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Chapter 1

Recalls on homogeneous
cosmology

Our Universe can be described either on average or taking fluctuations into
account.

Thanks to observations of the Cosmic Microwave background (CMB), which
show temperature fluctuations of the order of O(10°), we have a direct visual
proof that our Universe was nearly homogeneous and isotropic at early times.!
Thus the homogeneity and isotropy of the early universe is a fact established
by observations up to a high degree of confidence. This means that the early
universe can be described mathematically using perturbation theory, with a
homogeneous background plus small perturbations of order O(1075).

We can model the perturbations and simulate their evolution. As we will
see in chapter VI, these simulations allow us to understand how the universe
became very inhomogeneous today, with clusters and halos of matter separated
by voids, and compact objects like stars and planets. However, even today, the
universe still appears as homogeneous after smoothing the matter distribution
over a scale larger than a few tens of Megaparsecs?, that is, about 10%* meters
or 108 light years. This scale is still about a thousand times smaller than the
diameter of the observable universe, so there is still a wide range of scales over
which the universe can be described as homogeneous today.

Thus, cosmologists can split the study of the observable universe in two
regimes: the regime of linear perturbation theory, which describes all scales
at early times and only large scales at late times, and the non-linear regime,
which describes small scales at late times. The first regime requires a good
knowledge of general relativity and particle physics: it is usually best known by
theoretical physicists. The second is closer to astrophysics, but it can also be
studied at a very theoretical level, using concepts close to quantum field theory
and statistical field theory. However, in this course, due to time constraints, we
will only study linear perturbation theory.

n reality, CMB observations only prove homogeneity on our photon last scattering surface,
rather than in the whole universe at the time of decoupling. We further need to assume that
all observers also see a homogeneous CMB map, and that we are not in a very special position,
in order to conclude that the Universe was close to homogeneous and isotropic at least within
a very wide region that encompassed our last scattering surface. If we relax the assumption
that we are not in a special position, we can build inhomogeneous universe models. Such
models lead to testable predictions which, so far, are not favoured by observations.

21 Mpc ~ 3 x 1022 m ~ 3 x 106 ly.
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One of the great advantages of linear perturbation theory is that the equa-
tions can be split in two sectors: the homogeneous background and the linear
perturbations. In chapter 1 and 2, we will deal with the homogeneous back-
ground, while in the other chapters we will deal with linear perturbations.

1.1 The FLRW model

1.1.1 FLRW metric and cosmological distances

In the course Relativity € Cosmology, you have seen that the most general
homogeneous and isotropic solution of the Einstein equations is given by the
Friedmann-Lemaitre-Robertson-Walker (FLRW) metric,

dr?

2 _ 2,2 2
ds® = —c*dt* + a(t) e

+7r2(d6* 4 sin?0 de?)| . (1.1)

We are using the metric signature (—1, 1,1, 1) which is slightly more common in
the fields of relativity and cosmology, while the metric signature (1, —1, -1, —1)
is slightly more common in particle physics.

The FLRW metric is appropriate to describe our universe at the background
level. Here t is called the cosmological time while (r, 0, ¢) are the spatial comov-
ing coordinates. The function a(t) is called the scale factor. Physical distances
are given by the distances defined in coordinate space multiplied by the scale
factor. Thus, the increase of a(t) accounts for the expansion of the universe.
Observers at fixed coordinates are called comoving observers. These observers
have no motion, and still the distance between them increases together with
a(t), as a pure effect of general relativity and of the deformation of spacetime.
Observers with non-static coordinates have a so-called peculiar velocity. The
cosmological time ¢ plays the role of proper time for any comoving observers.
Indeed, along the worldline of comoving observers, one has ds? = —c2dt? and
thus dt = v/—ds?/c, which is the general definition of proper time.

We will sometimes use alternative time coordinates, such as the conformal
time 7 defined through a dn = dt and thus through

Ldt
= .

with an arbitrary reference time t.. Conformal time often leads to simpler
equations because with such a coordinate system, the metric is very simple: it
has an overall scaling factor (often called a conformal factor) a:

2

1 — kr?

ds* = a(n)? {c%ln? + { + 7r2(d6?* 4 sin®0 d¢>2)] } : (1.3)

The constant k is related to the homogeneous spatial curvature of the uni-
verse. The comoving radius of curvature of the universe is 1/ \/m , with positive
or elliptic curvature for £ > 0 and negative or hyperbolic curvature for k < 0.
The universe may then have the geometry of a 3D-sphere or a homogeneous 3D
horse saddle respectively. The physical radius of curvature is R.(t) = a(t)/+/]k|.

There is another way to construct a physical distance from the FLRW metric.
First, one can define the expansion rate or Hubble rate as H(t) = a(t)/a(t),
which has the dimension of inverse time (a dot will always denote a derivative
with respect to cosmological time ¢). Then one can construct the distance
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Ry (t) = ¢/H(t) = ca/a called the Hubble radius. The Hubble radius is a second
radius of curvature of the FLRW spacetime, independent of the spatial curvature
radius. R, gives the curvature of spatial slices at fixed time. Intuitively, Ry
further contributes to the curvature of the 2D manifold of coordinates (t,r) for
fixed (0, ).

When you want to describe a phenomenon in the universe that takes place on
ascale A € R. and A\ < Ry, like, for instance, some every-day life phenomenon
on the earth, or even some phenomenon on stellar system scales or sub-galactic
scales, you can usually neglect general relativistic effects and employ Newtonian
mechanics in Minkowski spacetime.

When the spatial curvature vanishes, £k = 0, it is equally convenient to
use spherical comoving coordinates (r, 0, ¢) or cartesian comoving coordinates
(z,vy, z) such that

ds* = —c*dt® +a(t)? [dr® + r?*(d6” + sin®0 d¢?)] (1.4)
= —c2dt* + a(t)? [dx2 +dy? + dzz] . (1.5)

In Relativity € Cosmology, you have also seen that the wavelength A of
the light emitted by objects at time ¢ and seen by observers at time ty gets
redshifted by a factor 1+ z = A(to)/A(t) = a(to)/a(t) = ap/a, as a pure effect
of the expansion of the universe. The traditional Doppler effect would bring an
extra contribution to 1 + z when the emitter or the observer have a peculiar
velocity. The expansion of the universe always leads to a(t) < a(tg) for any
t < to. Thus, in absence of peculiar velocities, the light can only be redshifted,
with z > 0, rather than blueshifted, with z < 0. The portion of spacetime that
we can see is called our past-light cone. The images of objects that we can
see have been emitted in the past. For instance, when we see an image that
was emitted at a time when the scale factor was half of its current value, the
wavelength gets stretched by a factor 2 and the image is seen with a redshift
z =2 —1=1. The redshift z can be used as a measure of both distance and
look-back time? to objects on our past light-cone. Thus, cosmologists often say
that “a galaxy is located at a distance z = 3” or that “an event took place at
redshift ”z=10", even if these are slight abuses of language.

In lots of forthcoming calculations, we will need to perform changes of vari-
able between t,n,a and z. These changes of variables rely on the differential
relations:

adn = dt, da = a H dt, dz:fa(tg# . (1.6)
These relations can be combined in different ways, for instance:
a(ty) da a(t
dz:—%gdt:—%Hdt:—(l—kz)Hdt. (1.7)
In order to do any exercise of cosmology, you should be very fluent with these
frequently used relations.

Equal-time distance and comoving distance. We can define equal-time
distances or instantaneous distances as proper distances between two events
with the same time coordinate. We will usually assume that we? are located at

3The “look-back time” means “the time with respect to today”, so the cosmological look-
back time to an object emitting its image at ¢ reads tp — ¢, and the conformal look-back time
reads no — 7.

dhere “we” means “observers” or “mankind” or “some instrument located on earth or
onboard a a satellite”.
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the origin of the spherical comoving coordinate system. This does not mean that
we are located at a special place form a physical point of view, since the FLRW
metric is homogeneous: the origin plays a special role at the mathematical level,
but not at the physical level. Then, let us measure the proper distance between
two events: us at time ¢ and an object of coordinates (r, 8, ¢) at time ¢. Imagine
that you simply draw a line relating these two events. Along this line, the line
element is

a2 Y2
ds = (Z(t) |:1—k",“2:|

Thus the proper distance d is

a=a [ [ ] (19

We usually decompose this distance as d = a(t) x(r) with

x(r) = /OT [iiﬂ} . : (1.10)

The quantity x(r) is not a physical distance, it is a coordinate distance. The
coordinate distance x(r) between two comoving objects is constant in time: thus
x(r) is called the comoving distance. However, the physical distance between
two comoving objects increases proportionally to the scale factor. You have seen
in the course Relativity & Cosmology that there is a simple analytical relation
between x and r:

(1.8)

ﬁ sin ™' (VEr) it k>0,
x(r)y=4q r if k=0, (1.11)
\/%7 sinh ' (v=kr) if k<O.
We can invert this relation as
ﬁ sin(\/Ex) if k>0,
r=f(x)=¢ x if k=0, (1.12)

\/%7 sinh(v—kx) if k<O.

Equal-time distances and comoving distances are a purely abstract notion, like
coordinates. We cannot infer them directly from observations, since we can
only see objects in our past-light cone, rather than in a slice of spacetime at
time ty. Suppose that an object located at comoving radius r emitted an image
at time t that we see today at ty. The equal-time distance and the comoving
distance between us and the object refers to the distance between us and the
object today, assuming that it has no peculiar velocity and that it remained at
the same spatial coordinates. Thus this is really purely abstract.

We keep assuming that light was emitted at time ¢ (and conformal time 1)
by an object located at comoving radius r, and reaches the origin at time ¢y (and
conformal time 79). Along the radial worldline of photons, ds = 0 = df = d¢
and 1o

~2
cdt:a[ldrkﬂ} =cadn . (1.13)
Thus

a2 1?2
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x(r) = /O Lfir?} - = 0/:0 dij = c(no —n) . (1.15)

The quantity ng — n is the look-back time to the object. Thus, in general,
we can say that “the comoving distance to an object is equal to is conformal
look-back time multiplied the speed of light”. Using simultaneously conformal
distances and comoving time is a way to make all relations look artificially like
in Minkowski space, even if the universe expands and has spatial curvature.

Since equal-time distances and comoving distances are a purely abstract,
they have a limited interest. You have seen in the course Relativity €& Cosmology
that we can also define some directly measurable distances in at least two ways:
the luminosity distance and the angular diameter distance.

and

Luminosity distance. The luminosity distance dj is the distance inferred
at to from the comparison between the absolute luminosity L and apparent
luminosity [ of an object located at radial coordinate r and redshift z, emitting
is image at t. You have already proved that

dr, ) r (1+2)* =alte) (1+2) fr(x) (1.16)

— alty) (1+2) f (/0 Lf”;rz} 1/2) (1.17)

= att) 1+ i t (‘i’;) (118)

= alto) (L4 2) fr (c(no—mn)) (1.19)
= a(to) (1+2) fr (/0 a(t(f)d:l(z)> . (1.20)

This notion is only useful for objects whose absolute luminosity can be deter-
mined in some indirect way, not knowing the distance to them. Such objects
exist and are called standard candles. For standard candles, we can measure
independently L, [ and z. Thus we can measure independently d; and z. Af-
ter considering several such objects, we can determine experimentally the curve
dr(z). This curve depends both on the spatial curvature parameter k and on
the expansion history H(z). Thus, measuring the luminosity distance - redshift
relation is one way to constrain the expansion history and the curvature of our
universe.

If
I
2

Angular diameter distance. The angular diameter distance d4 is the dis-
tance inferred from the comparison between the proper length A and the angular
size 0 of a stick located at radial coordinate r, emitting its image at ¢. You have
already proved that
a(t dL

=a(t) r= % fe(x) = 0t (1.21)
This notion is only useful for objects whose proper length can be determined in
some indirect way, not knowing the distance to them. Such objects exist and
are called standard rulers. For standard rulers, we can measure independently
A, 6 and z. Thus we can measure independently d4 and z. After considering
several such objects, we can determine experimentally the curve da(z). This
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curve depends both on the spatial curvature parameter k£ and on the expansion
history H(z). Thus, measuring the angular distance - redshift relation is an-
other way to constrain the expansion history and the curvature of our universe.
However, the luminosity distance and the angular distance provide the same
type of information, since they are trivially related by dr(z) = (1 + 2)?d4. We
will see important applications of these concepts in the next sections.

If we compare these distances with the equal-time distance evaluated today,
given by equation (1.9) with ¢ = to, that is, d = a(tg)x, we see that da, dr,
and d are all different. They differ, first, by three different powers of the factor
(1 + 2), and second, by the fact that d involves the comoving distance y, while
d and dy, involve the comoving radius r = fi(x):

_ alto)
142

d=a(to)x , dr=alte) (1+2) fr(x), da Fe(X) - (1.22)

1.1.2 Momentum of particles in the FLRW universe

In chapter 2, when we will study the evolution of particles in the universe, we
will need to understand how the momentum of individual particles evolves when
the universe expands, both for massless and massive particles.

From now on, we will adopt natural units in which ¢ = 1. Additionally, in
the following proof, we will assume for simplicity that the spatial curvature is
zero and that we can write the FLRW metric in cartesian comoving coordinates

ds? = —(dz°)? + a(2°)? [(dz")? + (do?)? + (dz®)?] (1.23)

where 20 = t is proper time, while z* are cartesian comoving coordinates. With
a non-zero spatial curvature, the intermediate steps of the calculation would be
more cumbersome, but the final results would be identical.

In the course Relativity €& Cosmology, you studied the difference between
“valid coordinates” and “physical coordinates”:

e valid coordinates are such that the metric is well behaved and that all cal-
culations can be performed without any problem. The FLRW coordinates
of equation (2.1) are a valid coordinate system.

e physical coordinates represent the actual time and actual distances mea-
sured by the clocks and rulers of observers at rest in the coordinate system.
In special relativity, the coordinates were always physical. In GR, one can
recovers locally some physical coordinates by doing a change of variable
that brings the metric locally to the Minkowski form, up to order two
corrections.

Of course, the spatial comoving coordinates of the flat FLRW universe are not
physical coordinates, since g; = a(z°)? # 1. Let us assume that we want to
define physical coordinates T close to a particular event E of spacetime. Ob-
viously, the change of coordinates that leads to physical coordinates % around
this event is such that

ox#

r
0x™ |

= diag (1,a(z%) ", a(z°) ", a(z) ).

Only then can the FLRW metric

Guv = diag(1, a(x0)27 a(x0)2, a(mO)Q)
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be transformed in F into the Minkowski metric®
Nap = diag(—1,1,1,1).

Thus, in the new coordinate system and in E, infinitesimal intervals of time are
unchanged (t = 20 = z° represents proper time in the two coordinate systems),
and infinitesimal distances are multiplied by a, showing as usual that physical
distances in FLRW are given by coordinate distances times a.

Under this change of coordinate, the energy-momentum 4-vector P* trans-
forms like any contravariant vector (e g. like z#): P° = P9 P! = q(t)P’. The
coordinates which are (locally) physical are the ones with bars. Hence, like in
SR, we can say that P° (resp. P?) represents the energy (resp. 3- momentum) of
particles measured by comoving observers, which are by definition at rest with
respect to ¢, and hence also at rest locally with respect to .

We conclude that the energy-momentum 4-vector P* defined in the FLRW
coordinate system has the following interpretation: P? is the energy of particles
measured by comoving observers; and the product aP’ is the 3-momentum
of particles measured by comoving observers. Since the vector aP’ plays an
important role, we will denote it p® (this notation is lighter than the previous
P?, although it is the same thing: p' = P? = aP?).

Next, we want to know how the physical energy and momentum of a free-
falling particle evolves in the FLRW universe, as a consequence of cosmological
expansion. This will be given by the geodesic equation. We will distinguish two
cases: massive and massless (ultra-relativistic) particles.

Momentum of massive particles

Consider a massive particle following a geodesic z#(\), where A is a parame-
ter monotonically increasing along the trajectory. By deﬁnition the energy-
momentum 4-vector P* is the tangent vector P* = mdz= dA , provided that A is
the proper time of the particle and is normalised in such a way that:

P.-P=P,P' =g, PP =m0 -U=-m?. (1.24)

(This normalisation condition is equivalent to requiring that A is the proper time
of the particle, which is different from the proper time ¢t = 2° of all comoving
observers, since the particle is not comoving.) The geodesics equation

d?z® dxt dx¥
a 7 1.2
e ey =0 (1.25)
gives after multiplication by m?
dpP* o y
m— + I, PPY =0. (1.26)

5You could naively think that the transformation from comoving coordinates to coordinates
that are locally physical in E is given by 29 = 20, ' = a(2%)z’. Things are not that
simple, because we would then get a mteric Guv (z%) such that g;;(z%) = (a(z®)/a(z}))? =
1+ 2[a(z%)/a(z%)](@0 — %) + O((x® — 2%)?). In the vicinity of E, the new metric would
differ from the Minkowski one by terms linear in (z° —2%) and would not describe the tangent
space in E to the spacetime manifold. We could fix this by adding to the transformation law
a higher-order term z! = a(:c%) 1zt — [a(:I:E)/a(a; )2)(@ — 25)(2® — 2%). With such a
correction, everything we wrote in the main text still holds, but additionally, there are some

cancellations leading to g;; = 14+ O((z0 — 2%)?).
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We can write the first term as

dpe dt dP~ AP~
=m— =pY 1.2
T TN at dt (1.27)

SO
dpP®

dt
This is true in general. Now we want to write the evolution of the spatial part
P? in the flat FLRW universe. After computing the Christofell symnbols, one
finds that I'tyy = I}, = 0, and I'y; = I'}y = 65 (1), where a = de So

a

P +T%,PYPY =0 (1.28)

Pt : : Pt _a o
o H P PO+ T PP =0 = PP— + QEP‘)Pl : (1.29)

PO

So PO can be simplified, and we are left with

dP?

a -
2—-P'=0. 1.30
dt + a ( )
Finally, this can be written as
dP? da
- = —-2— 1.31
ji r (1.31)

which shows that P? scales like a(t)~2 when the universe expands. Hence the
physical momentum defined at each event by p* = a(t) P’ scales like a(t)~! due
to the expansion. We can infer the behavior of the energy from the condition
G PP PY = —m?. Tt gives

—(P%)? +a(t)?6;;P'P! = —m? . (1.32)

We write this replacing PY by the physical energy E and aP? by the physical
momentum pi: o

Since these are physical quantities, the previous relation is like in SR. The
modulus |0;;p’p?| can be denoted p, and we get

E=+/m?+p?. (1.34)

We have seen that p’ scales like a~! with the expansion of the universe, so p?
scales like a=2. We conclude that the energy of massive particles is nearly con-
stant in the non-relativistic limit (p < m) and scales like =1 in the relativistic
limit (p > m) .

Momentum of massless particles

The behavior of the physical energy and momentum of massless particles is
exactly what would guess from the relativistic limit of massive particles: so
one could skip this subsection. However, momentum is defined differently for
massless particles, so for clarity, we give here the full proof in the exact massless
limit.

Consider a massless particle following a geodesic (), where \ is a parame-
ter monotonically increasing along the trajectory. We have seen that th(i energy-

X

momentum 4-vector P* is the vector tangent to the trajectory, P* = %7 where

)\ is normalised in such a way that P° = P? is the physical energy of the photon
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measured by an observer at rest in the coordinate system, P° = hv. We also
get by construction

P.P=P,P' =g, P'P'=0. (1.35)
The geodesics equation
d%z® dz# dx
— o — =0 1.36
d\? B dA dA (1.36)
gives
dpP«
re pPtp’=0. 1.
Y +1,, 0 (1.37)

We can write the first term as

dP®  dt dP® o AP
d\  d\ dt =P dt (1.38)

S0 apo
PO

dt
This relation is identical for massive and massless particles. Hence the rest of
the proof is identical: P scales like a(t)~2 and p’ = a(t)P* scales like a(t)~!.
Finally the condition (1.35) gives E = 1/a?0;;P*P7 = p. We find that E scales
like a(t)~!. Since E is the inverse of a wavelength, this is consistent with the
fact that wavelengths A(¢) scale with a(t).

+T%, PPV =0. (1.39)

1.1.3 Friedmann and energy conservation equation

In the course Relativity & Cosmology, you have seen that when you substi-
tute the FLRW metric in the Einstein equation G = 87G T?), you obtain the
Friedmann equation:

.\ 2
a 87rG k

where p is the total background energy density in the universe. It is one of the
components of the background stress-energy tensor of the universe,

T, = (p+pU"U, + pdy = ; (1.41)

OOO\é
oo O
o o o
" O OO

where p is the background pressure. This is the most general form of the
stress-energy tensor that is compatible with the assumption of homogeneity
and isotropy.

The Einstein equation is always relating the curvature of spacetime to the
matter content. The Friedmann equation is a particular example of such a
relation. This is particularly obvious when we rewrite the Friedmann equation
in the equivalent form

a

2
Goo = 3 % + <a> ] =3[R.?+ Ry’] =87Gp . (1.42)
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You have already seen that the Einstein equation implies Bianchi identities
of the form G¥, = T%, = 0. The first Bianchi identity T%;u = 0 is nothing
but the energy conservation equation. In the FLRW case this relation reads

p=-32+). (1.43)

Here, p and p stand for the total energy and pressure, summed over each in-
dividual component of the universe, for instance, photons (i.e. electromagnetic
radiation) and non-relativistic matter. However, when the species are all decou-
pled form each other, with no transfer of energy and momentum between them,
the relation must be satisfied by each individual species i: p; = —3%(/)1» + pi).

