continuity equation: 

✦ Euler equation: 
                                         (featuring sound speed  and adiabatic sound speed ) 

In CDM: 
• CDM : negligible pressure/stress: closed system 

• e-/baryons: negligible pressure/stress but Thomson scattering:  

• photons, neutrinos: when not strongly coupled, anisotropic stress  

                                    need Boltzmann equation 

cs ca

Λ

→
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reionization), baryons and electrons interact very strongly by Coulomb interaction,
that is, by electromagnetic interaction between opposite charges. They thus form a
plasma in kinetic equilibrium, which can be described as a single perfect gas, with its
density fluctuations, bulk velocity and isotropic pressure fluctuations. Between
recombination and reionization, electrons and baryons are combined as atoms and it
is equally obvious that they can be described as a single gas. In conclusion, it is
unnecessary to distinguish electrons from baryons in the context of CMB physics.
Thomson scattering, which at the microscopic level only concerns photons and
electrons, can be effectively formulated as a coupling between, on the one hand,
photons and, on the other hand, the electron-baryon gas. In principle, we could
introduce an acronym to designate the electron-baryon gas. Nevertheless, it is
traditionally referred to as “baryons” only. Baryons prevail over electrons in this
choice of nomenclature because, with a mass that is 2,000 times greater, they mostly
participate to the mass and energy density. In the CMB literature, Thomson scattering
is often presented an interaction between photons and baryons. This is not an error
but a shortcut.

The other species (neutrinos, dark matter) interact with photons only
gravitationally, that is, by way of the Einstein equation, influencing the evolution of
background quantities such as a(η), as well as the fluctuations of the metric φ ! ψ.
In this introductory chapter, we do not explicitly study their evolution equation and
their impact on the CMB. To address these topics, see Lesgourgues et al. (2013).
Finally, the cosmological constant is, by definition, homogeneous, such that its
perturbations vanish.

2.3.6. General equations of motion

The Bianchi identities correspond to the conservation equations for the total
stress-energy tensor of the universe, DµTµ

ν = 0. When all the fluids involved are
decoupled, these equations apply individually to the tensor T µ

X ν of each component
X . We then obtain two equations of motion per fluid X: the continuity equation (or
energy conservation equation) and the Euler equation:

δ′X = −(1 + wX)(θX − 3φ′)− 3
a′

a
(c2sX − wX)δX [2.23]

θ′X = −a′

a
(1− 3c2aX)θX +

c2sX
1 + wX

k2δX − k2σX + k2ψ [2.24]

We introduced in these equations the equation of state parameter
wX(η) ≡ p̄X(η)/ρ̄X(η). In section 2.3.2, we already gave the definition of the sound
speed for each fluid, c2sX(η,(k) ≡ δpX(η,(k)/δρX(η,(k), and the adiabatic sound
speed c2aX(η) ≡ ˙̄pX(η)/ ˙̄ρX(η).
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For perfect fluids, the anisotropic stress σX is zero, whereas csX = caX .
Equations [2.23] and [2.24] then involves only two variables (δX ,θX ) and form a
closed system (together with the Einstein equation).

Thus, to describe the perturbations of cold dark matter of index X = c (for “cold”),
one should consider these equations with wc = ca c = cs c = σc = 0. For “baryons”
(in reality, the electron-baryon fluid) of index X = b, it is necessary to add a Thomson
scattering term in the right-hand side of the Euler equation12, which tends to align the
bulk velocity of photons (X = γ) and baryons:

θ′b = −a′

a
θb + k2ψ +

4

3

ρ̄γ
ρ̄b

τ ′(θb − θγ) [2.25]

For decoupled species, the anisotropic stress σX is non-zero and equations [2.23]
and [2.24] do not form a closed system. This shows the need for a more complete
description using kinetic theory, that is, distribution functions in phase space and
Boltzmann equations. In real space, the distribution function fX(η,)x,)p) depends on
conformal time, position and momentum. For a decoupled species such as neutrinos,
X = ν, the Liouville equation indicates that along each spacetime geodesic, this
distribution evolves as d

dηfν = 0. For photons, the Thomson scattering term, which
also depends on the electron distribution, needs to be added: formally, this term is a
functional C of the functions fγ and fe. One then obtains a Boltzmann equation of
the form:

d

dη
fγ = C [fγ ,fe] [2.26]

This is the most important equation in this chapter. We give more details about it
in the next section.