Hence, the relation between p and a (i.e. the way in which the energy gets
diluted with the universe expansion) depends crucially on the pressure — or more
precisely, on the equation of state p(p). The most important limiting cases in
cosmology are:

e non-relativistic matter, for which p ~ 0 and

p= —3gp =  pxas (1.44)
This result is obvious. For objects with negligible velocities, the energy
density is equal to the mass density, which is conserved inside any given
comoving volume, since the number of comobile objects in a comoving
volume® is by definition constant. Since a comoving volume V increases
like V o @® in physical units, p decreases like a=3. In the jargon of
cosmology, the non-relativistic component of the cosmological fluid is just
called “matter”.

o ultra-relativistic matter, for which the equation of state reads p = p/3,
and
a —4

' 1
p=—32 <1 + ) p=-4% =  pxat (1.45)
a 3 a

Thus the energy density of an ultra-relativistic fluid gets diluted faster
than that of non-relativistic matter. The reason is that the energy of
each individual photon or massless particle is given by E = hv = h/\.
X gets redshifted by the expansion, thus E o< ¢!, in order to respect
energy conservation (having E' = constant for an ultra-relativistic particle
in an expanding universe would be a violation of energy conservation, with
energy creation out of nothing. This effect, together with that of dilution,
gives p oc a~%. In the jargon of cosmology, the ultra-relativistic component
of the cosmological fluid is just called “radiation”.

e a cosmological constant, for which the equation of state reads p = —p, and

p=0 = p = constant. (1.46)

SIn cosmology, we use very often the notion of comoving volume. This means “a three-
dimensional volume whose boundary is defined by fixed comoving coordinates”. Thus, by
definition, comoving particles can be either inside or outside a comoving volume, but cannot
cross its boundaries. The physical volume of a comoving volume ¥V must then be proportional
to a3. Indeed, if we call Vo the “coordinate volume” of V), its physical volume must be
V =Vyad.
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HZ,

Figure 1.1: Evolution of the square of the Hubble parameter, in a scenario in
which all typical contributions to the universe expansion (radiation, matter,
curvature, cosmological constant) dominate one after each other.

Such an energy does not get diluted by the expansion! A priori, a cos-
mological constant could be present in the universe, either as a purely
geometrical term (as Einstein once proposed) or as some form of energy
never being diluted. The vacuum energy which appears in quantum field
theory (in particular, during a phase transition such as a spontaneous
symmetry breaking) is of this kind: it does not dilute, and as long as
the fundamental state of the theory is invariant, it remains indistinguish-
able from a cosmological constant. We will see that this term is probably
playing an important role in our universe.

1.1.4 Various possible scenarios for the history of the uni-
verse

Let us write the Friedmann law including all possible contributions to the ho-
mogeneous cosmological fluid mentioned so far:

L\ 2
a 81 81G k A
= () G G (147)

where pg is the radiation density and py; the matter density. The order in which
we wrote the four terms on the right—hand side — radiation, matter, spatial
curvature, cosmological constant — is not arbitrary. Indeed, they evolve with
respect to the scale factor as a=*, a2, a=2 and a. So, if the scale factors keeps
growing, and if these four terms are present in the universe, there is a chance
that they all dominate the expansion of the universe one after each other (see
figure 1.1). Of course, it is also possible that some of these terms do not exist

at all, or are simply negligible. For instance, some possible scenarios would be:

e only matter domination, from the initial singularity until today (we’ll come
back to the notion of Big Bang later).
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e radiation domination — matter domination today.
e radiation dom. — matter dom. — curvature dom. today
e radiation dom. — matter dom. — cosmological constant dom. today

But all the cases that do not respect the order (like for instance: curvature
domination — matter domination) are impossible.

During each stage, if we assume that one component strongly dominates the
others, the behavior of the scale factor, Hubble parameter and Hubble radius
are given by:

1. Radiation domination:

-2
a _ 1

— xa L at)o«ctt? O H{) = = Ry(t)=2t.  (1.48)
So, the universe is in decelerated power—law expansion.

2. Matter domination:

a2 3 973 2 3

—oxa®  alt)xt?®, H(t)=— Ru(t) =5t (149)
a

Again, the universe is in power-law expansion, but it decelerates more
slowly than during radiation domination.

3. Negative curvature domination (k < 0):

-2
a _ 1

G oxa 2 a(t) o t, H(t) =~ Ry (t) =t. (1.50)
A negatively curved universe dominated by its curvature is in linear ex-
pansion.

4. Positive curvature domination: if £ > 0, and if there is no cosmological
constant, the right—hand side finally goes to zero: expansion stops. After,
the scale factor starts to decrease. H is negative, but the right—-hand side
of the Friedmann equation remains positive. The universe recollapses. We
know that we are not in such a phase, because we observe the universe
expansion. But a priori, we might be living in a positively curved universe,
slightly before the expansion stops.

5. Cosmological constant domination:

:2
a
ol constant, a(t) o exp(H t), H=1/Ry =+/A/3. (1.51)

The universe ends up in exponentially accelerated expansion.

So, in all cases, there seems to be a time in the past at which the scale factor
goes to zero, called the initial singularity or the “Big Bang”. The Friedmann
description of the universe is not supposed to hold until a(¢) = 0. At some time,
when the density reaches a critical value called the Planck density, we believe
that gravity has to be described by a quantum theory, where the classical notion
of time and space disappears. Some proposals for such theories exist, mainly in
the framework of “string theories”. Sometimes, string theorists try to address
the initial singularity problem, and to build various scenarios for the origin of
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the universe. Anyway, this field is still very speculative, and of course, our
understanding of the origin of the universe will always break down at some
point. A reasonable goal is just to go back as far as possible, on the basis of
testable theories.

The future evolution of the universe heavily depends on the existence of a
cosmological constant. If the latter is exactly zero, then the future evolution
is dictated by the curvature (if & > 0, the universe will end up with a “Big
Crunch”, where quantum gravity will show up again, and if £ < 0 there will be
eternal decelerated expansion). If instead there is a positive cosmological term
which never decays into matter or radiation, then the universe necessarily ends
up in eternal accelerated expansion.

1.1.5 Cosmological parameters

In order to know the past and future evolution of the universe, it would be
enough to measure the present density of radiation, matter and A, and also to
measure Hy. Then, thanks to the Friedmann equation, it would be possible to
extrapolate a(t) at any time”. Let us express this idea mathematically. We take
the Friedmann equation, evaluated today, and divide it by H2:

G k A

1= o+ pup) — —oe 4 ——
3H? (pro + pmo) ZHZ T 3H2

(1.52)

where the subscript 0 means “evaluated today”. Since by construction, the
sum of these four terms is one, they represent the relative contributions to the
present universe expansion. These terms are usually written

8rG
Q = —pw, 1.53
3z (1.53)
8rG
Qn = —=pPmo, 1.54
3Hg Pmo ( )
k
Q. = ——— 1.55
k G%Hg ; ( )
A
Q = —_— ]..
A SHZ (1.56)
(1.57)
and the “matter budget” equation is
Q + Q0+ Q1 +Qp = 1. (1.58)
The universe is flat provided that
Qo=+ Qu + Qp (1.59)

is equal to one. In that case, as we already know, the total density of matter,
radiation and A is equal at any time to the critical density

palt) = 20 (1.60)

7At least, this is true under the simplifying assumption that one component of one type
does not decay into a component of another type, e.g. radiation decays into matter: such
decay processes actually take place in the early universe, and could possibly take place in the
future.
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Note that the parameters Q,, where & € {r,m, A}, could have been defined as
the present density of each species divided by the present critical density:

Q, = 220 (1.61)
Pcr0

The physical density today p;o of a component x can be expressed in standard
units, e.g. g.cm™3. Another alternative is to decompose it using the “reduced
Hubble parameter” h:

H =100 h km s *Mpc™*. (1.62)

Then the physical density today p,o of a component x reads:

3H? 3(Ho/h)?
o = Qp —9 =Qp> 0 1.
pa0 G 8rG (1.63)
= Q,h? x 1.8788 x 107 ?%g.cm™3 . (1.64)

Hence, the physical density can be parametrized with the dimensionless number
Q.h?. Later we will adopt the notation w, = Q,h2.

The parameters 2., w,, Hy, h are all called “cosmological parameters”, bit
of course they are not all insependent of each other. So far, we can say that the
evolution of the Friedmann universe can be described entirely in terms of four
independent parameters, for instance:

Qr, O, U, Ho. (1.65)

One of the main purposes of observational cosmology is to measure the value of
these cosmological parameters.

1.2 Preliminary overview of the ACDM model

In this section, we will very briefly summarise the main assumptions of the
standard cosmological model, without trying to prove them yet. It is only
in the later sections that you will understand precisely how observations (of
primordial element abundances, of CMB anisotropies, etc.) allowed to establish
this model on a firm basis.

1.2.1 The Hot Big Bang model

Obviously our universe contains at least non-relativistic matter and has a non-
zero matter density parameter wy,. Indeed, what we see (planets, stars, inter-
galactic gas) is made up of non-relativistic matter.

The pioneers of the understanding of Big bang Nucleosynthesis, in particular,
George Gamow in 1940, understood that we also need to have a lof of photons
around, in order to increase the expansion rate at the time of nucleosynthesis
and find that the most abundant element in the universe after nucleosynthesis
is hydrogen. We will come back to this in details in chapter II. This prediction
of Gamow has been proved by the discovery of the CMB by Penzias and Wilson
in 1964, with a temperature Tomp = 150 = 2.7255 K. As we shall see later, this
photon temperature today implies a photon density parameter w, ~ 2.49x 107°.
Given the measured value of Hy and h, which corresponds to h ~ 0.7, this
gives 0, ~ 5 x 1075. We will see later that the radiation component of the
universe is made at least of photons and neutrinos, but the most abundant
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ultra-relativistic particles are photons. For the time being, we can neglect the
neutrino contribution and identify the radiation density with the photon density,
such that w, ~ 2.5 x 1072.

If the universe contains only matter and radiation, there should have been
two stages: an early stage of Radiation Domination (RD), with p ~ p, &< a™%,
and a late stage of Matter Domination (MD), with p ~ pn, o a=3. The two

energy densities can be parametrised as

a 4
Pro= P (f) = Qupeo(1+2)*
_ 3Hg 4 _ 3(H0/h)2 4
ap\3 .
Pm = Pmo (ZO) = Qmpco(l + Z)S
3H? 3(Ho/h)?
= Qu—2(1+2)P =wn—— " (1+2)". L.
gLt 2)” =wm—0 = (1+2) (1.67)

Thus the redshift of equality, that is the redshift z.q at which p,, = p, and the
universe goes from RD to MD, can be inferred from
Qn  Wm

We will see in the next subsection how this ratio can be estimated.

In the XXth century, people called “Cold Big Bang” the scenario with MD
only, and “Hot Big Bang” the scenario with RD followed by MD, because in that
scenario, just after the singularity, the universe is dominated by ultra-relativistic
particles with a large pressure p ~ p/3 and thus large kinetic energy, which can
be called “hot”.

The two models competed for many years, but the observation fo the CMB
ruled out the Cold Big Bang model.

1.2.2 The need for a cosmological constant

Once the Hot Big Bang scenario was established in the 1960’s, two big uncer-
tainties remained: is there a curvature dominated stage and/or a cosmological
constant dominates stage at late times? Or, instead, is our universe still domi-
nated by matter today?

It became clear that our universe could not be matter dominated today when
people found that the theoretical age of the universe in a matter-dominated
universe was smaller than the age of the oldest known objects in the universe,
estimated, e.g. from isotope ratios. This was called the age problem. The
solution was to have either Q5 > 0 or Q; < 0.

The evidence for a non—zero cosmological constant has increased consider-
ably in 1998, when two independent groups studied the apparent luminosity of
distant type Ia supernovae (SNIa). For this type of supernovae, astronomers
believe that there is a simple relation between the absolute magnitude and the
luminosity decay rate. In other words, by studying the rise and fall of the lu-
minosity curve during a few weeks, one can deduce the absolute magnitude of
a given SNIa. Therefore, it can be used as a probe of the luminosity distance —
redshift relation, and thus, of the scale factor evolution.

The top panel of figure 1.2 shows the luminosity distance — redshift diagram
for the Pantheon data set, released in 2018. The vertical axis called “magni-
tude” is essentially equivalent to In(dp(z)). The corresponding constraints on
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Figure 1.2: (Top panel) Luminosity distance — redshift diagram with the su-
pernovae of the Pantheon sample. (Lower panel) Same data points and errors,
divided by the theoretical prediction for the best fit ACDM model. Plot taken
from the preprint [arXiv:1710.00845] by D. M. Scolnic et al.
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Figure 1.3: Contours at the 68.3% and 95.5% confidence levels in the (Q,
Q4) plane from historical supernovae data from 1998 (black lines) and from the
2018 Pantheon sample (red contours) These plots are all assuming a ACDM
cosmology, as we are doing in this chapter. Plot taken from the preprint
[arXiv:1710.00845] by D. M. Scolnic et al.

Qn, and Qp are displayed in Figure 1.3. They strongly suggest the existence
of a cosmological constant today (2p > 0) and the fact that the universe is
currently in accelerated expansion. The supernovae data does not say whether
the parameter () is zero, small and positive, or small and negative.
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The possibility to measure independently 24 and i raised from putting
together two types of experiments: the measurement of the luminosity distance-
redshift relation, dr,(z), using Type Ia supernovae at redshifts 0 < z < 1; and
the measurement of the angular diameter distance, d4(z), using the CMB at
redshift z ~ 10%. You will understand the second measurement after the study
of Chapter V on CMB physics.

These two measurements provide two constrains in the plane Q4, Q, that
are two orthogonal ellipses. They show that Q, ~ 0.7 and Qi ~ 0. Thus our
universe is flat, but today, it is dominated by the density of the cosmological
constant. The flatness implies that Q.+, + Q4 = 1. Since €, is of the order of
10~% to 1075, we can neglect the radiation contribution to the budget equation,
and assume simply Q,, + Qx = 1. With Qy ~ 0.7 we get Q,,, ~ 0.3. Thus

W = Qmh? ~0.15 . (1.69)

If the universe is flat, its total density today is given by the critical density.
Finally, the redshift of equality between matter and radiation can be estimated
from

" 0.15
foq = — ~ 6000 . (1.70)

W 25x10
Later on, we will be able to make a more precise estimate taking into account
the neutrino contribution to radiation. We will find that in reality, z.q =~ 3400.
We can also estimate the redshift of equality between matter and A, z5, by
equating the two densities

3H?

m = Qm 1 3 s 1.71
P oLt (1.71)
3H§
= . 1.72
PA A 8 ( )
This gives
O, 1/3 O 1/3

With Qp ~ 0.7 this gives zp ~ 0.3, showing that the onset of Lambda Domina-
tion (AD) is very recent compared to the onset of MD.

1.2.3 The need for Cold Dark Matter

Cold Dark Matter was first introduced to solve astrophysical problems: the
rotation curves of galaxies inside galaxy clusters and that of stars inside galaxies.
These observations required the existence of a form of matter contributing to
gravity but emitting no light.

The nature of this component is still not known. Dark Matter has not been
detected directly, it has been detected only through its gravitational effect.
Among various Dark Matter candidates, you find:

e non-relativistic particles that do not couple with electromagnetism and
thus cannot emit, absorb or scatter light, called Cold Dark Matter parti-
cles;

e ultra-relativistic particles that also do not couple to electromagnetism,
called Hot Dark Matter;
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e modifications of the laws of gravity that would mimic Dark Matter and
solve the galaxy rotation curve problem:;

e a very light and inhomogeneous scalar field filling up the universe and
whose kinetic and potential energy would mimic the role Dark Matter.

Hot Dark Matter was excluded in the 1990’s because it would contradict
observations concerning the formation history of galaxies and galaxy clusters
(in particular, the fact that smaller objects form before larger objects, which
is called hierarchical structure formation). Scenarios based on modifications of
gravity were excluded by several observations between 2000 and 2010, including
the map of CMB anisotropies and the observation of collisions between clusters
(but some people do not acknowledge these observations and still believe in
these modified gravity scenarios). Finally, highly precise observations of CMB
anisotropies bring an excellent confirmation of the CDM assumption, but the
scalar field assumption is also doing well, because current observations are not
accurate enough to distinguish between CDM and ultra-light scalar dark matter.

We conclude that the minimal model of the universe is based on four species:

e Cold Dark Matter, with a density parametrized with w.

e the rest of matter, that is, ordinary massive particles which belong to the
Standard Model of particle physics. We will see that the most abundant
particles today are ordinary atoms in their neutral or ionised form. Most
of their energy density comes from the rest energy of the nuclei, that is,
from the rest energy of protons and neutrons, which are called baryons.
Thus, by tradition, cosmologists call ordinary matter “baryons”. Their
density is parametrised with wy,. The total non-relativistic matter density
today is parametrised by wy,, = wy + we.

e radiation, which consist mainly of photons (we will see later about neu-
trinos), with a density parametrised by w;.

e the cosmological constant, usually parametrised by its fractional density
Q4.

This model is called ACDM. It has at least four free parameters: wy, we, wy
and 5. However, w; is usually considered as fully determined by the accurate
measurement of the CMB temperature, and withdrawn from the list of free
parameters. We are left with three free parameters to measure, (wp, we, 7).
Flatness imposes a relation

Wp + We

A+ =1= 2

+ Oy (1.74)

Thus the parameter h can be inferred from the others,

1/2
Wh + We
h=|—— . 1.75
= 0.7
As a consequence, it is equivalent to use the parameter basis (wy, we, 24) or
(wba We, h)

In the next chapters, we will show how we have been able to measure these
parameters with percent precision.



Chapter 2

Thermal history of the
Universe

2.1 Relativistic quantum thermodynamics in the
FLRW universe

We have seen that it is possible to use natural units such that ¢ = A = 1.
It is also possible to choose the units of temperature in such a way that the
Boltzmann constant kp is one.

Also, in the rest of this chapter, we will assume for simplicity that there is
no spatial curvature: k = 0. We do this for two reasons:

e a pedagogical reason: assuming spatial curvature renders the formulas
more complicated (with several extra factors like v/1 — kr? appearing here
and there in the equations), without affecting qualitatively the physical
results of this chapter. To understand the physics, it is enough to work in
a spatially flat universe.

e a physical reason: as argued in the Winter Semester, curvature tends to
dominate only in the late universe (after radiation and matter domina-
tion), while this chapter deals mainly with the early universe (radiation
and matter domination): hence the curvature can be safely neglected any-
way.

When k£ = 0 it is simpler to use the FLRW metric defined with respect to
cartesian comoving coordinates (z!, 22, 23) = (z,y, 2):

ds* = —dt* + a(t)? [(dz')® + (da®)? + (dz®)?] . (2.1)

We recall that 20 = ¢ coincides with the proper time of all comoving observers,
since —ggo = 1. This time is also often called cosmological time.

2.1.1 Phase-space distribution

Let us assume that the cosmological fluid is formed of many different species
X (which can be either interacting with other species or free-streaming), each
described by a phase-space distribution function fx (z*,p”). We use here the
physical momentum defined in section 1.1.2, such that p® = P% = E (resp.
p' = aP?) is the physical energy (resp. physical 3-momentum) of particles

25
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as measured by comoving observers.! By definition, at time x°, the product

[fx (x#,p”) &>zt d®p’] gives the number of particles in a small volume with z% +
dr'/2, and with a momentum in the range p’ 4 dp’ /2.

The number of arguments can be reduced in the FLRW universe by noticing
that:

e Homogeneity implies that fx should be the same everywhere and should
not depend on z°.

e Isotropy implies that fx should not depend on the direction of the 3-
momentum p*. However it could depend on the modulus p = (3, p2)/2.

e pY is not an additional independent argument if the particle mass my is
known, since p’ = E = \/m% + p2.

Hence the phase-space distribution can be written as a function of time and p
only?: fx(t,p). The number density, energy density and pressure of each species
read:

nx(t) = / & fx(tp) (22)
px(t) = / &p B fx(t.p) = / Pyt fx(tp) . (23)
Pet) = [ L i, (2.4

and isotropy implies that we can replace d>p’ with 4mp2dp.

The phase-space evolution fx has a non-trivial evolution given by the ex-
pansion of the universe and by interactions between species. Interactions can be
represented by a set of reactions 1+ 2 <> 3+ 4 (for elastic scattering, 1 = 3 and
2 = 4). The Boltzmann equation states that along each geodesic, the evolution
of fx is given by the total derivative

U Flfus oo £ (25

where the right-hand side, which is quite complicated to write in the general
case, is a function of the distribution of each species involved in the reaction.
Being a total derivative, the left-hand side contains the effect of expansion; the
right-hand side contains the effect of interactions.

2.1.2 Kinetic (or thermal) equilibrium

If two species X and Y have frequent interactions (like elastic scattering X +
Y — X 4+Y), they exchange momentum in a random way and reach a kinetic
equilibrium called “thermal equilibrium”. Many species can be in thermal equi-
librium, forming a so-called “thermal bath” or “thermal plasma”. In thermal
equilibrium, the distributions of each species depend on a common parameter,

n different books you will find different arguments for the phase-space distribution func-
tion: 4-momentum in Friedmann coordinates, physical momentum, conjugate momentum,
comoving momentum... These choices all have different meanings and properties. At the
simple level of this course, you may just think that all these choices are equivalent and related
to each other by a change of variable. We work with the physical momentum for simplicity,
in order to have a straightforward interpretation of the results.

2Equivalently, we could choose to write it as a function of time and E only: this is just a
matter of convention, and in some books you would often find fx (¢, E) instead of fx(t,p).
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the temperature T'. However the distributions fx are not all equal to each other.
They depend on:

e the mass myx of each species (the mass appears in the energy of each
particle, Ex = /m% + p?);

e an additional parameter px, the “chemical potential” of the species, which
encodes the effect of the balance between the many reactions (inelastic
scatterings) involved in the plasma;

e at the quantum level, the fact that each species should obey to the Bose-
Einstein statistics for bosons (e.g. photons), or to the Fermi-Dirac statis-
tics for fermions (in this chapter, apart from photons, we will only consider
fermions).

e the number of internal degrees of freedom (spin or helicity states) of the
considered species (e.g. gx = 2 for photons =, electrons e™, positrons
e, protons p, anti-protons p, neutrons n, anti-neutrons 71, or gy = 1 for
neutrinos v; and anti-neutrons 7y where X is one of e, p or 7).

Hence, a plasma of N particles in thermal equilibrium with known masses mx
and known quantum properties (fermion or boson, gx ) can be entirely described
in terms of a maximum of N + 1 free parameter (T, y1, ...un ), which values can
be inferred from considerations e.g. on energy conservation, quantum number
conservation, and on the the kinetic of the various reactions involved. Thermal
distributions read

) : = 55 r ! = Fermi-Dirac
R e o AR RV ST ( X
Ix (tap) = i .
9x 1 — _9x _ 1 _ B _Einstei .
(2r)3 cxp[Ex%ux] IR PZOL - W . (Bose-Einstein)
_ (2.6)

The probability of interaction between individual particles depends on a cross-
section o and on their relative velocity v. In thermal equilibrium, the interaction
between two species X and Y is characterized by a “thermally averaged cross-
section — velocity product” (ov). The interaction rate (or scattering rate) of X is
given by I'x = ny (ov), that of Y by I'y = nx (ov). A detailed study would show
that the scattering is efficient enough for maintaining X in thermal equilibrium
with Y provided that the scattering rate I'x is larger than the inverse of the
characteristic time set by the universe expansion: namely, I'x > H. Intuitively,
when I'x < H, the cross-section is so low or the species Y is so diluted that
the chance for X to scatter over Y within a time comparable to the age of the
universe becomes negligible. When all possible scattering reactions which could
maintain X in thermal equilibrium have I'x < H, the species X decouples from
thermal equilibrium. In this case, assuming that the particles are stable and
non-interacting, they can only free-stream with a frozen distribution (i.e., the
distribution remains identical to the one at last scattering, apart from the effect
of the universe expansion: p oc a™1t).

Let us review a few basic properties of thermal equilibrium which will be
useful in the following sections.

e Non-degenerate gas of relativistic particles. Let us assume for simplicity
that |ux| < T. A gas with a with negligible chemical potential is called
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“non-degenerate”. In this case,

9x 1
= . 2.7
fX (27‘(‘)3 exp |: /7m2¥+p2] 4 ( )

From eq. (2.2), we see that in general the particles contributing mostly to
the number density are those for which p? fx (p) is maximum. Let us show
that this happens near p ~ T.

For p « T and fermions, fx ~ ()ﬁ ~ (...)3 where (...) means

“some constant number”. For p <« T and bosons, fx ~ ()emx%_1 ~
()ﬁ/T = ()% In both cases, p?fx(p) increases proportionally to

p? for p < T. In the opposite limit p > T, for both fermions and bosons,

2 . 2 .
p*fx(p) decreases proportionally to p®exp[—p/T]. Hence the maximum
is reached between these two limits, for a value of the order of T'.

We conclude that when T' > mx, a huge majority of particles has p >
my. This corresponds to a gas of relativistic particles. The number
density, energy density and pressure can be computed by integrating over
the above distribution in the limit mx — 0. The result is found to be:

@) 3 3 -
nx = ?gXT o for fermions | (2.8)
= 12 T Xz for fermions (2.9)
Px = 3p9x 3 ) :
1
PX = gpx 5 (210)

where ((z) is the Riemann zeta function (¢(3) ~ 1.20206...), and the
extra factors for fermions come from the +1 term instead of —1 in the
denominator of fy. Note that the usual equation of state of a relativistic
gas, p =Y v Px = »_x px/3 = p/3, is recovered here. We conclude that
boson and fermions in thermal equilibrium with each other and such that
mx < T and |px| < T share roughly the same number/energy density,
apart from possible factors of order one.

Gas of non-relativistic particles. In the limit myx > T, the function
p*fx(p) peaks in between T and mx. To prove it, noticing that 7 > 1
and that exp[”2] > 1, we Taylor expand the phase-space distribution as:

1

() — m%pz_w} (2.11)

fx

12

exp T T

~ () exp [ =TT+ (pfmx)? + X (2.12)

~ (..)exp —% (1 + ;(p/mx)2> + “ﬂ (2.13)

r 2
mx Hx p
~ (.. — 4+ = — 2.14
(exp | =27 + 7 2me} (2.14)

So p?fx(p) is proportional to p?exp [—%], i.e. increases like p? for
p < v2T'mx and decreases exponentially for p > /2T'mx. Hence the
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maximum is reached between these two limits, for a value of the order of
Tm X -

We conclude that when T' < mx, most particles have p < mx: hence
this limits describes a gas of non-relativistic particles. Then, a detailed
integration shows that for both fermions and bosons

3/2
_ mxT (mX - MX)
nx = ¢gx ( o ) exp [ T , (2.15)
pPx = Mmxnx , (216)
Px = Tnx <px . (217)

Let us compare the number density of these particles with that of rela-
tivistic particles belonging to the same thermal bath, i.e. sharing the same

temperature:
S [
Ny 9y 2\/5((3) T

The factor between brackets is of order one. The part after the brackets
is much smaller than one since we assumed myx > 7. Hence, unless
the chemical potential is huge (ux > mx > T, a case that will never
occur in the realistic situations considered later), the number density of
non-relativistic species in thermal equilibrium is exponentially suppressed
with respect to that of relativistic ones. The total number density in the
thermal plasma is dominated by relativistic components.

2.1.3 Chemical equilibrium

Let’s consider an inelastic scattering reaction of the type 142 <— 3+4. When
this reaction is frequent enough, the relative number density of particles cannot
be arbitrary, it must obey to the chemical equilibrium relation:

P+ p2 = p3 + g (2.19)

When the reaction is not frequent, it is unable to maintain chemical equilib-
rium, and the kinetic of each particle production/annihilation must be followed
using the Boltzmann equation. However, these particules can still be in thermal
equilibrium (for instance, due to e.g. elastic scattering with photons). If all four
species are still in thermal equilibrium, the Boltzmann equation describing e.g.
the evolution of n; due to the above reaction takes a much simpler form than
in the general case:

N1 + 3Hn; = ning{ov) {exp (Ml — 'MQTJF p3 + H4) — 1} . (2.20)

Here, we made two assumptions (apart for thermal equilibrium). First, we
assumed that the cross section (ov) is the same for the reactions 1+2 — 3+4
and 34+ 4 — 1+ 2. Otherwise, the right-hand side would split in two terms
for creation and annihilation. However, for the realistic cases considered later,
it is sufficient to consider a symmetric cross section. Second, we assumed that
1+ 2 +— 3+ 4 is the only reaction leading to the creation or annihilation of
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type 1 particles. If there are other processes involved, the right-hand side should
contain a sum over all possible creation and decay channels.

In thermal equilibrium, n; has only two unknown (and a priori time-dependent)
parameters: the temperature (common to all species) and the chemical poten-
tial p1. In a few section, we will study entropy conservation, which gives the
evolution of temperature with the scale factor and with time. Hence the only
free function of time in my(t) is pi(¢t). This means that the above Boltzmann
equation can be seen as an equation of evolution for the chemical potential of
each species, here, species one. It is a first-order equation, describing the way in
which the system tracks an equilibrium solution. By solving this equation one
should see that the system adjusts to a particular value of py (and hence to a
particular n;), which depends on the other variables H, na, (ov), and po 3.4/T.

Note that the factor ny(owv) in the right-hand side is precisely the scattering
rate I'; for the scattering of type 1 particles. Hence, the second term on the
left-hand side is of the order of Hny, while the right-hand side is of the order
of n1I'y times the brackets. We see that if I'y > H, the term involving H
can be neglected; in this regime, the differential equation forces n; to reach an
equilibrium value for which the brackets vanish, i.e. for which p1 +pus = g+ pa:
chemical equilibirum will be maintained at any time. In the other limit, when
I'y < H, the right-hand side is negligible, and there is no reason for the relation
W1+ p2 = 3 + pg to be maintained; instead, ny = —3Hn1, which is equivalent
to ny o< a~3: this simply corresponds to particle number conservation for a
decoupled species. The intermediate regime can only be followed by integrating
the above Boltzmann equation.

2.1.4 Conservation of quantum numbers

First, let us clarify a point of vocabulary. We call “comoving volume” a closed
region whose boundaries keep fixed comoving coordinates. We call “coordi-
nate volume” the volume of a comoving volume measured in coordinate space,
and “physical volume” the physical volume of a comoving volume, obtained by
multiplying its coordinate volume by a®. Thus, “comoving volume” refers to a
geometric notion, not to a number; while “coordinate volume” and “physical
volume” refer to numbers. For instance, let us call V a little square whose edges
have coordinates z, + %Ax, Ys T %Ay, zy £ %Az. The coordinate volume of V
is Ax Ay Az, while the physical volume of V is V = a3Ax Ay Az.

If the number of particles of a given type X was conserved in any comoving
volume, we would have nxV =constant, and thus nxa® =constant. This is usu-
ally not the case since in general, the particles X can be destroyed or created by
various inelastic scatterings. So, conservation laws do not apply to the number
density of individual particles, but to that of quantum numbers.

Let us consider for instance the conservation of electric charge. We can
define ny as the sum over the number density of all particles with positive
charge, weighted by the value of their charge; same for n_ (weighted by the
absolute value of the charge so that n_ > 0). The total density of electric charge
in the universe is then simply ng = n4y — n_. Electric charge is a conserved
number, so it cannot vary in a comoving volume due to annihilation/creation
processes. Also, in homogeneous cosmology, it cannot vary because of more
charges leaving the comoving volume than entering the comoving volume (or
vice-versa): this would lead to an accumulation of charges in some regions
and a depletion in other regions, which would contradict our assumption of a
homogeneous universe. So the charge in any comoving volume must be constant.
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Hence nga® is constant. The same holds for other quantities such as baryon
number (npa® =constant), lepton number (nya® =constant), etc. (except at
very early times for which baryon or lepton number conservation can be violated
in special circumstances, as we shall see later).

However, in the case of the electric charge, we have an even stronger con-
straint: since the electric charge is associated with Coulomb forces and the
universe expansion is only governed by gravitational forces, the universe must
be globally neutral: hence ng =0 and ny =n_.

Note that each conserved quantum number is usually associated with a non-
zero chemical potential. When a particle X carries no conserved charge, nothing
prevents reactions of the type nX — mX with n # m. This is the case for
photons. For instance, as long as the universe contains electrons and positrons,
the two reactions

3y+—et +em +— 2y (2.21)

are in chemical equilibrium, hence 2y, = 3u, and p, = 0. In addition, the
above reactions tell us that electrons and positrons (which carry electric charges
+1 and lepton numbers +1) have opposite chemical potentials, pe+ = —fio—.
It is not possible to find a reaction that would lead to the conclusion that
e+ = We— = 0 without violating charge or lepton number conservation. A
species carrying a conserved charge can have a zero chemical potential, but only
if we invoke external constraints on top of chemical equilibrium considerations.

2.1.5 Entropy conservation

We just said that there is no reason for conserving the total number density of
particles in a given comoving volume. However, it is possible to show that the
total entropy (i.e. the number of possible states) in any comoving volume is
conserved.

In a universe containing a mixture of relativistic and non-relativistic parti-
cles, each obeying a Fermi-Dirac or Bose-Einstein distribution with a temper-
ature T and chemical potential ux, it is possible to infer from the first law of
thermodynamics applied to each fluid X inside a given comoving volume,

TdSx =dEx + PxdV — ux dNx (2.22)
that the total entropy reads

p+P—pun
s = — 7 (2.23)
with p ="y px, P=3 y Px and pun = >y pux nx. During radiation dom-
ination, p and P receive a dominant contribution from relativistic species like
photons (and, as we shall see later, neutrinos) with a vanishing chemical poten-
tial, such that we can write

SNpr+Pr:pr+épr:§&
=TT T 3T

(2.24)

where p, is the total energy density of relativistic species only. In this course, we
will rarely use the expression of the entropy density during matter domination
and A domination; however we could show in a small exercise that the result
is unchanged: the entropy density is still given by the above formula involving
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only relativistic densities.®> Using equation (2.9), we get

2
™ 4

e = 591, 2.25
=359 (2.25)
where we have introduced the effective number of bosonic relativistic degrees of

freedom g, defined through

ge= gx+g > oex. (2.26)

rel.bosons rel.fermions

The entropy density is then

4 72 3
s=3 3Og*T , (2.27)
and its conservation implies ¢.T3a® =constant. We see that as long as g.
is constant, T o a~!. However, when g, varies (which can happen e.g. if
one species becomes non-relativistic at some point), the temperature varies like
T x g« 13,1,
Note that entropy conservation is really different from number density con-
servation. For instance, in the above example, the number density reads

nmt=$ > gx-i—% > x| T (2.28)

rel.bosons rel.fermions

The term between brackets differs from g. due to the factor 7/8. Hence, when
g, varies, the quantity nta® is not constant, since the entropy is not equivalent
to the number density!

2.2 Thermal history of the visible sector

2.2.1 Early stages

We keep using natural units in which ¢ = h = (h/27) = kg = 1. It is then
possible to express everything (energy, mass, inverse length, inverse time, mo-
mentum, temperature) in units, for instance, of energy: the most conventional
choice is then to use electron-Volts (eV) as a “universal” unit. Thus an energy
density can be expressed in eV%4. Its quartic root p'/* can be expressed in eV
and the total p:,ff is called the “energy scale of the universe” at a given time.
During radiation domination and in thermal equilibrium, it has the same order
of magnitude as the temperature in eV, since pigf ~T.

The earliest stages in the evolution of the universe are still partially unknown

and subject to investigation, while the latest stages are very well modelled and

3In a nutshell: during matter domination, we have pm > pr, where pp, is the total density
of non-relativistic species. However these species are mainly baryons and cold dark matter
particles, which have a non-zero chemical potential that adjusts itself in order to preserve the
conservation of the baryon number and of an equivalent number carried by cold dark matter
particles. As will become clearer in the next section, this forces the chemical potential of each
of these species to remain close to their mass, mx ~ ux. These species contribute to the
entropy density with a term px + Px — uxnx ~ (mx — pux)nx. It is possible to quantify
the difference mx — px using the conservation of B (or of the quantum number carried by
the cold dark matter particle), and to prove that it is small enough to fulfil the inequality
(mx — px)nx < pr by many orders of magnitude. Thus the contribution of non-relativistic
particles to the entropy density can be neglected even during matter domination.
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constrained by observations. In summary, the epoch during which the energy
scale ptl({f of the universe was smaller than 100 MeV is rather well understood,
while early stages are still quite uncertain. In this subsection, we will provide a
very brief overview of what could have happened above 100 MeV. In the next
subsections, we will describe in more details the main events taking place below
100 MeV.

Following the most conventional picture, gravity became a classical theory
(with well-defined time and space dimensions) at a time ¢p, called the Planck
time, which is such that p ~ Mp ~ (10°GeV)*, where the Planck mass is
defined by Mp = G~'/2. Since the Friedmann equation can also be written
as Z’)M}%H2 = 8mp, the Planck time corresponds to H = Mp, i.e. to a Hubble
radius equal to the Planck length, Ry = 1/Mp = Apt

Later, there was most probably a stage of accelerated expansion called in-
flation. Current observations provide some indirect, but precise information on
inflation, which is quite extraordinary since this stage took place at extremely
high energy. Inflation might be related to the spontaneous symmetry breaking
of the GUT (Grand Unified Theory) symmetry, when p'/4 ~ 10'® to 10'6GeV.
Assuming radiation domination between the Planck time and the time of GUT
symmetry breaking, this would correspond to the cosmological time t ~ 1073%s.
However, inflation could also take place at a much lower energy scale. Besides,
we are not even sure that Grand Unification ever occurred.

After inflation, during a stage called reheating, the scalar field responsible
for inflation decayed into the particles of the standard model (three families of
quarks, anti-quarks, leptons and anti-leptons; Higgs boson(s); gauge bosons),
and possibly also some particles belonging to extensions of the standard model,
like maybe supersymmetric particles, although recent LHC results bring no
evidence for such an extension, at least until now. The study of reheating
shows that all these particles reached thermal equilibrium after some time. At
such high energy, most (if not all) particles were ultra-relativistic (T" > mx),
and the total energy and pressure were given by eq. (2.25).

The end of reheating marks the beginning of the most recent radiation dom-
inated era, the one assumed by Gamow, Peebles and others in order to explain
Nucleosynthesis, which we will refer to as just “Radiation Domination” (RD).
Note that during this era, T o< a=*, p o< T* o a~* and t  t'/? in good ap-
proximation, although these scaling laws are slightly violated each time that
g« varies (this occurs from time to time e.g. when some particles become non-
relativistic). Around t ~ 107%, p ~ (100 GeV)%, the EW (Electro Weak)
symmetry is spontaneously broken and the quarks acquire a mass through the
Higgs mechanism. Later, at t ~ 107%s, p ~ (100 MeV)*, the QCD (Quantum
Chromo Dynamics) transition or “quark-hadron transition” forces quarks to get
confined into hadrons: baryons and mesons.

All these stages are quite complicated and extremely interesting to investi-
gate in details (here we will not address them). Let us mention that a particu-
larly fascinating and important issue is the evolution of the baryon and lepton
number.

4If we assume the same expansion law as during matter domination, that is, a(t) = ktl/2
where k is a constant, then we find that tp = 10~%%s. Note that this calculation makes no real
sense, since extrapolating a law like a(t) = kt!/2 before the Planck time is very hasardeous.
However, the origin of time, ¢ = 0, is often chosen in such a way, in order to have the simple
relation a(0) = 0. It is nonsensical but it does not hurt, because choosing the origin of time
to be at tp = 0 or at tp — 10~ %4s=0 makes no difference in practise. It can just been see as
a convention.
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Let us focus first on the baryon number. Before reheating, there is no baryon
number (there is only the scalar field responsible for inflation, which carries no
quantum number). Hence, if the baryon number is always conserved, each
time that a particle is created during reheating with a given baryon number,
its anti-particle with opposite baryon number will also be created. The pairs of
particle-antiparticles will not annihilate in the relativistic regime. For simplicity,
let us do as if there was only one type of particle with a baryon number, say b
with baryon number B = 1 and its antiparticle b with B = —1. After inflation,
we should have n, = nj. These particles could in principle annihilate through
e.g.

b+ b« ny (2.29)

(n being the number of produced photons). Note that a particle and its anti-
particle should share the same mass m;. Intuitively, as long as T' > my, the
photons carry enough energy for creating pairs of b and b, so they will coexist in
the thermal plasma: annihilation and creation compensate each other. However,
when T' < my, the photons do not carry enough energy for creating pairs, and
only annihilation can occur: so, b and b annihilate. If we assume that n, = ng
just before the annihilation starts, then this annihilation will be total and we will
be left with no baryons at all today. This is not the case since the nuclei of atoms
are made of protons and neutrons. Hence, n, should be slightly larger than ng
before annihilation. If we stick to the idea that baryons and anti-baryons are
created by pairs after inflation, then the only possibility is that baryon number
conservation is weakly violated at some point between reheating and T ~ mg.
When the violation occurs, an excess of particles with positive B can be created.
This is called baryogenesis, a mechanism that simple extensions of the standard
model of particle physics can accommodate very well. When T ~ my, all
baryons annihilate with antibaryons, excepted the few ones in excess, which
remain around until today.

Let us give a very simplified mathematical description of this phenomenon:
after baryogenesis, the universe contains relativistic baryons and anti-baryons
in thermal and kinetic equilibrium. The reaction

b+ b« ny (2.30)

with different possible values of n guaranties that j1, = 0 and pp = —pz. If
1y = 0, then ny is exactly equal to ng. The outcome of baryogenesis should be
a small excess of baryons, hence j, > 0. The conserved baryon number nga? is
non-zero and obtained from

(2.31)

nB:nb—n*:i/dsp ! — 1
b (2m)3 exp(%) +1 exp(%) +1

In the relativistic limit £ = p this gives

awT> [ 5 (ub> (ub>3
— [aid 2.32
"B g2 [W )t \7) | (2:32)
which is positive for u, > 0. As long as T'a =constant (i.e. as long as g, is

constant in the thermal bath), the conservation of nga® implies that yu,/T is
also constant. The baryon asymmetry can be parametrized by

s/ [ B~ [ () 4 ()] e
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but this is not a conserved number. Usually, the asymmetry is parameterized
by np/s, which is really a conserved number since nga® is conserved at any
time between baryogenesis and today, and sa® is conserved at any time. We
will see later that in order to obtain the correct baryon density today,® we must
assume that np/s is of the order of 10710,

When T ~ mp, the number density of both n, and nj drops down very
quickly due to the exp(—my;/T') factor. Intuitively, this means that a smaller
and smaller fraction of photons have enough energy for producing b + b pairs.
The assumption of thermal and kinetic equilibrium and the conservation of
entropy and baryon number provide enough equations for following u;(7) and
T'(a) until ny becomes really negligible. We don’t even need to do that: it is
enough to know that when ngz = 0, baryon number conservation simply implies

that npa® = npa® is constant. Note that at that time
3/2
mpT’ (mp—np)
ny = gp <b> e (2.35)
2

so the quantity pp/T now varies with time, in order to maintain a constant
npa3. The role of the chemical potential is then to compensate the Bolztmann
suppression factor, which implies that up >~ my, up to small time-dependent log-
arithmic corrections® to py, that ensure that ng has the right order of magnitude
and the right scaling ny, o< a™3.

This description of the matter-antimatter asymmetry in the early universe
was quite simplistic with respect to reality. Actually, baryogenesis and baryon-
antibaryon annihilation are two active topics of research. Baryogenesis could
be associated with B-violating processes during GUT symmetry breaking or
EW symmetry breaking, or could also be induced by leptogenesis, for which a
similar discussion can hold. The baryon-antibaryon annihilation is expected to
take place roughly around 7" ~ 1000 MeV, which is the order of magnitude of
the proton mass; it is intimately related to the quark-hadron transition.

2.2.2 Content of the universe around 7' ~10 MeV

In the next sections, we will describe a list of phenomena induced by the fact
that the weak interactions become inefficient around 1 MeV, and also that the
MeV is the order of magnitude of binding energies in light nuclei. Before these
sections, we should look at initial conditions before T' ~MeV.