2.4. Formal description of temperature anisotropies

2.4.1. Photon propagation

In linear perturbation theory, the Boltzmann equation [2.26] is decomposed into
homogeneous terms (independent of )x and of the direction of the momentum )p)
and first-order perturbations. The term dfγ/dη represents a total derivative along a

12. For further accuracy, one can also take into account the sound speed of baryons, cs b, which
is significantly larger than that of cold dark matter, but still very small compared to the speed of
light, and thus with a negligible impact on the CMB spectrum.
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Summary: perturbed degrees of freedom and 

equations of motion

Degrees of freedom 

Gravitational potential  

Scale factor distortion  

CDM density/velocity  

Baryon density/velocity  

Photons  

[ Neutrinos  ]

ψ(η, ⃗x)

ϕ(η, ⃗x)

δc(η, ⃗x) , θc(η, ⃗x)

δb(η, ⃗x) , θb(η, ⃗x)

fγ(η, ⃗x, p, ̂n)

fν(η, ⃗x, p, ̂n)

Equation of motion 

Einstein 00:  

Einstein ij:  

continuity  + Euler  

Continuity  + Euler  (incl. Thomson) 

Boltzmann Thomson 

[ Boltzmann  ]

ϕ, ψ ↔ δ

(ϕ − ψ) ⟶ σ

δ′ c θ′ c

δ′ b θ′ b
d
dη

fγ =
d
dη

fν = 0
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Blackbody shape: 

Up to very good approximation: preserved even when leaving thermal 
equilibrium, but becomes direction-dependent due to gravitational 
interactions: 
 
 
 

Then:  T(η, ⃗x, ̂n) = T̄(η) (1 + Θ(η, ⃗x, ̂n))

110 The Young Universe

momentum shift along each geodesic, d ln p = dp/p, is independent of the
momentum p. Each momentum p evolves, and so does the temperature T that
represents the typical photon momentum, but there is no mechanism to generate
distortions with respect to a blackbody. On the other hand, photons going through the
same point traveled along different geodesics and crossed different metric
fluctuations. The parameter T thus acquires a dependence with respect to the
direction of propagation n̂, which means that the photons are described entirely by a
variable T (η,"x,n̂), and not only T (η,"x) as in thermal equilibrium.

2.4.1.3. Linearized Boltzmann equation

We can therefore insert into the Boltzmann equation [2.26] a blackbody
distribution with a direction-dependent temperature:

fγ(η,"x,p,n̂) =
1

e
p

T (η,"x,n̂) − 1
[2.29]

and expand it at first order in perturbations. After defining the first-order relative
temperature fluctuation Θ(η,"x,n̂) ≡ δT (η,"x,n̂)/T̄ (η), we can express the total
derivative dfγ/dη at first order in perturbations, use the geodesics equation [2.27] and
obtain14 the linearized Boltzmann equation for photons:

Θ′ + n̂ · "∇Θ− φ′ + n̂ · "∇ψ = −Γγ (Θ−Θ0 − n̂ · "vb) [2.30]

Here Γγ = −τ ′ is the Thomson scattering rate, Θ0(η,"x) is the photon temperature
fluctuation at point "x averaged over all directions n̂:

Θ0(η,"x) =

ˆ
dn̂

4π
Θ(η,"x,n̂) [2.31]

and "vb is the baryon bulk velocity, equal to that of electrons, "ve = "vb. The right-hand
side of equation [2.30] is presented here in a simplified manner, neglecting the angular
dependency of the Thomson cross-section: this approximation is sufficient at the level
of this chapter, but the angular dependency must be restored to understand CMB
polarization (see section 2.7.1). By shifting from [2.26] to [2.30], we have reduced the
dimensionality of the problem, since the variable Θ no longer depends on the norm of
the momentum p: we have made use of the fact that the spectrum is a blackbody-type
spectrum to eliminate the momentum from the equation of motion.

14. The derivation of equation [2.30] from the initial equation [2.26] requires many steps, which
the reader will find, for instance, in the more detailed presentations of (Hu et al. 1998; Durrer
2008).
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light-like geodesic. At first order, one merely has to consider unperturbed geodesics
of the flat Friedmann metric, that is, straight lines13 in three-dimensional space.

2.4.1.1. Geodesics equation

The geodesic equation shows that the norm of the individual momentum p of a
photon evolves along its path as:

d ln(a p)

dη
= φ′ − n̂ · #∇ψ [2.27]

where n̂ = #p/p is a vector of norm one pointing in the direction of propagation of the
photon. Equation [2.27] first indicates that in the absence of metric fluctuations, the
momentum would simply be redshifted as p ∝ a−1, due to the expansion stretching
the photon wavelength and reducing its energy. Metric fluctuations modulate this
average evolution. The dilation effect associated with φ′ represents a local fluctuation
of the expansion rate, and thereby of the stretching effect. The gravitational Doppler
effect associated with n̂ · #∇ψ represents the energy gains and losses recorded by
photons falling into or leaving a gravitational potential well.