Let us list the species present after the quark-hadron transition. A species
can be present at a given time if it satisfies one of two conditions:

5Note that when the universe is filled with a thermal plasma, s is of the order of g.T3,
while n~ is of the order of g.\,T3 with g, = 2. So, instead of np /s, we will often use the ratio
np/n~y, although strictly speaking the second number is not conserved and differs from the
first one by a factor of the order of g« (which can vary between ~ 3 and ~ 10 during the
period that we will study in the next sections). In the recent universe we will see that

m = Z—B ~5x 10710 (2.34)
Y

6This brings us back to the footnote of section 2.1.5 and to the fact that the contribution of
baryons to the entropy density is negligible with respect to that of relativistic particles, even
during matter domination. Indeed, pup =~ my, implies that py + P, — upnpy = (mp+T — up)np =~
(mp — pp)np is small. Using the order of magnitude of nj, and n-, one can prove (as a small
exercise) that (my — pp)np < py, thus the contribution of baryons to the entropy density
is always negligible with respect to that of photons, even during matter domination when
Pb > Py
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e cither it is relativistic: m < T. In this case the particle can be easily
produced by other species in the thermal bath (annihilation and creation
compensate each other).

e or it is non-relativistic: m > T (meaning that it should normally have
decayed into lighter particles), but it is stabilised by the fact that it is
the lightest particle carrying a given conserved quantum number. For
instance, the proton is the lightest baryon, and we will study later dark
matter particles, which are usually assumed to be the lightest particles of
some new sector of particle physics carrying some new charge.

Hadrons. Generally speaking, hadrons consist of baryons, mesons and their
antiparticles. Mesons carry zero baryon number and quickly annihilate. An-
tibaryons annihilate well before T' ~ 10MeV, as described above. Baryons made
of heavy quarks are unstable at the temperature considered here since they can
decay into lighter baryons (protons and neutrons). Protons are perfectly stable
in the limit of no B violation since they are the lightest baryons. We could think
that neutrons have decayed because they are non-relativistic and heavier than
protons. However the mass difference is only m,, — m, = 1.293 MeV. When
the thermal bath has a temperature of about 10 MeV, this difference is irrel-
evant, and neutrons can coexist with protons. Indeed, electrons and neutrons
carry enough energy for converting a proton into a neutron through inverse beta
decay: this only requires m, —m, = 1.293 MeV. We will actually prove that
Ny, Ny at this temperature at the end of this subsection.

Charged leptons. In the charged lepton sector, u, u, 7 and 7 are so
heavy that they decay into electrons and positrons. The mass of electrons and
positrons is close to 0.5 MeV, so they are still relativistic at that time, and both
present. Electric neutrality implies n.- — n.+ = n,, so there must be a small
excess of electrons over positrons. Remember that np/s is conserved and of
the order of 10719, At the temperature considered here, we can consider that
ng = np + N, =~ 2n, and that s ~ ny, ~ n.- modulo factors of order at most
ten. Hence, speaking only of orders of magnitude,

Rez Z et [T (MBq0-10 (2.36)
Ne— + Ne+ S S
We see that electric neutrality implies that the electron-positron asymmetry is
as tiny as the initial baryon asymmetry. Both electrons and positrons are in
thermal equilibrium and their annihilation reaction e~ +et <+ nv is in chemical
equilibrium, so they must have opposite chemical potentials. Then, using equa-
tions (2.31-2.33) for electrons/positrons instead of baryons/antibaryons, we get

Ne— — Ne+ He —10
~ ~ 22010 2.37
Ne— + Ne+ T ( )

where p. is the (positive) chemical potential of electrons.

Neutrinos. Besides, the universe contains all six neutrinos: v., v, v; and
their antiparticles, maintain in thermal and kinetic equilibrium by weak interac-
tions. Their mass is at most of the order of eV, so they have no reason to annihi-
late, and they contribute to the thermal plasma as ultra-relativistic components.
They could in principle carry some asymmetry associated to chemical potentials
e, by and - (each antineutrino would then have an opposite chemical poten-
tial due to the chemical equilibrium of the reactions v, + 7, +— ¢~ +et «— 7,
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and the same in the muonic and tau sectors). The asymmetry could be large
if u > T or negligible if y < T. Some cosmological observations that we will
not discuss here prove that the asymmetry is actually very small. We will even
assume fte = ft, = pr = 0 for simplicity. Thus all six neutrino species share
exactly the same number density.

Bosons. Finally, the universe should contain ultra-relativistic photons.
Other gauge bosons are non-relativistic (Z°, W#) or must remain confined
inside baryons (gluons).

Beyond the standard model. There are lots of motivations for the exis-
tence of new symmetries and particles beyond the standard model. It is usually
assumed that these particles have masses bigger than 10 MeV and have decayed
by that time, excepted the lightest one carrying a new conserved number, which
plays the role of a “cold dark matter particle” (see section 1.3). We will also
see in that chapter that cold dark matter particles probably decoupled early
from the thermal bath, so for 7' < 10 MeV we can view them as completely
isolated /decoupled species. It is also possible that the new sector brings extra
relativistic particles called “dark radiation” that we shall briefly discuss later
(but there is no evidence for such particles from current data).

In summary, around 7' ~ 10 MeV, the universe should contain: p, n,
e~, et six neutrino species, v and non-relativistic Dark Matter particles. The
number of relativistic effective degrees of freedom (relevant for computing the
total energy density p and the entropy density s) is given by photouns, electrons,
positrons and six neutrinos:

gu(~ 10MeV) = 2 + g (242+6) =10.75 . (2.38)

This assumes no Dark Radiation. If there is also a Dark Radiation component,
this number gets increased. Very often, Dark Radiation is parametrised through
an “effective neutrino number” N.g. If Nog = 3 it means that we assume no
extra Dark Radiation beyond the ordinary three neutrino families. Neg = 4
would mean that the Dark radiation would have the same energy density as one
neutrino family. Then the number of relativistic degrees of freedom reads

ge(~ 10MeV) = 2 + g (4 +2Neg) . (2.39)

Neutron to proton ratio at high energy. We can actually prove that
np ~ Ny at this temperature by using the fact that the reaction of proton-to-
neutron conversion:

pte +—n+v, (2.40)

is in chemical equilibrium at high energy (T" > MeV), implying p, + pe =
tn + o, - Using eq. (2.15) for the number density of non-relativistic species, we
get:

3/2
N, My, mp — My Hn — HUp
— = — 2.41
(mp> P < T - T > ( )

3/2
my, Mp — My, e — Py
= — < 2.42
(mp> P ( T - T ) ( )
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Let us discuss the size of the terms in the argument of the exponential. The
difference between the neutron and proton mass is @ = m,, —m, = 1.293 MeV.
Hence, for T ~ 10 MeV, the ratio Q/T is close to 0.1 and e~ /T ~ O(1).
Then we have seen that £ ~ 10710, 5o clearly e#/T ~ 1. Also, we have just
explained that the neutrino asymmetry has been proved to be negligible in the
standard cosmological model, so e#e/T ~ 1. Finally, the neutron to proton

ratio at T" > @ is given by:

= (:Z:)S/Q exp (-?) ~0(1), (2.43)

i.e. the density of neutrons and protons is essentially the same.

2.2.3 Neutrino decoupling

Weak interactions maintain neutrinos in thermal equilibrium through elastic
interactions like e.g.

Vet e <— Vete (2.44)
VetV — Ve+V
Ve +VU; $— VetV

etc. (2.45)

which are all of the weak interaction type (they involve exchanges of weak bosons
Z%, W#). The thermally averaged cross sections of these reactions are of the
order of (ov) ~ G4T?, where Gr ~ 107°GeV~? is the Fermi constant (which
characterizes the magnitude of weak interactions). Hence the relevant scattering
rates are of the order of I' = n,- (0v) ~ G%T®. Let us compare the evolution
of T with that of the Hubble rate H? = (87G/3)p ~ Mp>T*. We find that

T T \?
7 ~ MpGRT? ~ (1 Mev> : (2.46)

Hence, when the temperature of the plasma drops below T' ~ MeV, the neutrinos
leave thermal equilibrium, and their distribution remains frozen, with

1 1

1ilp) = (2m)3 explp/T,] +1°

(2.47)

By “frozen”, one means that f; varies only due to the universe expansion, which
imposes a very trivial evolution. Each decoupled particle is free-falling in the
FLRW universe. The geodesic equation shows that for such particles p oc a=!
(we already used this result many times for photons). Hence each individual
particle has a momentum redshifting like p(¢) = p(tp)a(tp)/a(t) where tp is the
time of decoupling. For particles which decoupled when they were relativistic
(like the neutrinos considered in this section), the distribution f;(p) depends
on p only through the ratio p/T,. So, saying that all momenta shift like a~!
is strictly equivalent to saying that T, shifts like a~'. Hence, after neutrino
decoupling and for each of the six species i, the product (7, a) remains ezactly
constant at all times. Besides, as long as they remain relativistic with T, > m,,,
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they obey:

3¢B3) s 3

Ny, = Z?TD X a 5 (248)
7 w3

v = ——Ttoca™? 2.4

pr = oTioxa™, (2.49)
1

bv, = gpl/i ) (250)

2
Sui = Lpw _ ézw—T?’ xa? (2.51)

Neutrino decoupling is a very smooth process because before decoupling (and
as long as the number of relativistic degrees of freedom g, was conserved), we
already had T = T, < a™ !, n,, < a™3, p,, o< a=* and p,, = p,,/3. Hence,
from the point of view of the universe expansion, one could say that “nothing
particular happens” when neutrinos decouple. The temperature of neutrinos
and of the thermal bath remain equal, both scaling like a='. The entropy
density before decoupling reads:

_ptp _4n®

7
T -==0:T%  with g, =2+-(2+2+6)=10.75. (2.52)

5 ~ 330 8

plasma

Note that in this section and in the next one, for simplicity, we assume the
standard cosmological model, in which there is no Dark Radiation (so Neg =
3). After decoupling, the entropy receives contribution from the plasma and
from neutrinos. We have not derived the expression of entropy for a decoupled
relativistic species, but it is simple: it reads like the entropy of relativistic species
in equilibrium, with the appropriate value of the temperature:

p+p Pv + Du
s = 2 LA 42 (2.53)

T plasma TV neutrinos
4 72 7 472 (7

= —— (24 -2+ )T+ =-=(=-x6|T3 2.54
330<+8(+)) +330(8X)” (2:54)
472 /11 472 (7

= —— (= )T +-—=(=-x6)T3. 2.55
330<2> +330<8X>" (2:55)

Since both T and T}, scale like ¢! around the time of neutrino decoupling,
they remain equal to each other, and the expression of the entropy is absolutely
unchanged.

2.2.4 Electron-positron annihilation

The electron and positron mass is close to 0.5 MeV. Hence, when the tem-
perature of the plasma drops below this value, electrons and positron become
gradually non-relativistic. This is the same situation as the one described pre-
viously for b and b: the number density of e~ and et drops down very quickly
with respect to that of photons, due to the suppression factor exp[—m./T].
Basically, this means that electrons and positrons annihilate each other with-
out being regenerated, until positrons disappear completely; a small number
of electrons survives, in equal proportion to protons in order to ensure electric
neutrality. After this process, n.- =n, ~np ~ 10’10n,y.

It is particularly interesting to follow the evolution of entropy during electron-
positron annihilation. Intuitively, entropy conservation implies that when elec-
trons and positrons annihilate each other, their entropy has to go into other
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species, namely: photons, which are the only remaining relativistic species in
the plasma. In other words, the reaction e~ + et — n~y generates an excess
of photons; since photons are in thermal equilibrium, any excess in the number
density must be described in terms of an increase in the product (T'a). Let us
check this explicitly. Before positron annihilation, the expression of entropy is
given by eq. (2.55). After annihilation, it reads:

+ v+ Du
plasma v neutrinos
4 72 3 4 w2 (T 3

Note that the total entropy in a comoving volume sa? is conserved, but the sep-

arate entropy of neutrinos is also conserved since they are decoupled and (T, a)
is exactly constant. This implies that splasmaa3 is also conserved separately.
Hence:

1, .

- (Ta)

2 before — Q(Ta)3 . (258)

after

We conclude that the temperature of the plasma does not scale like a~! during
electron positron annihilation: this is a typical example in which it is rescaled
according to g. 3 n fact, T'a increases in order to compensate the loss of the
electron and positron degrees of freedom. But the most interesting outcome of
this is that the temperature of photons and neutrinos after annihilation differs

by:

(Tua)after (Tua)before ( 4 )1/3
(Ta)after (11/4)1/3 (Ta)before .

= = (1 (2.59)

After positron annihilation, the photons are the only remaining species in ther-
mal equilibrium, hence g, = 2 and (T'a) is exactly constant. Finally, we will
see that photons decouple around T ~ 0.3 eV. Like for neutrinos, the distribu-
tion of photons remains frozen after decoupling, with T'(t) = T(tp)a(tp)/a(t)
until today. We conclude that between T ~ 0.5 MeV and today, the relation
T, = (4/11)Y/3T holds at any time, with the photon temperature given by
T =Ty(ag/a). Here, Ty is the CMB temperature measured today, Tp = 2.726K.
So T,0 = 1.946K. Knowing the photon and neutrino temperature today, we can
infer their number densities:

¢3) -
nd = ?x2T§’:411 cm™? (2.60)
o _ ¢B 3 4 3
n, = ? X 1 X 6 X ﬁ TO = 336 cm s (261)

(the second number being the total density summed over the six neutrinos).

We now have a complete understanding of what is called the “radiation
density” p; in the standard cosmological model, at least for temperatures be-
low T ~ 10 MeV. It is the total density of photons, neutrinos, electrons and
positrons until 7' ~ 0.5 MeV, and later, it is the total density of just photons
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and neutrinos. After positron annihilation, we get exactly:

2 w2 (7
o= — Q)T+ —(=x6)|T!
P 50 %) +30<8X>”
2 7 4 4/3
- ’;0<2+8><6(H) T . (2.62)
roh?
Sw = ppo = 4183 %1077 . (2.63)
crQ

Since T'a is exactly constant after positron annihilation, the above relation is
compatible with the fact that p, scales like a=* for relativistic particles. As ex-
plained previously, in a non-minimal cosmological model with some Dark Radi-
ation, the relativistic density could be enhaced, and this is usually parametrised
with an effective neutrino number N.g such that:

2 7 4\*?
pr= 355 <2+ 3 X 2 Nen (11) T . (2.64)

In the minimal model N.g is equal to three”. Nog = 4 would mean that there is
one extra species of relativistic fermions in the universe, with the same density
as a pair ve + Ue.

2.2.5 Nucleosynthesis

A nucleus X containing Z protons can have various isotopes 4 X of mass number
A (hence containing A — Z neutrons). The following reactions can increase Z by
one unit, starting from a simple proton (i.e. ionized hydrogen nucleus H™ = p;
in the following we will omit to write the charge of the various ions):

p+n — D+ry
D+D — 3He+n
SHe+D — “*He+p

In order to know whether these reactions are favoured or not from the point
of view of energetics, we should know the binding energy B of each element.
We recall that the binding energy is the minimal amount of energy which must
be furnished in order to break a nucleus X in Z protons and A — Z neutrons.
Hence the rest energy of X reads:

Eo(X) =mx = Zm,+ (A— Z)m, — B . (2.69)

" More advanced considerations (optional): our calculation of (T, /T) after positron an-
nihilation assumed that all electron-positron pairs annihilated into photons, and mone into
neutrinos. In fact, at positron annihilation, we are not far from neutrino decoupling. A mi-
nority of neutrinos still has a momentum larger than 1 MeV, and is still partially in thermal
equilibrium. Hence the energy released by electron-positron annihilation, after going first into
photons, will quickly be shared by a small fraction of the neutrinos, the most energetic ones.
This means that there are small effects that we did not take into account. If we had, we would
have found also small corrections to equation (2.62). These corrections can be absorbed by
the factor Neg. As a result, although the number of neutrino species is exactly three, the den-
sity of radiation in the standard model is in fact given by equation (2.64) with Neg = 3.045
instead of 3.
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Figure 2.1: Average binding energy per nucleon B/A as a function of A.

For instance, the binding energy of deuterium is Bp = 2.22 MeV, since m,, =
938.27 MeV, m,, = 939.57 MeV, mp+m,, = 1877.84 MeV and mp = 1875.62 MeV.
Hence, from a purely energetic point of view, protons and neutrons should com-
bine and form the isotope with the largest possible binding energy per nucleon
B/A: once this isotope exists, any nuclear reaction destroying it would cost
energy. Figure 2.1 shows the average binding energy per nucleon B/A as a
function of A. Starting from zero for hydrogen 'H (p), the curve raises for
deuterium 2H (pn), helium *He (ppn), tritium 3H (pnn), and reaches a local
maximum for *He (ppnn). The first isotope with a ratio B/A larger than that
of *He is 12C. The global maximum is reached at A = 56 for iron %% Fe.

Preliminary overview of Nucleosynthesis. From a purely energetic point of view,
we could expect the following picture. The reaction

D+y—p+n (2.70)

requires an energy of at least Bp = 2.22 MeV. For T' > Bp, photons carry
enough energy for breaking any deuterium nucleus into pairs p + n (photo-
dissociation of Deuterium). This means that for T' > Bp the reaction can take
place frequently in both directions:

D+~y+—=p+n (2.71)

and the relative abundance of the non-relativistic species D, p, n can be inferred
from the chemical equilibrium relation. We will study this and find that chem-
ical equilibrium imposes np < n, ~ n,, at least between the quark-hadron
transition and the energy scale T' ~ Bp.

But when the temperature drops below Bp, we could expect that since the
average photons are not energetic enough to produce photo-dissociation, the
reaction only goes in the direction p + n — D + v, and protons and neutrons
get progressively converted into deuterium. Then, once there is a significant
abundance of deuterium, it is energetically more favorable to convert D into



2.2. THERMAL HISTORY OF THE VISIBLE SECTOR 43

3He, and so on and so forth, until the universe contains only heavy elements
like iron.

In the above reasoning, we forgot that the kinetic of the various reactions
involved does not depend only on initial and final energies, but also on number
densities and cross sections. In fact, the previous reasoning is more or less
correct in the frame of the Cold Big Bang scenario, which was rejected on this
basis: far from stars, the real universe seems dominated by hydrogen rather
than heavy elements. In the Hot Big Bang scenario, a key feature is that
baryons are considerably suppressed with respect to photons, np ~ 10_10n7.
So, our argument that when 7' < Bp the reaction (2.70) cannot occur is wrong.
There are so many photons that even if the average photon energy is much
less than T, but a tiny fraction of them (of order 1071°) have a momentum
larger than Bp (which is possible if they are in the high-momentum tail of
the Fermi-Dirac distribution), then the reaction is still very efficient. So, in
the Hot Big Bang scenario, neutrons and protons start forming deuterium at a
significantly smaller temperature than Bp. The formation of heavier elements
is then suppressed by consideration on number densities. Once deuterium is
formed, all number densities are small and all two-body weak interactions have
a rate I' that is not much bigger than H. They are still relatively efficient,
and most of Deuterium it is converted into *He as could be expected from
energetics. But three-body weak interactions have a rate that is not smaller
than H. This observation is crucial, because the gap between *He and '2C is
very difficult to cross: it requires a three-body reaction 3 x *He — 2C. When
4He forms, the temperature is far too low for the scattering rate of the above
reaction to be comparable with H. Hence the chain will stop at *He. Let us
now check these qualitative expectations using our knowledge of thermal and
chemical equilibrium. The discussion can be carried out in two steps.

Formation of Deuterium. We first study the reaction of deuterium formation:
n+p—D+v. (2.72)

The cross-section of this reaction is large enough for ensuring chemical equilib-
rium in the temperature range considered here. Hence pup = pp + p1,. We are
only considering times after the quark-hardon transition, such that T' < GeV,
which implies that neutrons, protons and deuterium are all non-relativistic with
densities given by eq. (2.15). Hence

np (up—up—un) 3(27rmD )3/2 (mp+mn—mp>
=exp|—F—— | 7| 77— exp|—F—7 ],
npny, T 4 \ mpym,,T T
(2.73)

where we used the number of spin states: g = 2 for p and n, g = 3 for deuterium.
The argument of the first exponential cancels because of chemical equilibrium.
The argument of the second one involves the binding energy Bp of deuterium:

2 32 /p
np :3(7%) exp (D) . (2.74)
NpNy, 4 \ mpm,,T T

We will now use this equation for getting a rough estimate of the order of
magnitude of the deuterium density to baryon number density ratio. We know
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that roughly, n, ~ n, ~np ~ 10_10mY ~ 1071973, Hence we obtain
np n, [T 3/2 Bp
Do I ) exp (22
ny 3 \'m, P\
np T 3/2 BD
~ — | — | exp|—
73 \'m, P\

T 3/2 2.22 MeV
10
10 <1 . > exp <) . (2.75)

So, between the QCD transition (7" ~ 100 MeV) and the time at which ' ~ Bp,
it is clear that the ratio remains tiny (np/mp ~ 10719). Thus, as expected,
there is no significant deuterium abundance above this scale; all baryons are in
the form of neutrons and protons. The first terms can be compensated only if
the argument of the exponential is large enough. A quick estimate shows that
the deuterium abundance becomes comparable to ng ~ n, around 0.07 MeV.
We will retain 0.07 MeV as the temperature of Nucleosynthesis.

Once deuterium forms, one can show that it is efficiently converted to >He
and “He, since the scattering rate of the relevant reactions exceeds the Hubble
rate, and *He is the most stable configuration. However, at T ~ 0.07 MeV,
the scattering rate of the three-body reaction 3 x *He — 2C is consider-
ably suppressed and the chain stops. We conclude that below T' ~ 0.07 MeV,
nucleons combine into *He, which is formed of two protons and two neutrons.
However, protons and neutrons are not necessarily in exactly equal proportions
before this temperature is reached. Hence, together with *He, there might be
a relic density of protons or neutrons. We see that it is crucial to compute the
neutron over proton ratio for T > 0.07 MeV.

Neutron versus proton density above T ~ 0.07 MeV. The balance between neu-
trons and protons depends essentially on the reaction:

pte  +—n+vrv.. (2.76)

At high energy (T' > MeV), this reaction is in chemical equilibrium, with g, +
fe = fin~+iiy, . Using eq. (2.15) for the number density of non-relativistic species,
we get:

3/2 . _
o _ (m> exp (mp L “p) (2.77)
Mp My
_ () exp (Lp_Mn | He ~ Hre (2.78)
my P\TT T '

Let us see which of the terms in the argument of the exponential are really
important. The difference between the neutron and proton mass is Q = m,, —
my = 1.293 MeV. Hence, for T > 1 MeV, the ratio @/T becomes larger than
one and will lead to an exponential drop of the ratio n,/n,. The other two
terms are instead unimportant because:

e in the simplest cosmological model favoured by observations, the neutrino-
anti-neutrino asymmetry is either zero or negligible. Since the asymmetry
(ny, —nz,)/(n,, +np, ) is of the order of p,,_ /T, the ratio p,, /T is negligible
with respect to one, and can be dropped from the equation.
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e we have already seen that electric neutrality implies a very small electron-
positron asymmetry before electron-positron annihilation,

(Me= — Nt )/ (Ne= 4 Nt ) ~ BB 10710,
s

s0 pie/T is also of the order of 107!° and can be dropped from the equa-

tion8.

Finally, the neutron to proton ratio is given by:

3/2
Ny, My, Q 1.293 MeV
o (m,,) exp < T> 002 exp ( T > (2.79)

For T' > 1 MeV, the neutron to proton ratio is given by:

n”L

Tp

o\ 372
= ( ) =1.002 , (2.80)
T>>1 MeV My

i.e. the density of neutrons and protons is essentially the same. When T ~
1 MeV, chemical equilibrium would force the neutron to proton ratio to drop
exponentially like exp(—Q/T). If this was true, at 0.07 MeV there would be es-
sentially no neutron left, and Nucleosynthesis would not happen: the primordial
universe would contain only hydrogen.

However, the above reaction is mediated by weak interactions. Hence, it
becomes quite weak around T' ~MeV, and we are forced to consider its departure
from chemical equilibrium. In fact we will see that the reaction freezes out with
a significant leftover of neutrons. The neutron density obeys to the Boltzmann
equation:

N + 3Hn, = npn,, (ov)] {exp (ue +Hp —TMn — ,u,,e> - 1} . (2.81)

The term between square brackets is the scattering rate I',, for neutron to
proton conversion. In the exponential, we can again neglect the tiny . and p,,
chemical potentials, and replace exp ((1p — pin)/T’) using eq. (2.77) (but not
assuming chemical equilibrium, and therefore, not assuming that eq. (2.78) is
also true). Then

3/2
fum + 3Hny, = 0Ty {”” (m”> e~ @/T _ 1} . (2.82)

Ny \ My

This equation can be written in terms of a dimensionless variable, the neutron
fraction X,, = n,/(n, + n,). We have

Ny, = Xp(nn +np) = Xynp, n,=(1—-X,)np . (2.83)
3

The conservation of the baryon number implies np & a™°, so

i = Xpnp — 3HX np . (2.84)

8To be precise, we have explained here that p./T ~ 10710 before electron-positron an-
nihilation. After the annihilation, at 7" < 0.5MeV, u./T starts to grow as a consequence of
charge and electron number conservation, but it starts from such small values that for the
range of temperatures interesting here, it remains much smaller than one
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Replacing n,, and n, in eq. (2.82) and dividing by np, we get
Xp =Ty [(1 = X,) e QT — Xn} . (2.85)

The dependence of I'y,, with respect to T' can be computed using nuclear physics.
Still, in order to integrate the equation, we need to know the relation between
time ¢ and temperature T. This relation can be inferred from the Friedmann
equation. In first approximation, 7' oc a~! (neglecting the effect of the electron-
positron annihilation on Ta) and dT/T = —da/a. So,

dT da
= = T = —_TH 2.
dt adt (2.86)
8rG
= /e (2.87)
3
8m3G
- T 2.88
90 Y (2.88)

with g. = 10.75 before electron-positron annihilation. Hence the reaction reads

dX, 90 Mp

ar 8m3g, 13 "
Knowing I',,,(T), this equation can be integrated. The result is that around
T ~ 0.1 MeV, X,, gets close to an asymptotic value of 0.15, corresponding to
the freeze-out of the neutron to proton ratio.

Equation (2.89) is just a first-order approximation. The precise calculation
includes two additional effects: the change in g, and Ta due to the electron-
positron annihilation, and the neutron-to-proton conversion (n — p+e~ +,)
which should be included in the right-hand side of the Boltzmann equation since
it represents another decay channel. Altogether, these effects lead to a slightly
different neutron to proton ratio at freeze-out, X,,(T" < 0.1 MeV) ~ 0.11, while
at the time of Deuterium creation, n,, = 0.124np and n, = 0.876n. Then,
all available neutrons will combine into deuterium, *He and finally *He nuclei,
together with the same number of protons. The final *He density should be
nage = 0.062 np, with a leftover of ny = 0.752 np protons. The helium fraction,
usually defined as:

(T) [(1 ~X)e U7 —x,| . (2.89)

yp = dntme (2.90)
ng

is predicted to be 0.248 at any time after Nucleosynthesis, in every region of the
universe not affected by the ejection of particles from stars (since inside stars,
nuclear reactions can form other elements in very different proportions).

Ezact results from a full calculation. The above calculation was rather simplis-
tic. A full simulation of Nucleosynthesis can be performed using numerical codes
(a few Nucleosynthesis codes are even publicly available). Instead of studying
the kinetics of just two reactions, these codes follow of the order of one hundred
possible reactions between neutrons, protons and heavier nuclei (typically, till
12¢). Table 2.1 shows, for instance, the first 40 reactions used in the public
code PARTHENOPE’. In section 2.2.5, we only studied the reactions called 1 and
12 in this table.

The main differences between the outcome of a full simulation and the results
of the above section are:

9mttp://parthenope.na.infn.it/
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No. Roaction Type No. Roaction Type
1 n — p weak 22 SLi+p — ~ + "Be (p,7)
2 3H — be + e~ + 3He weak 23 6Li + p — 3He + 4He 3He Pickup
3 8Li » e + e~ + 2 4He weak 24 TLi + p — 4He 4+ 4He 4He Pickup
4 125 4 5, + e~ + 12¢ weak 24 bis TLi+ p — ~ + 4He + 4He (Pv)
5 140 5 5o + e + 14N weak 25 4He 4+ 2H — ~ + OLi (d,v)
6 8B — ve + e + 2 4He weak 26 4He 4+ 3H — ~ + TLi (t,7)
7 o 5y + et + 118 weak 27 4He + 3He — v + "Be (3He,v)
8 12N — ve + e+ —+ 12C weak 28 2H —+ 2H — n + 3He 2H Strip.
9 3N & ve + et 4 13C weak 29 2H + 2H — p + 3H 2H Strip.
10 140 & ve + et + 14N weak 30 3H + 2H — n + 4He 2H Strip.
11 15O — ve + et —+ 15N weak 31 3He + 2H — p + 4He 2H Strip.
12 p+n— v+ 2H (n,7) 32 3He + 3He — p + p + 4He (3He,2p)
13 2H +n — v +3H (n,v) 33 TLi + 2H — n + 4He + 4He (d,n )
14 3He + n — ~ + 4He (n,7) 34 "Be + 2H — p + 4He + 4He (d,p a)
15 6Li+n — ~ 4+ "Li (n,7) 35 3He 4+ 3H — ~ + OLi (t,7)
16 S3He + n — p + °H charge ex. 36 6Li +2H — n + "Be 2H Strip.
17 "Be +n — p + "Li charge ex. 37 6Li + 2H — p + TLi 2H Strip.
18 SLi+n —— 3H + 4He 3H Pickup 38 3He 4+ 3H — 2H + 4He (3H,d)
19 "Be + n — 4He + 4He 4He Pickup | 39 3H +3H — n + n + 4He (t,nn)
20 2y +p— v+ 3He (p,7) 40 3He + 3g — p+n + e (t,n p)
21 3H +p — v + %He (p,v)

Table 2.1: The first forty reactions used in the Nucleosynthesis code PARTENOPE.

Table taken from [arXiv:0705.0290] by Ofelia Pisanti et al.

e when reactions freeze-out, the density n; of other elements than *He is
nonzero — but still very small: the number density of D and >He is smaller

than

that of “He by a factor ~ 10°, the density of 7 Li is smaller by ~ 107,

and all other species are even more suppressed.

e the final predictions for Yp and other light element abundances are not

fixed

numbers, they depend slightly on the two free parameters of this

problem, namely ng/s and Neg:

1.

the value of ng/s ~ 10710 controls mainly the temperature at which
deuterium starts forming (see eq. (2.75)). Hence the neutron-to-
proton ratio at the beginning of deuterium formation depends on
np/s, as well as the final helium abundance. The ratio ng/s is easy
to relate today to (n,+mn,)/n,, and for fixed CMB temperature, this
ratio can finally be expressed as a function of wy.

the value of g,, which enters the change of variable from time to

temperature, dT'/dt gi/ % In models with Dark Radiation,

7
g+(~ 10MeV) = 2+ ¢ (4 + 2Ner) | (2.91)

as defined in equation (2.39). Thus the speed of neutron-to-proton
conversion depends on the effective neutrino number N.g, and the
ratio n, /n, at T = 0.07 MeV is slightly different, leading to different
abundances.

Observed abundance of primordial elements In sections 2.2.5, we have seen

that the t

heory of Nucleosynthesis can predict the abundance of light ele-

ments formed in the early universe, when the energy density was of order
p ~ (0.07MeV)%. After Nucleosynthesis, there are no more nuclear reactions
in the universe, excepted in the core of stars. So, today, in regions of the uni-
verse which were never filled by matter ejected from stars, the proportion of
light elements is still the same as it was just after Nucleosynthesis. Fortunately,
the universe contains clouds of gas fullfilling this criteria, and the abundance of
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deuterium, helium, etc. can be measured in such regions (e.g. by spectroscopy).
The results can be directly compared with theoretical predictions.

Numerical simulation of Nucleosynthesis accurately predict all relative abun-
dances as a function of the two free parameters in the theory, ng/s « w, and
Neg. The primordial abundances that are easiest to measure are the primordial
helium abundance Yp = 4nape/hy and the primordial deuterium abundance
yp = np/ng (according to our previous study, the latter should vanish, but
in reality, when all weak reactions freeze out, there is a tiny left-over of Deu-
terium such that yp ~ 107°). So it is possible to measure two observables and
determine the value of the two free parameters of the model.

The current observations give Yp = 0.24640.010 and yp = (2.534:0.04)10~°
(68% CL). By fitting this data with the BBN model, one gets a measurement
of both wy and Neg:

wy, = 0.023+0.002, (2.92)
N = 3+1. (2.93)

This confirms that we have =& ~ 10719, as assumed throughout this chapter,
and that radiation could consist only of photons and ordinary neutrinos.

We will see later that CMB observations give independent measurements of
(wp, Negr) which are in very good agreement with the above results (but more
precise). The latest CMB observations from the Planck satellite indicate (always
at the 68%CL, i.e. 1-o confidence level)

w, = 0.02226 & 0.00016, (2.94)
Neg 2.99 =+ 0.20. (2.95)

It is considered as a huge success for cosmology that two very different techniques
(Nucleosynthesis, which relies on nuclear physics when T ~ (0.01 —1) MeV, and
CMB, which relies on relativistic hydrodynamics and QED when T ~ (0.1 —
100) eV) give compatible results for w;, and Neg.

Hence, for h = 0.67 (the current best-fit value), the baryon fraction is of
the order of € ~ 0.05: approximately five percent of the universe density
comes from ordinary matter. This is already more than the sum of all luminous
matter, which represents only one per cent: so, 80% of ordinary matter is not
even visible.

2.2.6 Recombination

After Nucleosynthesis, the universe contains a thermal plasma composed es-
sentially of relativistic photons and non-relativistic electrons, hydrogen nuclei
and helium nuclei; plus decoupled relativistic neutrinos (and probably decou-
pled dark matter particles studied separately in section ). At T' < MeV, weak
interactions are inefficient, but electromagnetic interactions ensure thermal equi-
librium between electrons, nuclei and photons. More precisely, photons remain
tightly coupled to electrons via Compton scattering (e~ +vy — e~ + ) and
electrons to nuclei via Coulomb scattering (e~ +p — e~ +por e” +*Hett —
e~ 4+ *He™™). These interactions are efficient at least as long as hydrogen and
helium remain ionized.
The formation of neutral hydrogen depends on the reaction:

e +p+— H+~v. (2.96)
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The exact description of recombination is considerably complicated by the fact
that hydrogen can form in various excited states, and then relax to its funda-
mental state while emitting photons: so, there are many states and reactions to
follow. Here we will neglect this issue and do as if hydrogen could only be in its
fundamental state.

Like for Nucleosynthesis, let us start from purely energetic considerations.
The binding energy of hydrogen, defined through:

My = My +Me — € , (2.97)

is equal to ¢y = 13.6 eV. Hence we expect that for T' > 13.6 eV hydrogen is
fully ionized: any neutral hydrogen atom would immediately interact with an
energetic photon and get ionized. This does not mean that neutral hydrogen
forms immediately below 1" ~ 13.6 eV. Just like for the formation of deuterium
during Nucleosynthesis, the balance of the above reaction depends on relative
abundances. We know that the density of electrons and protons is 10'° times
smaller than that of photons. So, much below T ~ 13.6 eV, there should still
be enough energetic photons for preventing recombination.

In one of the exercise sheets, you will find that this expectation is confirmed
by the actual equations. You will define the hydrogen ionization fraction:

X,=— e "0 (2.98)
Ne +Npr ny +ng

where n. stands for the density of free electrons only, and n, of free protons
only. Assuming thermal equilibrium, you will derive the Saha equation

X2 1 m.T\*? _,
1-X. n +nH<27T> e (299

which gives an approximation of the temperature of recombination, found to be
close to Tyec ~ 0.254 €V, which happens at z,oc ~ 1080 (see exercises). This
redshift is called the redshift of recombination. A very important remark is that
it is smaller than the redshift of equality, z4ec ~ 3000. Thus, recombination
takes place during Matter Domination (MD).

Below this temperature, the reaction leaves thermal equilibrium, implying
that the ionisation fraction freezes out. In the exercises, will write the Boltz-
mann equation governing the evolution of X,. By integrating this equation, one
would get a confirmation that the ionization fraction X. becomes significantly
smaller than one around 2z, ~ 1080, and tends to an asymptotic freeze-out
value of order X, — 5 x 10~ for z < 100.

The same kind of analysis can be done for the formation of neutral Helium,
which takes place in two stages,

e+ Het™ +— ‘Het 4, (2.100)
e +Het «— ‘He+r. (2.101)

On can show that the first and second recombination of Helium both took place
before Hydrogen recombination.

2.2.7 Photon decoupling

Till the time of recombination, photons are maintained in thermal equilibrium
mainly through Compton scattering off electrons:

yteT —yte. (2.102)
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The cross section of the above reaction is the Thomson cross section, equal to
or = 0.665 x 1072*cm?. From there, one can compute a thermally averaged
cross-section (opv). Compton scattering of photons off electrons becomes inef-
ficient roughly when the scattering rate I' = n.(orv) drops below the Hubble
parameter. Note that n. denotes the number of free electrons, not the total
number of electrons (that includes also the electrons inside neutral Hydrogen or
Helium atoms). In order to evaluate this characteristic time, we can write

ne = Xent®™ = Xonbo™ ~ Xonp (2.103)

and
Pb (%)3 Pb0 (%)3 1072w, g.cm ™

ng~ —
b a my a 1 GeV

2.104
o (2:101)
Given the value of the Thomson scattering cross-section (orv), one finds

3
Ir~2x10°2 X, (@) wp 5L, (2.105)
a

and then 5
' 2x107% X, () w,s™! Hy

H H, H
Next, one case use the following relation during matter and A domination:

(2.106)

2
(i) =Om(1+2)> + Q. (2.107)

Thus, during MD, one has H/Hy ~ Q,ln/z(ao/a)3/2, and

r 2% 10721 X, (%)%, st

— o~

H Hy? (22)*?

2x 1072 X, wp st <a0)3/2
[100hkms—1Mpc_l] QIIH/Q
2x 1072 X, wy st (@)3/2

[3 x 10— 18s~1] wil?

a

a

2

Wp ap 3/2
0.007 - x (;) (2.108)

1/2 7€
wm/

The evolution of this ratio comes from the product X, ( %0)3/ ? where we recall
that X, is equal to one before recombination, then drops abruptly (exponen-
tially) around zgec, and then stabilises around 5 x 10~4. A numerical application
shows that I' ~ H occurs precisely at recombination, during the exponential
drop of X.. Thus the redshift of photon decoupling is zqec ~ zrec ~ 1080.

Hence, recombination directly triggers photon decoupling. This is in fact
the main reason for which recombination is important to study: it controls the
time at which the universe becomes transparent, that is, the decoupling of the
CMB photons that we observe today.

The temperature evolution of photons is completely unaffected by their de-
coupling, exactly like for neutrinos. When photons decouple, their relativistic
Bose-Einstein distribution freezes-out, and only evolves at later times due to the
universe expansion, which induces p o a~! for individual photons, and hence
T  a~! in the photon phase-space distribution.

Translating the redshift zqec ~ zrec ~ 1080 in terms of proper time, one finds
photons decouple approximately 380000 years after the Planck time.
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2.2.8 Very recent stages

After photon decoupling, there are no more events in the thermal history of the
universe that play a significant role in this course. Let us mention however a
couple of interesting phenomena.

Neutrinos have small masses, all in the range 0 < m; < 0.1eV. Each neutrino
family i becomes non-relativistic when 7,, < m;, but since they are already
decoupled, this has no effect on the temperature and number density evolution
(T, < a=! and n, oc a=3). Only the energy density and pressure of neutrinos are
affected by the non-relativistic transition. The consequences of this transition on
the formation of structures (clusters, galaxies) are interesting, but not discussed
in this course.

There is another remarkable phenomenon occurring at low redshift. When
the first stars form around z ~ 6, they emit a new population of photons
that partially reionize hydrogen and heavier elements. However, this reioniza-
tion is not sufficient for “re-coupling” photons to electrons and ionized matter:
only a small fraction of CMB photons have a chance to experience Compton
scattering between the time of decoupling and today. This can be understood
from eq. (2.108): when X, goes back to one at small redshifts z ~ 10, the ra-
tio (a/ag)®/? is much smaller than at the time of recombination (by a factor
(1000/6)3/2), so '/ H remains smaller than one.

In figure 2.2, we summarise qualitatively the main results of this section.

Iog(ni/ny) v decoupling

9/4 3v+3v y decoupling
1 Yy | AN
e :
3/4 o |

| |

~10-10 P : “
( 4He “He
AL D* D

100MeV  1MeV 0.5MeV  0.07MeV 10-3eV

Figure 2.2: As a summary of this chapter, we show the qualitative evolution of
n; for each species, normalized in terms of n..
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2.3 Dark Matter

2.3.1 Historical arguments

There are many strong reasons to believe that in the recent universe, the non-
relativistic matter is of two kinds: ordinary matter and dark matter. One of
the well-known evidences for dark matter arises from galaxy rotation curves.
Inside galaxies, the stars orbit around the center. If we can measure the
redshift in different points inside a given galaxy, we can reconstruct the dis-
tribution of velocity v(r) as a function of the distance r to the center. It is
also possible to measure the distribution of luminosity I(r) in the same galaxy.
What is not directly observable is the mass distribution p(r). However, it is
reasonable to assume that the mass distribution of the observed luminous mat-
ter is proportional to the luminosity distribution: prum(r) = b I(r), where b is
an unknown coefficient of proportionality called the bias. From this, we can
compute the gravitational potential ®,,, generated by the luminous matter,
and the corresponding orbital velocity, given by ordinary Newtonian mechanics:

Pum(r) = b I(r), (2.109)
ADpm(r) = 47G pram(r), (2.110)
Vi (1) = T%%m(r). (2.111)

S0, Vlum (r) is known up to an arbitrary normalisation factor vb. However, for
many galaxies, even by varying b, it is impossible to obtain a rough agreement
between v(r) and vium(r) (see figure 2.3). The stars rotate faster than expected
at large radius. We conclude that there is some non—luminous matter, which
deepens the potential well of the galaxy.

We can explain the same result in slightly different words. Assuming that
stars have a circular orbit (this is just an approximation), the relation between
force and accelerations gives us

v2(r) 0
= =-®(r) (2.112)

r
while the Poisson equation of newtonian mechanics gives us

10 0
Ad(r) = 2 or (7"2&‘1)) = 4nGp(r) (2.113)

Finally, the mass of objects enclosed in a radius r is just

M(r) =4n /07’ dr' (r')?p(r') . (2.114)

These relations and a simple integration give the exact relation

_ GM(r)

v3(r) (2.115)
If we assume that all the mass is in the form of visible matter, there is a mismatch
between measurements of v(r) and estimates of M (r). In particular, when we see
that most of the mass is located within a radius r, (where v stands for visible),
we expect that above r,, M(r) reaches a constant asymptote. Then v(r > )
should decrease nearly like 1/r (this is obvious from the last relation, and such
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redshift

Figure 2.3: A sketchy view of the galaxy rotation curve issue. The genuine
orbital velocity of the stars is measured directly from the redshift. From the
luminosity distribution, we can reconstruct the orbital velocity under the as-
sumption that all the mass in the galaxy arises form of the observed luminous
matter. Even by varying the unknown normalisation parameter b, it is impossi-
ble to obtain an agreement between the two curves: their shapes are different,
with the reconstructed velocity decreasing faster with r than the genuine ve-
locity. So, there has to be some non-luminous matter around, deepening the
potential well of the galaxy.

a decrease is called a Keplerian decrease). Instead, in many galaxies, beyond
such a radius r,, the few remaining starts tend to orbit much too fast. An
obvious solution is to assume that there is another type of non-visible matter
contributing to M (r), and even dominating it. If the non-visible matter is
spread over a larger radius than visible matter, then the most distant observable
galaxies are still orbiting in the gravitational potential created by dark matter.
This supports the notion of a dark matter halo.

A qualitatively similar argument applies to the dynamics of galaxies within
galaxy clusters. Actually, the hypothesis of dark matter was formulated for the
first time by Franz Zwicky in 1933, following the observation of surprisingly
large galaxy velocities inside the Coma galaxy cluster.