2.4.1.2. Photon temperature

In the primordial universe, photons are in thermal and chemical equilibrium at
every point with, consequently, a Bose–Einstein distribution of zero chemical
potential, that is, a blackbody spectrum:

fγ(η,#x,#p) =
1

e
p

T (η,"x) − 1
[2.28]

where T (η,#x) is the local value of the photon temperature. This distribution is
isotropic, that is, independent of the direction n̂ of #p. In the instantaneous decoupling
approximation, this blackbody distribution freezes at the time of recombination.
Thereafter, T no longer has the thermodynamic interpretation of a temperature, but
continues to exist as a unique parameter of the blackbody distribution. For simplicity,
it will still be called “temperature”.

If the photons interact only gravitationally after decoupling, the blackbody
distribution cannot be altered. This is easily deduced from the geodesic equation
[2.27] which shows that, even in the presence of metric fluctuations, the relative

13. Genuine geodesics are slightly deflected by metric fluctuations, but this only plays a role
at second order in perturbations, relevant for the description of CMB gravitational lensing (see
section 2.7.2).

dilation

gravitational Doppler

redshifting along 
geodesics:

̂n

γ γ

γ

γ
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Temperature fluctuation:   

Monopole and dipole of  account for local density & bulk velocity: 

 

Linearised Boltzmann: 

 

Thomson scattering wants to align velocity of photons vs. electron/baryons, 
and to wash out higher multipoles!

T(η, ⃗x, ̂n) = T̄(η) (1 + Θ(η, ⃗x, ̂n))
Θ

Θ(η, ⃗x, ̂n) = 1
4 δγ(η, ⃗x) + ̂n ⋅ ⃗vγ(η, ⃗x) + higher multipoles

Θ′ + ̂n ⋅ ⃗∇ Θ − ϕ′ + ̂n ⋅ ⃗∇ ψ = − Γγ ( ̂n ⋅ ( ⃗vγ − ⃗vb) + higher multipoles)
dilation

gravitational Doppler

Thomson scattering
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Start from linearised Boltzmann and perform: 
1. Fourier transformation 

2. Legendre expansion  

 Solved together with previous equations by Einstein-Boltzmann solvers 
     (CMBFAST, CAMB, CLASS…)

Θ(η, ⃗k, ̂n) = ∑
l

(−i)l(2l + 1) Θl(η, ⃗k) Pl( ̂k ⋅ ̂n)

⇒
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2.4.1.6. Boltzmann hierarchy

Equation [2.37] can be expanded into multipoles, using the orthogonality property
of Legendre polynomials. After inserting expression [2.35] into the terms Θ and Θ′,
replacing cosα = P1(cosα) and 1 = P0(cosα) and, finally, using the relations [2.36],
we obtain a differential equation for each coefficient of the Legendre expansion:

δ′γ +
4

3
θγ − 4φ′ = 0 [2.38]

θ′γ + k2
(
−1

4
δγ + σγ

)
− k2ψ = τ ′(θγ − θb) [2.39]

Θ′
l −

kl

2l + 1
Θl−1 +

k(l + 1)

2l + 1
Θl+1 = τ ′Θl ∀l ≥ 2 [2.40]

These equations form the Boltzmann hierarchy. The first two equations are
perfectly consistent with the general stress-energy tensor conservation equations
[2.23] and [2.24] with, in addition, the Thomson scattering term. When τ ′ is very
large compared to a′/a, the last equation forces Θl to vanish for l ≥ 2; when τ ′

decreases, this equation shows how couplings between neighboring multipoles allow
for a transfer of perturbation amplitude from l = 0 and l = 1 (namely from δγ and
θγ) to higher order multipoles.

Physically, this corresponds to the fictitious experience of an observer in the
universe. As long as the photons are strongly coupled, the observer perceives
temperature anisotropies only as a dipole corresponding to their velocity relative to
the photon-electron fluid. Then, as time passes and the mean free path increases, the
observer sees photons originating from gradually more distant regions or, more
precisely, from last scattering spheres of increasing radius. These photons show to
the observer an image of these spheres, with inhomogeneities seen under a smaller
and smaller angle, corresponding to a larger and larger multipole moment l.

Equations [2.38]–[2.40] play a central role in the numerical computation of the
CMB spectrum by so-called Einstein–Boltzmann codes: CMBFAST (Seljak and
Zaldarriaga 1996), CAMB (Lewis et al. 2000) or CLASS (Lesgourgues 2011; Blas
et al. 2011). Nevertheless, they will hardly be involved in the qualitative reasoning of
this chapter.

2.4.2. Temperature anisotropy in a given direction

The map of anisotropies visible today (η = η0) from our position in the universe
()x = )o with an appropriate choice of origin), looking in a n̂ direction, corresponds to
the function:

relates to Θ2