2.3.2 Other evidences for dark matter

Apart from galactic rotation curves, there are many arguments — of more cos-
mological nature — which imply the presence of a large amount of non—luminous
matter in the universe, called dark matter.

The observation of CMB anisotropies is the strongest one. It requires the
presence of a component not interacting with ordinary electromagnetic forces.
This component had to be present in the universe at least at early times, between
z ~ 10 and z ~ 10%. Assuming that this dark matter is stable and that its
number density is conserved until today, we obtain from the CMB an estimate of
the dark matter density today corresponding to 25% of the total energy density
of the universe (and 85% of the total non-relativistic matter density). Before
CMB observations, one could have thought that dark matter is just ordinary
matter that we cannot see, because it is not luminous, and it does not absorb
the light of other objects. If this was the case, from the point of view of CMB
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physics, non-luminous ordinary matter would count as baryonic matter, not as
dark matter. Thanks to CMB data, we are now sure that dark matter is truly
different from ordinary atomic matter.

Strong lensing. Gravitational lensing is by definition sensitive to the total
gravitational potential created by both ordinary matter and dark matter. The
study of arclets and of strong lensing patterns allows to reconstruct the shape of
dark matter halos around some particular galaxy clusters, and to bring further
proofs of the existence of such halos.

Weak lensing. By looking at the statistics of the apparent orientation of
galaxies in different regions of the sky, one can average out the random distri-
bution of intrinsic shapes, and estimate the effect of the weak lensing of galaxy
images by dark matter (since this effect is coherent over many galaxies in a given
region). Weak lensing works surprisingly well and gives us a very good map of
the gravitational potential projected along the line-of-sight in each direction
around us. By studying the weak lensing of galaxies located at a given redshift,
one can even do tomography and reconstruct the 3D distribution of dark matter
(always with a poorer resolution along the 3rd dimension, i.e. along the line-
of-sight). This technique brings further evidence for dark matter, and allows to
estimate its abundance. It gives consistent results with other techniques, and
in particular with CMB observations.

The analysis of the bullet cluster shows very well the presence of two halos
that have crossed each other in the recent past without being deformed, unlike
the two associated clouds of gas, now displaced from the center of halos, and
shaped like a shock wave. This is another way to find that dark matter is very
weakly interacting - possibly only gravitationally.

There are other ways to prove the existence and the properties of dark matter
that we do not have time to summarise here. However, we should stress one
important fact: dark matter must be cold rather than hot. What do we mean
by this?

Within the standard model of particle physics, a good candidate for non-
baryonic dark matter would be a neutrino with a small mass. Then, dark matter
would become non-relativistic only recently. Today it would still possess large
velocities, just a few orders of magnitude smaller than the speed of light (this
hypothesis is called Hot Dark Matter or HDM). Because of these large velocities,
neutrinos could not remain confined in small gravitational potential wells. Even
in presence of gravitational clustering, they would form very large and not-so-
dense halos (while particles with negligible velocities, called Cold Dark Matter
or CDM, can cluster much better: they can form much smaller and much denser
halos).

If halos were huge and not very dense like in the HDM case, the number and
the distribution of galaxies (which depends on the gravitational effects of dark
matter) would be very different from what we observe. For that reason, HDM is
strongly excluded by several types of observations. Dark matter particles have
to be strongly non-relativistic, otherwise galaxy could not form with a sufficient
abundance during matter domination.

2.3.3 Thermal WIMP model

Here we will review only one out of many possible models for explaining the dark
matter problem: the case of so-called WIMPs. WIMP means Weakly Interacting
Massive Particle.

Here Interacting refers to the fact that these particles are assumed to have
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interactions with standard model particles (otherwise no interesting calculations
or predictions could be made...). More specifically, WIMP interactions are sup-
posed to be sufficiently efficient in the early universe for bringing WIMPs in
thermal equilibrium with other particles.

Weakly refers to the fact that we assume specifically that these interactions
are of the weak type (i.e. mediated by Z and W* bosons). Hence we expect
that these particles decouple at the latest when the temperature is roughly of
the order of the MeV, like for neutrinos; They may decouple even before if they
become very diluted and their interaction rate is suppressed. After decoupling,
WIMPs interact only gravitationally with other species.

Massive refers to the fact that we impose a sufficient mass for WIMPs to
decouple when they are non-relativistic: i.e. we assume a mass m, > O(MeV).
If we did not make such an assumption, i.e. if the WIMPs decoupled when they
are still relativistic, they would share the same number density as neutrinos until
today. Then the correct value of the relic density pJ,. (or equivalently wey,)
could only be obtained for m, ~ O(10) eV, and the typical velocity of WIMPs
today would be of the order of v ~ (p)/m, ~ T/m, ~ 10~*c. Such velocities
are still very large, and this dark matter candidate would fall in the category of
Hot Dark Matter. To avoid this, we impose non-relativistic decoupling: we will
see that this leads to a number density n?( very suppressed with respect to that
of neutrinos, and because the mass is large, to very small dark matter velocities:
in that case WIMPs fall in the category of Cold Dark Matter.

For simplicity, WIMPs are usually assumed to be neutral and to be Majo-
rana fermions instead of Dirac fermions, which means that they are their own
anti-particle. We will denote them as x. Moreover, one usually imposes a Z5
symmetry on these particles. This means that the Lagrangian can only fea-
ture even powers of x. For instance, an interaction term yAB is forbidden
by the Z, symmetry, while a term y2AB respects the symmetry. As a con-
sequence, WIMPs cannot decay (y — A + B + ...) but they can annihilate
(x+x — A+ B+...). In the latter reaction, the total charge on the left-hand
side is zero. Hence the total charge must be zero also on the right-hand side. It
means that pairs of WIMPs can only annihilate into neutral particles, or into
pairs of particles and anti-particles. For instance, they can annihilate into higgs
bosons, Z° bosons, quark-antiquark pairs, lepton-anti-lepton pairs, etc. This is
model-dependent. “Popular” annihilation channels are, for instance, electron-
positron, or muon-antimuon, but there are many other possibilities. For the
calculations in the rest of this section, it is not necessary to specify explicitly
what the dominant annihilation channel is.

Our goal is to compute the relic density of WIMPs and see whether it can
be related to the WIMP mass and/or annihilation cross-section. First, we will
assume that the annihilation reaction

X+ x — A(+B) (2.116)

remains in chemical equilibrium at every time. In that case, we can write
2py = pa(+pp). But since the right-hand side must be a particle carrying no
conserved charge (so ua = 0) or a particle-antiparticle pair (so pa = —up), this
simplifies to p,, = 0. In that case, we know that for T > m,

_ B 3g T, (2.117)

n, = 2 _
X 7724X



56 CHAPTER 2. THERMAL HISTORY OF THE UNIVERSE

while for T' < my,

2

In fact, one could integrate the Fermi-Dirac phase-space distribution in order to
get n,, for any value of temperature. The exact relation has the two asymptotes
written above. This means that n,a® evolves with T like: (aT)? for T' > m,,
i.e. like a constant when the effective number of effective degrees of freedom g,
is constant; and like an exponentially decaying function for 7" < m,. In the
rest of this section, we will call this particular solution n$"*%(T) (the “density
assuming chemical equilibrium”).

In reality, we expect that WIMPs will not remain in chemical equilibrium
for a long time after the non-relativistic transition. Indeed, the mass of WIMPs
is usually assumed to be slightly above the order of the MeV (a typical range
for the most popular models is 100 MeV < m,, < 10% GeV). But we know that
weak interactions become inefficient around T' ~ O(MeV) for neutrinos, because
I’ = n, (o, v) becomes smaller than H. For WIMPs, we expect a cross section of
the same order of magnitude (because it still depends on the Fermi constant),
and an annihilation rate I' = n, (0 4v) even smaller than for neutrinos, because
n, gets exponentially suppressed after the non-relativistic transition (here (o 4v)
is the WIMP thermally averaged annihilation cross section). Hence we expect
WIMPs to leave thermal equilibrium even before neutrinos, and very soon after
their non-relativistic transition, when n, becomes very small.

We know that “leaving chemical equilibrium” means, concretely, that the
WIMP number density will freeze out, and that n,a® will be conserved after
freeze-out. The evolution of n, is given by the Boltzmann equation

™32,
Ny = gy (mx ) e T (2.118)

Ay + 3Hny = 1% (0 40) [6*2'% - 1} . (2.119)

Using our definition of n‘;(h'eq' (T), and the fact that for T < m,, it is given by
eq. (2.118), we can write the Boltzmann equation in the following form for any
time after the WIMP non-relativistic transition:

) ) nch.cq. 9 5
Ny + 3Hn, =nj(04v) 2 —1| ={(oav) [(n;h'eq') — (ny) ] .
X

(2.120)
Since n;h'eq' (T') is a known function of temperature , and since the derivative
with respect to time can be transformed into a derivative with respect to temper-
ature (like in the BBN and recombination sections), we have all the ingredients
for integrating this equation numerically. This is what we would do in order
to get a precise prediction for the relic number density of WIMPs after freeze-
out (i.e. after leaving chemical equilibrium and reaching the asymptote with a
constant value of nya?).

But for a rough order-of-magnitude estimate, there is a simpler way to es-
timate the relic density of WIMPs at freeze-out. Let us use a superscript f to
denote quantities at that time (for instance, the freeze-out temperature will be
TF). We know that freeze-our occurs roughly when I' ~ H. This gives directly:

Hf
nf o~ — .
< loav)

(we have put a superscript also on the thermally averaged cross-section, in
case this quantity would evolve with time, but this is not the case for typical

(2.121)
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annihilation channels). We can estimate H7 as a function of temperature using
the Friedmann equation and the density of the thermal bath as a function of
the effective number of bosonic relativistic degrees of freedom g,:

G 871G 72 gl (T
(HI)? = = Zpf = == gl (T7)* ~ 2 (2.122)
3 330 M2
Hence Fr1/2 2
(g:) (") (2.123)

ny ~ S
X Mp(oav)f

Moreover, we know that after freeze-out, nxa?’ is exactly conserved. At the same
time the entropy conservation law says that g.(Ta)? is constant, so Ny evolves
proportionally to g.T?. Finally we can evaluate the WIMP relic density today:

0 0
o_ ¢ 9 (T

Putting everything together, this gives

0 0y3
0 g, (17) 1
~ . 2.125
g2 TF Mp{oav)! (2.125)

Since WIMPs are strongly non-relativistic today, we can infer the energy density
by multiplying the number density by the WIMP mass. This gives:

PO mX g* (T0)3
X T (g N1/2 Mp(oav)

(2.126)

In a given model motivated by particle physics, we would know g2, g,{ and

(o4v). Then, in order to get a definite prediction, the only remaining task is to
evaluate the ratio 7.

We know that m" crosses one at the time of the non-relativistic transition.
A crude approx1mat10n would consist in saying that freeze-out takes place very
soon after the non-relativistic transition, because it is triggered by the fast
exponential decay of n, as a function of 7 (as indicated by eq. (2.118)). In
this approximation we could use Tf ~ 1.

This approximation is actually not so bad, because the true value of the
freeze-out temperature would be given by solving the equation

Iy (oav)

= ———"n~1 2.127
=0y (2.127)

with n, given by eq. (2.118). Due to the factor e*%, the solution for %
depends logam’thmically on the parameters of the problem (mass, cross-section):
hence it is true that —X is of order one, and can be considered as nearly inde-
pendent of the mass and cross-section in first approximation.

We are led to our final result: the relic density of WIMPs is governed by the
inverse annihilation cross-section, with

0 0
~ , 2.198
X (D72 Mploav) (2.128)

This is a very well-known result. Intuitively, WIMPs with a larger cross-section
remain in thermal equilibrium for a longer time after their non-relativistic tran-
sition. Hence they are more Boltzmann-suppressed at freeze-out, and a smaller
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fraction of them survives until today. By matching pg to observations, one gets
a prediction for (74v)f ~ 10726cm3s~!. This is precisely the order of magni-
tude that one would expect for a particle interacting only with weak forces. In
other words, by assuming that (o4v) is a weak annihilation cross-section, we
automatically get the right order of magnitude for the DM relic density. This
nice coincidence is often called the WIMP miracle.

Many experiments of so-called dark matter direct detection have been built
for probing such particles. They are usually located in underground laborato-
ries, to filter out as many cosmic rays, ordinary electromagnetic radiation and
terrestrial radio-activity as possible. Most of them try to measure the small
heating of the detector caused by elastic interactions between detector particles
and the WIMPs crossing them. This is of course very difficult, due to the very
small interaction rate. But at least, people know what to search for: we have
seen that we can estimate the WIMP annihilation cross-section, and hence, also
the typical WIMP interaction cross sections. These detectors have not found
any significant signal so far.

There are many dark matter candidates falling in the category of WIMPs:
it is not so difficult to build a reasonable extension of the standard model of
particle physics featuring new particles, some of them having the basic properties
that we mentioned in this section. A famous examples is the neutralino of
supersymmetric models. However, not only WIMPs have not been discovered,
but the LHC is currently bringing no evidence in favour of supersymmetry.

Search for WIMPs will continue in the next years. In parallel, people are
thinking about other types of dark matter candidates (axions, sterile neutrinos,
...), and are working on other types of experiments to probe them. We do not
have time to describe these alternative scenarios in this chapter.



Chapter 3

Linearised gravity

The cosmological model offers a coherent and very well experimentally tested
framework in which the primordial universe is very homogeneous, with tiny fluc-
tuations in density. Later on, these fluctuations grow by gravitational collapse,
until they form the strong inhomogeneities observed today (filaments, vacu-
ums, halos, galaxies, etc.). The best experimental evidence for this paradigm
is precisely the observation of CMB anisotropies, which directly shows that the
relative density fluctuations at the time of photon decoupling were only of the
order of 107°.

Consequently, the primordial universe is very well described by a theory
of linear perturbations. Subsequently, non-linear perturbations appear first at
small scales and then gain larger and larger scales. Currently, the scale sep-
arating the linear regime from the non-linear regime is of the order of a few
tens of Megaparsecs. However, the main CMB observables (such as the tem-
perature spectrum) depend essentially on the evolution of perturbations at very
early times: before, during and shortly after recombination. Then, all currently
observable scales were in the linear regime. Therefore, the study of linear cos-
mological fluctuations allows to study the early universe and CMB physics on
all scales, as well as structure formation in the recent universe on large scales.

Throughout this section, we will assume that we live in a flat universe. In-
deed, all current observations suggest that the spatial curvature of the universe
is negligible. Besides, the mathematical description of perturbations is consid-
erably more complicated in a non-flat universe. We recall that the flat FLRW
line element can be written in natural units and cartesian coordinates as:

ds?

—dt* + a(t)? [(dz')? + da3 + da3]
= a(n)?[~dn® + dat + dz3 + da3] . (3.1)

3.1 Comoving Fourier space

Through a Fourier transformation of each perturbation with respect to the co-
moving coordinates, the linear evolution equations are decomposed into inde-
pendent systems for each Fourier mode. For example, for a fluctuation of density

59
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dx, we will write the transformation as

3—»
Sx(tF) = / ﬁax<t,f>eik'f,

2W)3/2
_, dSE N ik-d
(5X(t,x) = /W(sX(t,k)e k y (32)
d?’_} TN = — -
with /(275361% R = §p (K — k) . (3.3)

The quantity 27 /k, where k = |k|, stands for the comoving wavelength. The
physical wavelength is given by

21

A(t) = a(t) :

(3.4)

3.2 Observable wavelengths and causality

We want to estimate the scale of the largest observable comoving wavelength
2w /k, that is, the minimal observable wavelength kpi,. We notice that a ray
of light emitted at photon decoupling, when ¢ = t4e., and travelling radially
towards us in a flat FLRW universe must travel over a comoving distance given

by
o dt
Xobs :/ —= . 3.5
b tdec a’(t) ( )

This quantity can thus be called the comoving radius of the observable universe.
Then the minimal observable wavelength k., is defined from

21
= Xobs - (36)

kmin
Today, this corresponds to a physical wavelength given by

27 o qt
/\max = a(tO) = a(tO)Xobs = a(to)/ — = Robs . (37)
min tdec &(t)

We defined a physical length R,ps usually called the “radius of the observable
universe”. In the minimal ACDM model this is close to 46 Gyr.

The radius of the observable universe is a particular case of what people
call the “causal horizon”. The causal horizon dg(t1,t2) is simply the distance
travelled by a photon between two items ¢; and t5, expressed in physical units
at time to. Indeed, let us study a physical mechanism that starts at time ¢;:
for instance the free propagation of light in a transparent universe. At time ts,
two points separated by a distance greater than 2dy (t1,t2) cannot be in “causal
contact”, in the sense that they cannot receive information from any comment
event located at any time ¢ > ¢;. The causal horizon reads

dH(tl,tQ) = a(tg) /tz i (38)

t1 a(t)

and we see that Robs = dg (tdec, to)-

During RD and MD, when a(t) « t" with n < 1, the causal horizon dy (t1,t2)
a(tz)
a(t2)

is of the same order of magnitude as the Hubble radius Ry (t2) = for any
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time to > t;. Indeed,

to dl? (tlfn _ tlfn) t
di(ti,ty) = 13 | — =t32 L/~
it t2) Q/tl 2 1-n I—-n’
t
Ru(t) = 2.
n
di(ti,ts) = 7= Rults) . (3.9)

In particular, if we neglect the impact of A domination in the recent universe,
we see that Rops ~ Rp(to): the current value of the Hubble radius gives the
order of magnitude of the radius of the observable universe. This result also
tells us that in a universe with first RD and then MD, wavelengths are in the
“causal regime” or “acausal regime” depending on the fact that they are either
“sub-Hubble”, A < Ry, or “super-Hubble”, A\ > Rpy. This relation between
causal/acausal and sub-Hubble/super-Hubble is not rue exactly, but is true in
terms of orders of magnitude. The condition for being, for instance, sub-Hubble
at time t, reads

At) < Ry(t) < %a(t) < ﬁ S k>alt)H() =a(t) = C:((g)) . (3.10)

The Friedmann equation shows that a(n) o« 7 during radiation domination,
while a(n) o< n? during matter domination. In both cases, within a factor of
two, %/ is of the order of n~!. Therefore, the condition for a mode to be in the
sub-Hubble regime can also be written in terms of conformal time as:

A>Ry & k<aH & kn<l1. (3.11)

During the domination of radiation and matter, the expansion is decelerated,
which implies that A(t) o< a(t) grows slower than Ry (t) oc ¢. Indeed, A(t)/ R (t)
a(t) has a negative derivative. Since the radius of the observable universe is
given by the current Hubble radius (within a numerical factor), the observable
Fourier modes are currently of the sub—Hubble type, i.e. obeying A < Ry. But
in the past, these modes must have been super-Hubble (A > Ry ), as shown in
figure 3.1. Inflation explains how to produce primordial fluctuations with prop-
erties consistent with observations at wavelengths initially much longer than
the Hubble radius (see Chapter IV). Later on, these modes then enter the Hub-
ble radius one by one, starting with the shortest wavelengths. ! The Fourier
modes observable in the CMB anisotropy spectrum correspond very roughly to
four decades below the current Hubble radius, 10"4 Ry (tg) < A(to) < Ru(to).
Among these wavelengths, the longest ones entered the Hubble radius dur-
ing matter domination, and the shortest ones during radiation domination.
These two intervals are separated by a characteristic value of the wavenum-
ber keq = a(teq) H(teq)-

3.3 The gauge ambiguity

Let us think how a perturbation (that is, a spatial fluctuation) is defined. We
first focus on the perturbation of a Lorentz scalar, that is, a simple function

IThe experimental fact that the expansion is currently accelerated means that the longest
observable wavelengths are about to fall outside the Hubble radius again, but for us this will
be a minor detail.

X
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Figure 3.1: Evolution of different physical distances with respect to conformal
time 7 (called 7 in the label of this plot) in the standard cosmological model: the
wavelength \ = a% of the modes typically observable in the CMB spectrum,
and the Hubble radius Ry. The vertical lines show the time of equality between
radiation and matter (R/M) and between matter and A (M/A), as well as the
time of photon decoupling. Obtained with CLASS (class-code.net).

S(z#) of time and space, left invariant by a change of coordinate. Its perturba-
tion at an event E of coordinate z* reads

38(aty) = S(a’g) — Su(ap) , (3.12)

where Sy (2%) denotes the spatial average of S(z%,) at time z%, that is, the
average of S(z#) over the 3D hypersurface H formed by all events of time x%.

The mapping between the events E and the perturbations §5 cannot be left
invariant by a change of coordinates. Indeed, a general change of coordinates
will change the times-slicing of the spacetime manifold, that is, the ensemble of
equal-time hypersurfaces. In a new system of coordinates Z*, the perturbation
in E reads

08 (a%) = S(i) — Sp(k) (3.13)

where H is on of the equal-time hypersurfaces of the new coordinate system.

When we say that the universe can be described by small, linear perturba-
tions, we implicitly assume that there exists at least one coordinate system in
which 6S(z#) < S(2°) in every event. Intuitively, in such a system, the equal-
time hypersurfaces remain close to the hypersurfaces on which each quantity is
homogeneous. In other words, in such a system, the equal-time hypersurfaces
are nearly orthogonal to the gradient of all other quantities in every event.

Let us start from such a system of coordinates and let us perform a coor-
dinate transformation z* — Z*, defined by a displacement vector field e (z%)
such that

Bl = 61 g 4 el (2) = 2 + e (2®) . (3.14)

If €* is small enough in every event, then the property §S < S should be
preserved in the new system. Thus the ensemble of all coordinate systems in
which the property 6S < S holds are related to each other by infinitesimal
coordinate transformations. After such a transformation, the value of 4S5 at a
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given event F changes. We call “gauge transformation” the mapping from §.5
in one coordinate system to 65 in another coordinate system but at the same
event. A given gauge transformation is induced by a given change of coordinate.
Thus there is a one-to-one correspondence between coordinate transformations
and gauge transformations, but they are not the same thing:

e A coordinate transformation acts on Lorentz scalars like the identity; It

acts and on Lorentz vectors / tensors by contracting contravariant (resp.

. . . . oxzH ox?
covariant) indices with 57 (resp. 5% ).

e A gauge transformation acts on the perturbations of Lorentz scalars /
vectors / tensors, and its mathematical expression is different.

In this course, we will not have time to derive the mathematical expression of
a general gauge transformation.? We just admit that at order one in perturba-
tions, it is possible to express the new perturbation as a function of: (i) the old
perturbation, (i) the spatial average, (i) the displacement field. For instance:

e For a Lorentz scalar S, §S can be expressed as a function of 69, S and e*.

e For a Lorentz vector V¥, §V# can be expressed as a function of V#, V#
and €.

e For a Lorentz tensor TH", 8TH can be expressed as a function of §TH,
TH” and M.

Since a gauge transformation is induced by a coordinate transformation, and a
coordinate transformation has four free functions e*(z®), gauge transformations
also have four degrees of freedom, that is, they are a family of transformations
defined by four free functions.

In a typical problem of cosmology, there are many perturbations: at least ten
for the perturbations of the metric dg,, (z*), and even much more if the universe
contains several fluids X, whose fluctuations are encoded in the perturbations
8T of the stress-energy tensor, or more generally of the phase-space density
function fx (xz%,p?).

With an appropriate coordinate transformation, it is possible to adjust the
gauge in such a way that some of the perturbations vanish, that is, that some
quantities appear as homogeneous in the time-slicing defined by the new coor-
dinate system. If one starts form an arbitrary coordinate system and searches
for a coordinate transformation leading to the cancellation of one perturbation,
one finds that e”(z®) must satisfy one constraint equation. Since e*(z®) has
four degrees of freedom, it is possible to cancel four perturbations at the same
time. This leads to a simplification of the problem, but it does not render the
problem completely trivial either, since many perturbations always remain. In
the next section, we will present explicitly the most popular gauge choice in
cosmology courses and textbooks.

3.4 Classification of perturbations

We can decompose the metric g, and the total stress-energy tensor T*” of the
universe into homogeneous quantities and perturbations of order one,

G (. T) = G (t) + 89,0 (8, &) , TH(t, T) = T (t) + 6T"(t, ) . (3.15)

2The mathematics of gauge transformations can be found for instance in section 3 of Ma
& Bertschinger, Astrophys. J. 455 (1995) 7-25 [astro-ph/9506072].
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The background metric g, is that of FLRW, while the background stress-energy
tensor is of the form TH = (p+ p)U*U" + pgh” with U? = 0. We will often use
the stress-energy tensor with one covariant and one contravariant index, whose
background value is the same in proper or conformal time, T+, = T %g,, =
diag(—p, p,p,p). For the time coordinate, we an use either the cosmological
time t or the conformal time 7.

The symmetric tensors g,, and T*, each contain ten degrees of freedom
(ten functions of (n,#)). A seminal paper by James Bardeen in 1980 shows
that the perturbations can be decomposed into three sectors which remain
decoupled from each other at first order in perturbations. These sectors are
irreducible representations of the group of spatial rotations, which leaves the
unperturbed Friedmann—Lemaitre metric invariant. Bardeen scalars consist of
rotation-invariant functions. Bardeen vectors have a spatial index and transform
with a rotation matrix. Bardeen tensors have two spatial indices and transform
with two rotation matrices.

Bardeen scalars describe the gravitational forces generated by density and
pressure fluctuations in the universe, generalising Newtonian gravity. They will
be the most important in this chapter. Bardeen vectors describe the gravi-
tational effects of a vorticity component in the stress-energy tensor, which are
negligible in the standard cosmological model (because any vorticity effect scales
like 1/a and is rapidly diluted by the expansion). Bardeen tensors describe the
two degrees of polarisation of gravitational waves and the matter fluctuations
that can generate them or damp them?®. CMB observations show that the role of
such tensor modes is either negligible or very small with respect to that of scalar
perturbations. They are however potentially detectable by future experiments
(see Chapter V).

In the metric perturbation dg,, and stress-energy perturbation 07+", the
Bardeen scalars are associated with four degrees of freedom (out of a total of
ten):

1. the term of index (00),

2. the trace of the 3 x 3 spatial tensor (= stress tensor) of indices (75).,
3. the curl-free part of the 3-vector of index (07),

4. the longitudinal* and trace-free component of the spatial tensor.

In the perturbed metric dg,., these four components have the following
physical meaning (in the same order as above):

1. The local relative perturbation v of the mean proper time of comoving
observers. When travelling over density fluctuations, different comoving
observers perceive time slightly differently, as dt(Z) = (1 + ¢ (¢, X)) dt.

2. The local relative perturbation ¢ of the average scale factor a(t), the
“perturbed scale factor” being given by a(t, ) = (1 — ¢(¢, %)) a(t).

3In the vacuum, scalar and vector perturbations can only be zero, as they only describe
the response of the metric to matter, without having their own propagation equation. On
the other hand, tensor perturbations have their own propagation equation, and can therefore
be generated by a few mechanisms in the primordial universe (in particular, inflation, as we
will see in chapter V). Then they propagate freely even in an empty universe as waves of the
metric.

4A symmetric spatial tensor Aﬁc is called longitudinal when its divergence 8lA§v forms an
irrotational vector By: Vi, eijkBjBk =0, and thus eijkajalAgc = 0 (€Y% being the maximally
antisymmetric tensor).
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3. A preferred spatial direction in the perturbed metric generating a “co-
ordinate flow”.

4. Another preferred spatial direction resulting in a “coordinate shear ef-

fect”.
The last two effects would deserve more explanation, but this will not be nec-
essary to understand this chapter. Indeed, the most popular gauge choice in
cosmology courses and textbooks is the one in which the last two degrees of
freedom vanish. One can show explicitely that this is always possible (indeed,
gauge transformations have the ability to cancel two scalar degrees of freedom
and two vector degrees of freedom; tensor perturbations are gauge-invariant by
construction).

The advantage of this gauge is mainly pedagogical: it gets rid of the two
degrees of freedom that are the less intuitive. In this gauge, one gets a rela-
tively simple expression for the perturbed Friedmann-Lemaitre metric (in a flat
universe),

ds?

—(1+2¢)dt? + (1 — 2¢)a’(t)dz 2
= a*(n) [-(1+2¢)dn* + (1 — 2¢)dZ *] , (3.16)

which only involves local distortions of time and of the scale factor. This gauge
is called indifferently longitudinal (because the non-diagonal perturbations are
zero) or Newtonian (because in the limit of small scales with respect to the radii
of curvature of space-time, the two potentials ¢ and 1 are equal and play the
role of the Newtonian gravitational potential, as we shall see later).’

In the perturbed stress-energy tensor 7#", the scalar perturbations have the
following physical meaning (still in the same order as above, and with definitions
valid both in conformal time and in proper time):%

1. the energy density perturbation dp = —6T%;

2. the pressure perturbation 6p = §T% = §;6T* where i is fixed (to 1, 2,
or 3);

3. the potentiel v of the curl-free component of the fluid’s bulk velocity
v*, normalised such that \/—g%%" = §g¥9d;v = a~?9;v, that contributes to
the curl-free component (§7Y%).¢ of the stress-energy tensor as (6T9)er =
(P + p)0;v;
4. the potential s of the shear forces in the fluid, which contributes to a
longitudinal and trace-free component 67} 7 of the stress-energy tensor as
(6T ion. = (P + )" (0x0; — §0k;A) s . Such shear forces are equivalent
to an anisotropic pressure with the geometry of a quadrupole (i.e. with a
stronger pressure always coming from two opposite directions).
Since we have already used the two scalar degrees of freedom of gauge transfor-
mations to simplify the perturbations of the metric, we must keep all the four

5Note that cosmologists often use other gauges in their calculations because they may
offer other technical advantages (stability of numerical calculations, similarity with observable
quantities, etc.)

6Some of the relations below can be derived carefully while assuming a perfect fluid with
T, = pdé*, + (p + p)UHU,. We start from writing the bulk velocity as U* = (U°,v?). The
normalisation condition U - U = —1 gives U0 = 1/—3% (1 — 1) if we only keep terms of order
zero and one in perturbations. Then U¥ = (1/—g% (1 — %), v*) and, after lowering indices,
Uy = (—v/=goo(1+1), a%v?) at the same order. This gives, first, T%) = p— (p+p)(1 —¥)(1 +
1) = p = p+ Sp at order one; second, T4 =T% =T% =p+ (p+p) x O(w?) =p =5+ 6p;
and third, T% = (p + p)(1 — ¥)/—g%a?v® = (p + p)/—g°%av'.
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components of the perturbed stress-energy tensor. For simplicity, we will refor-
mulate these four variables in terms of four dimensionless quantities. To describe
density fluctuations, we introduce the relative fluctuation § = §p/p. For pressure
fluctuations, we use the square of the sound speed c2(t,Z) = dp(t, ) /dp(t, T).
To describe the third scalar degree of freedom of the stress-energy tensor, in-
stead of referring to the velocity potential v, one can use the velocity divergence
0 such that

(P + D)0 = 70;(6T%)ct = (5 + Pa QZ (h+p) = . (3.17)

Note that A represents the Laplacian with respect to comoving coordinates,
and L% the physical Laplacian. The relation between v and 6 = % is unique”.
Similarly, to describe the fourth degree of freedom, it is usual to define a quantity

o such that

2 A(A
(5 7) o0 = 00k~ SoR AP OT o, = (5 +7)

(3.18)

Again, the relationship between s and o = g 25 is unique. As the o function de-

scribes the presence of a pressure with a quadrupolar angular dependence, it is
customary to call it directly the anisotropic stress. In summary, the scalar per-
turbations of the total stress- energy tensor of the universe are contained in four
dimensionless scalar functions {4, c2,6,c}. In the following we will write the to-
tal perturbed stress-energy tensor d7, as a sum over several components 67,
for each species X of matter and radiation (photons, electrons, baryons, neutri-
nos, dark matter). Thus we will introduce separate variables {dx,c? y,0x,0x }
for each of them.®

3.5 Linearised Einstein equations

To describe the effects of gravitation in a perturbed universe, one has to in-
sert the perturbed Friedmann metric and stress-energy tensor into the Einstein
equation, and calculate the Einstein tensor to order one. This gives ten linear
equations which can be separated into four equations for the Bardeen scalars,
four for the Bardeen vectors and two for the Bardeen tensors. These equations
are not all independent of each other, due to Bianchi identities.

For the scalar sector, we obtain four equations. The most useful ones in this
chapter will be (using conformal time 7 and in comoving Fourier space):

2 /
2 [k2¢+3 <¢/ + (Zﬂ))] = _87TG;/3X5X , (3.19)
2 k2 ~ ~
32¢-¥) = 8nG > (px+px)ox - (3.20)
X

These equations correspond respectively to 6GY, (equal to 87G §T%) and —Z—z(kikj—
16” k2)6Glon (equal to its counterpart in T%). For completeness, let us also

"Indeed, the only non-zero solutions of the homogeneous equation Av = 0 diverge at
infinity. Perturbation theory is only valid when all functions remain small on the whole space,
which excludes such solutions.

8Note that the extensive quantities that can be added up between the different fluids are
not directly {0x, ¢2 y, Ox, ox} but {6px, opx, (px + Ppx)0x, (px +Px)ox}-
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give the equations associated to 6G?; (with fixed i) and ik; 6G %"

a

2 a/ a// 12 )
= ¢”+a(w/+2¢’)+<2a—a2) 1/)} = 871G pxcyix , (3.21)
X
k‘2 /
£ (045
a a

The second equation 3.20 shows that the difference between the two fluctuations
of the metric is caused by the anisotropic pressure of matter. This anisotropic
pressure plays a very small role in cosmological perturbation theory. It has a
very minor impact on CMB anisotropies and on the formation of large scale
structures®. In this chapter, for simplicity, we will neglect the ox terms, which
amounts to working in the ¢ = ¥ approximation. The two fluctuations of the
metric then play the role of a generalized gravitational potential.

The first equation 3.19 shows how this potential responds to the presence
of matter density fluctuations. For sub—Hubble modes (with & > da’/a), the
left-hand side of the equation 3.19 is dominated by the first term, which implies
in first approximation

87G Y (px +px)0x ,(3.22)
X

k2
——0= AnG Y " pxbx = 47G Spior. - (3.23)
X

This is precisely the Poisson equation of Newtonian gravitation, AtYNewton =
471G pNewton, transposed into the cosmological context. Indeed, the gravitational
potential can only be generated by the density fluctuations dpio., while the av-
erage density piot. contributes to the homogeneous expansion. In real space, the
term on the left-hand side is the physical gradient of the gravitational potential,
a%, while A is just the comoving gradient.

3.6 Equations of motion for matter fluctuations

The Bianchi identities correspond to the conservation equations of the total
stress-energy tensor of the universe, D, 7% = 0. They give two equations for
(Bardeen) scalar modes and two for (Bardeen) vector modes. In a universe
containing several decoupled fluids labelled by X, the same equations apply
individually to the stress-energy tensor T of each species. We then obtain two
(Bardeen) scalar equations of motion per fluid X, the continuity (or conservation
of energy) equation and the Euler equation:

!

B = —(1+wx)(0x —3¢) =35 (2 x —wx)ix , (3.24)
/ a 2 X 2 2 2
9X = —E(I—wa—cax)ex-l-l_:ika 5X_k ox +k 1/} (3'25)

In section 3.4, we have already given the definition of the speed of sound for each
fluid, 2 (n, k) = dpx(n,k)/dpx(n, k). The equations feature another quantity

9The photons do not contribute to this term as long as they are strongly coupled to the
baryons: they then form a perfect fluid with an isotropic pressure. When the photons decouple,
0~ increases, but then it rapidly tends towards zero in the sub-Hubble limit. Since baryons
and electrons are always in thermal equilibrium, their pressure remains isotropic. At epochs
important for CMB physics, dark matter and neutrinos are decoupled. Dark matter has
negligible pressure (isotropic and anisotropic), but neutrinos do not. The anisotropic pressure
o, is maximal around the Hubble radius crossing, but its physical impact is negligible in the
super—Hubble and sub—Hubble limits.
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with the same dimension, the adiabatic sound speed, ¢2 (n) = px(n)/px(n).
In these equations we have also introduced the equation of state parameter
wx (n) = px(n)/px(n).

For perfect fluids, one can show that the anisotropic pressure ox always
vanishes, while ¢y = ¢y = wx. Then, the equations 3.24 and 3.25 only
involve two variables (0x, 0x) and form a closed system (together with the
Einstein equation).

For decoupled species, the anisotropic pressure ox is non-zero and the equa-
tions 3.24, 3.25 do not form a closed system. This shows the need for a more
complete description using kinetic theory, i.e. the distribution function in phase
space and the Boltzmann equation. In real space, the distribution function
fx(n,Z,p) depends on conformal time, position and momentum. For a decou-
pled species like neutrinos, X = v, the Boltzmann equation indicates that along
each space-time geodesic, this distribution evolves as di fv = 0. For photons,
we must add the Thomson scattering term, which also depends on the electron
distribution: formally, this term is a C functional of the f, and f. functions.
We then obtain a linearised Boltzmann equation of the form:

d
%fvzc[fVafe] : (3.26)

This last equation will be the most important one in Chapter V. We will develop
it at that time.



Chapter 4

Inflation

4.1 Motivations for cosmological inflation

So far, we discussed an incomplete version of the ACDM model in which the
universe is dominated first by radiation, then matter and then A. In this section,
we will show that this model contains some inconsistencies. We will prove that
these are solved if we assume that radiation domination was preceded by a
stage of accelerated expansion. A model that could explain such a stage will be
presented in the following section.

4.1.1 Flatness problem

Today, €, is measured to be at most of order 10~2, possibly much smaller,
while Q. = p,./perit = pr/(pa + pm) is of the order of 1074, Since pzﬁ = —87T36’§a2
scales like a2, while radiation scales like a=*, the hierarchy between p, and
pzﬂ increases as we go back in time. If ¢; is some initial time, ¢y is the time

today, and we assume for simplicity that the ratio pzﬁ /pr is at most equal to

one today, we obtain

2 1/2

P () _ (a(tn) _ (Mto)) e ()
pr(ti) — \a(to) pr(ti)

Today, the radiation energy density p,(to) is of the order of (107%eV)%. If the

early universe reached the order of the Planck density (10'¥GeV)* at the Planck
time tp, then at that time the ratio was

eff —4 2
pr(tr)  (1018GeV)2

If we try to build a mechanism for the birth of the classical universe (when
it emerges from a quantum gravity phase), we will be confronted to the problem
of predicting an initial order of magnitude for the terms on the right-hand side
of the Friedmann equation: matter and spatial curvature. The question of the
relative amplitude of the spatial curvature with respect to the total matter
energy density, i.e. of the hierarchy between pzﬁ and p,, is an open question.
We could argue that the most natural assumption is to start from contributions
sharing the same order of magnitude; this is actually what one would expect
from random initial conditions at the end of a quantum gravity stage. The
flatness problem can therefore be formulated as: why should we start from

69
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initial conditions in the very early universe such that p$T should be fine-tuned
to a fraction 10752 of the total energy density in the universe?

The whole problem comes from the fact that the ratio pzﬁ /pr increases with
time: i.e., a flat universe is an unstable solution of the Friedmann equation. Is
this a fatality, or can we choose a framework in which the flat universe would
become an attractor solution? The answer to this question is yes, even in the
context of ordinary general relativity. We notice that Qx = p$f /peie is pro-
portional to (aH )2, i.e. to a~2. So, as long as the expansion is decelerated,
a decreases and || increases. If instead the expansion is accelerated, a in-
creases and || decreases: the curvature is diluted and the universe becomes
asymptotically flat.

Inflation is precisely defined as an initial stage during which the expansion
1s accelerated. One of the motivations for inflation is simply that if this stage is
long enough, || will be driven extremely close to zero, in such way that the
evolution between the end of inflation and today does not allow to reach again
|| ~ 1.

We can search for the minimal amount of inflation needed for solving the
flatness problem. For addressing this issue, we should study a cosmological
scenario where inflation takes place between times ¢; and ¢; such that || ~ 1
at t;, |Qx| ~ 1 today at tg, and the expansion is exactly exponential between
t; and ty. This will give us an absolute lower bound on the needed amount
of inflation in the general case. Indeed, we could assume |Q;| > 1 at t; (since
there could be a long stage of decelerated expansion before inflation); this would
just require more inflation. Similarly, we could assume |Q;| < 1 today at to,
requiring again more inflation. Finally, we could assume that inflation is not
exactly exponential, but this would make it less efficient and more inflation
would be needed, as we shall see below.

A stage of expansion with an exponential scale factor is called a De Sitter
stage. During such a stage, H = % is constant. Actually, H is not allowed to
increase with time in an expanding universe: it would mean that pi, increases
while comoving volumes are stretched, and thus it would violate energy conser-
vation. So H can either be constant during a De Sitter stage, or decrease in any
other situation. We are now interested in De Sitter inflation because keeping H
constant during inflation is the most efficient way to solve the flatness problem.
Any other model for inflation (with @ > 0 but a decreasing H) is possible, but
requires a bigger amount of inflation in order to solve the flatness problem.

So, we assume that between ¢; and t; the scale factor grows exponentially
from a; to ay, with a constant Hubble rate H;, so that the total density pins
is constant between ¢; and t;. We assume that, at the end of inflation, all the
energy pinf is converted into a radiation energy p,, which decreases like a=*
between t; and ty. Finally, we assume that psz (which scales like a=?2) is equal
to pinr at t; and to p, at tg. With such assumptions, we can write

P (a0) _ <ai>2_ pr(ao) _ pr(ao) _ prlao) _ (‘”“)4 (4.3)

5 (a;) ao)  pmt(ai)  pmslay)  pelay) ag

P (a;)

and we finally obtain the relation

ar _ % (4.4)
a; af
So, the condition for the minimal duration of inflation reads
a a
>, (4.5)

a; af
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which can be summarized in one sentence: there should be as much expansion
during inflation as after inflation. A convenient measure of expansion is the
so-called e-fold number defined as

N=lnha. (4.6)

The scale factor is physically meaningful up to a normalization constant, so the
e-fold number is defined modulo a choice of origin. The amount of expansion
between two times t; and t; is specified by the number of e-folds AN = Ny —
N; =1In(az/a1). So, the condition on the absolute minimal duration of inflation
reads

(N = Ny) = (No— Ny) (4.7)

i.e., the number of e-folds during inflation should be greater or equal to the
number of e-folds after inflation, AN = Ny — Ny. There is no upper bound on
(Ny — N;): for solving the flatness problem, inflation could be arbitrarily long.

It is easy to compute AN as a function of the energy density at the end
of inflation, p,(af). We know that today p,(ag) is of the order of (10~%eV)™.
We further admit that the inflationary energy scale is at most of the order of
(1016GeV)* (we will see in Chapter 5 that, otherwise, current observations of
CMB anisotropies would have revealed a signature of primordial gravitational
waves). This gives

a0 pr(as) 1/4
ANzlnzln( - f) <In10* ~ 67 . (4.8)
af pr(ao)

We conclude that if inflation takes place around the 10'9GeV scale, it should
last for a minimum of 67 e-folds. If it takes place at lower energy, the condition
is weaker. The lowest scale for inflation considered in the literature (in order
not to disturb too much the predictions of the standard inflationary scenario) is
of the order of 1 TeV. In this extreme case, the number of e-folds after inflation
would reduce to

AN ~1n10' ~ 37 (4.9)

and the flatness problem can be solved with only 37 e-folds of inflation.

4.1.2 Horizon problem

We have already seen that the causal horizon dg (t1, t2) is defined as the physical
distance at time to covered by a particle emitted at time ¢; and travelling at
the speed of light,

dH(tl,tQ) = a(tg) /tt2 ;(l;) . (410)

Noticing that dt = da/(aH),

da

dH((l17G2) = ag/ m , (4.11)

where the Hubble parameter is seen now as a function of a. Finally, we already
found that if the expansion is decelerated between t; and ¢, and if t5 > ¢1, then
dH(tl,tQ) ~ RH(tQ).

The horizon represents the causal distance in the universe. Suppose that a
physical mechanism is turned on at time ¢;. Since no information can travel
faster than light, the physical mechanism cannot affect distances larger than
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dp(t1,t2) at time t5. So, the horizon provides the coherence scale of a given
mechanism. For instance, if a phase transition creates bubbles or patches con-
taining a given vacuum phase, the scale of homogeneity (i.e., the maximum size
of the bubble, or the scale on which a patch is nearly homogeneous) is given by
dp (t1,t2) where 7 is the time at the beginning of the transition.

Before photon decoupling, the Planck temperature of photons at a given
point depends on their local density. A priori, we can expect that the universe
will emerge from a quantum gravity stage with random values of the local den-
sity. The coherence length, or characteristic scale on which the density is nearly
homogeneous, is given by dg(t1,t2). We have seen that if ¢; and ty are two
times during radiation domination, this quantity cannot exceed Ry (t2), even in
the most favorable limit in which ¢; is chosen to be infinitely close to the initial
singularity. We conclude that at time t5, the photon temperature should not be
homogeneous on scales larger than Ry (t2).

CMB experiments map the photon temperature on our last-scattering-surface
at the time of photon decoupling. So, we expect CMB maps to be nearly homo-
geneous on a characteristic scale Ry (tqec). This scale is very easy to compute:
knowing that H(to) is of the order of (h/3000) Mpc™ " with h ~ 0.7, we can ex-
trapolate H () back to the time of equality, and find that the distance Ry (tdec)
subtends an angle of order of a few degrees in the sky - instead of encompassing
the diameter of the last scattering surface. So, it seems that the last scattering
surface is composed of several thousands of causally disconnected patches. How-
ever, the CMB temperature anisotropies are only of the order of 107°: in other
words, the full last scattering surface is extremely homogeneous. This appears
as completely unnatural in the framework of the Hot Big Bang scenario.

What is the reason for this problem? When one computes the horizon, one
integrates (a2H)~! over da. The convergence of the integral

2 da /a2 da
_ [ da (4.12)
/a1 a?H(a) o,

with respect to the lower boundary a; — 0 depends on the fact that the ex-
pansion is accelerated or decelerated. For linear expansion (@ = constant), the
integrand is 1/a, the limiting case between convergence and divergence. If the
expansion is decelerated, @ decreases and the integral converges: this leads to
the proof that dg (a1, a2) ~ Ry(ag) for as > a;. But, if the expansion is accel-
erated, a increases and the integral diverges in the limit a; — 0. Then, one can
obtain an infinitely large horizon at time to, simply by choosing a; to be small
enough.

So, if the radiation dominated phase is preceded by an infinite stage of
accelerated expansion, one can reach an arbitrarily large value for the horizon
at the time of decoupling. In the exercises, you will prove that the condition for
solving this problem is exactly the same as for solving the flatness problem:

(Ny — N;) > (No — Ny) . (4.13)

4.1.3 Origin of perturbations

Since our universe is inhomogeneous, one should find a physical mechanism
explaining the origin of cosmological perturbations. Inhomogeneities can be
expanded in comoving Fourier space. Their physical wavelength

m (4.14)
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is stretched with the expansion of the universe. During radiation domination,
a(t) o< t/? and Ry (t) o< t. So, the Hubble radius grows with time faster than
the perturbation wavelengths. We conclude that observable perturbations were
originally super-Hubble fluctuations (i.e., A > Ry < k < 2waH). Actually,
the discussion of the horizon problem already showed that at decoupling the
largest observable fluctuations are super-Hubble fluctuations. Even if we take
a smaller scale, e.g. the typical size of a galaxy cluster A(tp) ~ 1 Mpc, we
find that the corresponding fluctuations were clearly super-Hubble fluctuations
at the time, for instance, of Nucleosynthesis. We have seen that in the Hot
Big Bang scenario (without inflation) the Hubble radius Ry (t2) gives an upper
bound on the causal horizon dg(t1,t2) for whatever value of ¢;. So, super-
Hubble fluctuations are expected to be out of causal contact. The problem is
that it is impossible to find a mechanism for generating coherent fluctuations
on acausal scales. There are two possible solutions to this issue:

e we can remain in the framework of the Hot Big Bang scenario and assume
that perturbations are produced causally when a given wavelength enters
into the horizon. In this case, there should be not coherent fluctuations
on super-Hubble scales, i.e. the power spectrum of any kind of pertur-
bation should fall like white noise in the limit ¥ < aH. This possibility
is now ruled out for at least two reasons. First, the observation of CMB
anisotropies on angular scales greater than one degree (i.e., super-Hubble
scales at that time) is consistent with coherent fluctuations rather than
white noise. Second, the observations of acoustic peaks in the power spec-
trum of CMB anisotropies is a clear proof that cosmological perturbations
are generated much before Hubble crossing, in such way that all modes
with a given wavelength entering inside the Hubble radius before photon
decoupling experience coherent acoustic oscillations (i.e. oscillate with the
same phase).

e we can modify the cosmological scenario in such way that all cosmological
perturbations observable today were inside the causal horizon when they
were generated at some early time.

Let’s try to take the second point of view. Can we find a model such that the
largest wavelength observable today, which is Apax(to) ~ Ru(to), was already
inside the causal horizon at some early time ¢;7 If before ¢; the universe was in
decelerated expansion, then the causal horizon at that time was of order Ry (¢;).
How can we have Apnax < Ry at t; and Apax ~ Ry today? If between ¢; and
to the universe is dominated by radiation or matter, it is impossible since the
Hubble radius grows faster than the physical wavelengths. However, in general,

M) 2ma(t) a(t)  2malt)
Ru) = & o) -k (4.15)

so that during accelerated expansion the physical wavelengths grow faster than
the Hubble radius. So, if between some time ¢; and ¢; the universe experiences
some inflationary stage, it is possible to have Apnax < Ry at t;: the scale Apax
can then exit the Hubble radius during inflation and re-enter approximately
today (see Figure 4.1).

It is easy to show that once again, the minimal number of e-folds of inflation
requested for solving this problem should be at least equal to the number of
e-folds after inflation.
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Figure 4.1: Comparison of the Hubble radius with the physical wavelength of a
few cosmological perturbations. During the initial stage of accelerated expansion
(called inflation), the Hubble radius grows more slowly than each wavelength.
So, cosmological perturbations originate from inside Ry. Then, the wavelength
of each mode grows larger than the Hubble radius during inflation and re—enters
during radiation or matter domination.

One could argue that the argument on the origin of fluctuations is equivalent
to that of the horizon problem, reformulated in a different way. Anyway, for
understanding inflation it is good to be aware of the two arguments, even if they
are not really independent of each other.

4.1.4 Monopoles

We will not enter here into the details of the monopole problem. Just in a
few words, some phase transitions in the early universe are expected to create
“topologically stable relics” like magnetic monopoles, with a very large density
which would dominate the total density of the universe. These relics are typically
non-relativistic, with an energy demnsity decaying like a™3: so, they are not
diluted, and the domination of radiation and ordinary matter can never take
place.

Inflation can solve the problem provided that it takes place after the creation
of monopoles. During inflation, monopoles and other relics will decay like a3
(a=* in the case of relativistic relics) while the leading vacuum energy is nearly
constant: so, the energy density of the relics is considerably diluted, typically by
a factor (as/a;)?, and today they are irrelevant. The condition on the needed
amount of inflation is much weaker than the condition obtained for solving
the flatness problem, since the unwanted relics decay faster than the effective
curvature density (p$f oc a=2).

4.2 Slow-roll inflation
We have seen that the problems of section 4.1 can be solved under the assump-

tion of a long enough stage of accelerated expansion in the early universe. How
can this be implemented in practice?
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First, by combining the Friedman equation (1.40) in a flat universe with the
conservation equation (1.43), it is easy to find that

a>0 = p+3p<O. (4.16)

What type of matter corresponds to such an unusual relation between density
and pressure? A positive cosmological constant can do the job:

PA = —pPA = PA + 3pa = —2pp < 0. (4.17)

But since a cosmological constant is... constant, it cannot be responsible for
an initial stage of inflation: otherwise this stage would go on forever, and there
would be no transition to radiation domination.

Let us consider instead the case of a scalar field (i.e., a field of spin zero,
represented by a simple function of time and space, and invariant under Lorentz
transformations). The general action for a scalar field in curved space-time

S= /d% 91 (Ly+ L) (4.18)

involves the Einstein-Hilbert Lagrangian of gravity

R
97 167G

(4.19)
and that of the scalar field
1 1
Ly =—50up0"p = V(p) = 59" Oupdup = V(p) (4.20)

where V() is the scalar potential. The variation of the action with respect to
guv enables to define the energy-momentum tensor

Ty = M(P&/(P + ‘ng;w (4'21>
and the Einstein tensor G,,,, which are related through the Einstein equations
Gy =81GT,, . (4.22)

Instead, the variation of the action with respect to ¢ gives Klein-Gordon equa-
tion ) 3V
———=0, [VIglo"e] + =0 (4.23)
Vgl 2
The same equation could have been obtained using a particular combination
of the components of 7}, and their derivatives, which vanish by virtue of the
Bianchi identities (in other word, the Klein-Gordon equation is contained in the
Einstein equations).
Let us now assume that the homogeneous Friedmann universe with flat met-
ric
ds® = —dt* + a(t)?[dz?® + dy® + d=?] (4.24)
is filled by a homogeneous classical scalar field @(t) that we will call the inflaton.
One can show that the corresponding energy-momentum tensor is diagonal,
Tﬁ = dlag(_p7p7pap)7 with
1

po= 38 +V(), (4.25)

p = 5PV (4:26)
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The Friedmann equation reads

1.
~GY) =3H? =87G p = 871G (2952 + V(w)) (4.27)
and the Klein-Gordon equation
- . oV
¢+3H¢+%(¢)=0. (4.28)

These two independent equations specify completely the evolution of the sys-
tem.! Finally, the combination G¢ — GJ = 87G(p + p) provides a very useful
relation

H = —47G 3> (4.30)

which is consistent with the fact that the Hubble parameter can only decrease.

The condition p < —p/3 reads $? < V: when the potential energy dominates
over the kinetic energy, the universe expansion is accelerated. In the limit of zero
kinetic energy, the energy-momentum tensor would be that of a cosmological
constant, and the expansion would be exponential (this is called “De Sitter
expansion”) and everlasting.

To get a long stage of inflation, we must require that the first slow-roll
condition

%¢2<:vx¢) (4.31)

holds over an extended period. Since the evolution of the scalar field is given by
a second-order equation, the above condition could apply instantaneously but
not for an extended stage, in particular in the case of oscillatory solutions. If
we want the first slow-roll condition to hold over an extended period, we must
impose that the time-derivative of this condition also holds (in absolute value).
This gives the second slow-roll condition

3l < W(@)\ . (4.32)

ot
You may wonder what “<” means here. In practise, we will see that successful
models of inflation just require the quantities on the left to be at least one order
of magnitude smaller than quantities on the right during most of inflation: this
is sufficient to ensure the minimal number of e-folds A Nipgation ~ O(60).

The two slow-roll conditions can be rewritten as conditions either on the
slowliness of the variation of H(t), or on the flatness of the potential V(). You
will prove this in the exercises. In particular, one can define two parameters €
and 7 quantifying the “flatness of the potential”, such that

M3 (V'\? ME V"
== — == 4.33
¢ mw(v>’ K v (4.33)

in which, exceptionally, the prime denotes a derivative with respect to ¢ rather
than to conformal time. These are called the slow-roll parameters. You will find
in the exercises that the two previous slow-roll conditions are equivalent to

e<l, |n<1. (4.34)

1t is worth mentioning that the full Einstein equation provides another relation

Gi=— (QZ N (Z>2> — 87Gp = 87G (%;;2 _ v(p)) . (4.29)

The combination G8 + 3H(G8 — G1) vanishes (it is one of the Bianchi identities), and gives a
conservation equation p + 3H (p + p) = 0, which is nothing but the Klein-Gordon equation.
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Again, having slow-roll parameters at least as small as O(10~!) during most
of inflation is sufficient to ensure the minimal number of e-folds A Ningation ~
O(60), as we shall check on a few concrete examples near the end of this chapter.

When these two conditions hold, the Friedmann and Klein-Gordon equations
become

3H?> ~ 81GV(p), (4.35)
- aV —

The two slow-roll conditions can be rewritten as conditions either on the slow-
liness of the variation of H(t), or on the flatness of the potential V().

So, a particular way to obtain a stage of accelerated expansion in the early
universe is to introduce a scalar field, with a flat enough potential. Scalar
field inflation has been proposed in 1979 independently by the Russian Alexei
Starobinsky and the American Alan Guth (after some precursor work by the
Belgians Robert Brout and Francgois Englert). During the 80’s, most important
aspects of inflation were studied in details by Starobinsky, Guth, Hawking,
Linde, Mukhanov and other people. Finally, during the 90’s, many ideas and
models were proposed in order to make contact between inflation and particle
physics. The purpose of scalar field inflation is not only to provide a stage
of accelerated expansion in the early universe, but also, a mechanism for the
generation of matter and radiation particles, and another mechanism for the
generation of primordial cosmological perturbations. Let us summarize how it
works in a very sketchy way.

Slow-roll. First, let us assume that at some point in the very early universe,
the energy density is dominated by a scalar field, with a potential flat enough for
slow—roll. (This could be right after the quantum gravity era with some kind of
random initial conditions, or a bit later, at the beginning of a phase transition,
when a scalar field is close to a local maximum of the potential). In any small
region where the field is approximately homogeneous and slowly—rolling, accel-
erated expansion takes place: this small region becomes exponentially large,
encompassing the totality of the present observable universe. Inside this region,
the causal horizon becomes much larger than the Hubble radius, and any initial
spatial curvature is driven almost to zero — so, some of the main problems of
the standard cosmological model are solved. After some time, when the field
approaches the minimum its potential, one of the two slow-roll conditions breaks
down, and inflation ends: the expansion becomes decelerated again.

Reheating. At the end of inflation, the kinetic energy of the field is bigger
than the potential energy; in general, the field is quickly oscillating around the
minimum of the potential. According to the laws of quantum field theory, the
oscillating scalar field will then decay into fermions and bosons through a non-
linear resonance process. This can explain the origin of all the particles filling
our universe. Then these particles interact and reach thermal equilibrium: this
is why this stage is called “reheating”. There is no thermal equilibrium and no
possible definition of temperature during inflation: temperature emerges from
reheating.

Generation of primordial perturbations. Finally, the theory of scalar field
inflation also explains the origin of cosmological perturbations — the ones leading
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to CMB anisotropies and to large scale structures in the universe. We will study
this in the next sections.

4.3 Inflationary perturbations

4.3.1 Quantisation of perturbations during inflation

We decompose the inflaton field and the metric in a background term and some
small perturbations,

@(tv 'f) = @(t) + &p(t’ 'f) ; guu(ta f) = guu(t) + 5guu(t7 f) . (437)

The ﬁ_'uctuations can be expanded in comoving Fourier space, that is, in wavenum-
bers k, . .
op(t, k), 0gun(t k) . (4.38)

These perturbations include several “propagating degrees of freedom” obeying
to a wave equations, namely: the scalar field fluctuations, which are part of
the sector of “Bardeen scalars”, and which are coupled to the scalar metric
perturbations, and the two degrees of freedom of gravitational waves, which are
part of the sector of “Bardeen tensors”.

We start studying each propagating degree of freedom when their wavelength
is sub-Hubble, i.e., when k > aH or kn > 1. Then, we can quantise them
using the laws of quantum field theory. In the sub-Hubble limit, the effects of
spacetime curvature are negligible, and in the limit of small perturbations, non-
linear couplings in the equations of motion (e.g. terms like A(d¢)? that would
potentially couple different Fourier modes with each other) are also negligible.
Thus we can just apply the rules for the “quantisation of free fields in flat
spacetime”, which are very easy and well-known. Essentially, we must treat
each independent Fourier mode (e.g. d¢(t, k) for the scalar field) as a harmonic
oscillator. Assuming that this mode is in its fundamental (vaccum) state, it has
a Gaussian wave function and a variance

I

Sp(t, k)% = — . 4.39
(00l F)P) = o (4:39)
Later on, the Fourier modes cross the Hubble radius and become super-

Hubble. Then, one prove several important features:

e the quantum statistics of the modes becomes indistinguishable from that
of a classical stochastic system, that is, a stochastic system described
by standard probabilities (e.g. P(dp)) rather than wave functions (e.g.

U (de).

e the probability P(dy) that a given mode has a value d¢p is still a gaussian
centred in zero, like in the sub-Hubble regime (due to the Gaussianity of
the wave function of the fundamental state).

e the variance (|0p(t, k)|2) can be followed as a function of time by looking
at the solution of the classical equation of motion. For the scalar field,
this equation is the linearised Klein-Gordon equation that has been de-
rived in the exercises (combined with the Einstein equations in order to
eliminate metric fluctuations). Thus, this variance may depend on the
background evolution H(t) and on the potential V' (¢), which both appear
in the equation of motion.
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Thus, at the end of inflation, we expect that all propagating degrees of free-
dom (like scalar field fluctuations and gravitational waves) have random fluctu-
ations, described by Gaussian statistics, with a variance that can be computed
once we know the details of the background evolution for the Hubble rate H(t)
and the potential V' (@). More precisely, the field can be shown to have a uni-
versal solution, independent of H(t) and V(5(¢)), in the two asymptotic limits
k > aH (sub-Hubble) and k < aH (super-Hubble). Instead, the evolution does
depend on the details of H(t) and V(p(t)) near the time of Hubble crossing,
when k ~ aH. Thus, a detailed calculation would show that the variance of
d¢(t, k) at the end of inflation depends on H(t) and V (@(t)) near the time ¢ = t;
at which k£ = aH. Using the slow-roll equations for the background evolution,
the result can then be expressed as a function of the potential V(@) and its
derivative V' (@) evaluated at the value ¢ = @}, reached by the background field
at the time ¢;.

We don’t have time to enter more into the details of this fascinating topic,
which is one of the most concrete known applications of quantum field theory in
curved space time.? We will jump directly to the main results, first for the scalar
modes (that is, the prerturbations of the field d¢ coupled to the perturbations
of the metric in the Newtonian gauge ¢, ¢), and then for the tensor modes (that
is, the degrees of freedom of dg,, accounting for gravitational waves).

4.3.2 Scalar perturbations

In the scalar sector, during inflation, the degrees of freedom in the Newtonian
gauge are 0, ¢ and ¥ (but there is only one “propagating degree of freedom”,
that is, one independent combination of dp, ¢ and 1 obeying to a wave equa-
tion). After inflation, the inflaton field has decayed into several species and the
scalar degrees of freedom are (4, d,, cf,@, o,) for each species x, plus still (¢,
) for the metric.

In linear perturbation theory, as long as all these degrees of freedom are
linearly coupled, it is enough to know that we generated Gaussian random
perturbations for d¢p in order to be sure that all perturbations are Gaussian
random variables at any time. The various linear equations of motion (linearised
Einstein, linearised Klein-Gordon, continuity, Euler...) allow us to compute the
evolution of the root mean square of each perturbations (the square rot of the
variance) as well as the relation between the variance of the different quantities.
One often says that in a stochastic theory described by linear equations of
evolution, there is a “linear transport of probability”, which cannot change the
shape of of the distributions of probability. For a probability with zero mean,
the evolution can only rescale the root mean square of a perturbation A(t, E) by
a factor a(t), its variance by a?(t), and more generally, (|A|") by a factor a™(t).
For a Gaussian distribution, knowing the evolution of the root mean square (or
of the variance) is sufficient. «/(t) is just given by the solution of the equations
of motion.

The evolution of each stochastic variable A(t, E) can be conveniently decom-
posed into a stochastic number at initial time, plus a function of time:

-, -,

A(LE) = A(ti, ) a(t) . (4.40)

2For a more detailed discussion, but still not too technical, you may look at “Inflation-
ary Cosmology” (lecture notes from my 2006 course at EPFL, https://lesgourg.github.
io/courses/Inflation_EPFL.pdf, sections 2.4 - 2.6), or at “Inflation” by D. Baumann,
arXiv:[0907.5424] (Chapter 2).


https://lesgourg.github.io/courses/Inflation_EPFL.pdf
https://lesgourg.github.io/courses/Inflation_EPFL.pdf
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Here, we decomposed the gaussian stochastic time-dependent variable A(t, E)
into a gaussian stochastic variable at initial time, A(ti,E), plus a determin-
istic function «(t) which is the solution of the equations of motion correctly
normalised to the initial condition «(t;) = 1, in order to satisfy

(At B) = (At k)% o2(t) - (4.41)

In our actual problem, we know the variance of the inflaton field ¢ through-
out inflation, and in particular, in the super-Hubble regime at the end of in-
flation. Then, we want to know the variance of the matter fields (0., d., cfyx,
o, after inflation, in particular, in the super-Hubble regime at the beginning of
radiation domination. This will provide us with the correct in initial condition
for studying CMB anisotropies and the formation of the large scale structure of
the universe. But at the end of inflation, the inflaton decays into matter fields.
So, do we need to study the details of this process in order to relate e.g. each
0, during RD to d¢ during inflation? Fortunately, the answer is no, because
there exists a linear combination of all perturbations that is conserved in the
super-Hubble regime under some very generic conditions. This is the curvature
perturbation R, which is related to other perturbations in the newtonian gauge
through:

Ry L 0ot
3 Prot + Dot
The fact that R is conserved on super-Hubble scales and under very generic
assumptions will be proved in the next subsection.

We won’t show it here, but there is a way to define R as a gauge-independent
combination of metric and matter fluctuations, such that it takes the above ex-
pression in the newtonian gauge. However, in another gauge called the total
comoving gauge (in which the total energy transfer flux §7Tp; vanishes), R co-
incides with the perturbation of the spatial radius of curvature of the universe.
Thus, in any gauge, R is usually called the curvature perturbation.

The crucial point is that this quantity is also conserved on super-Hubble
scales at the transition between inflation and RD. Thus it allows to related
trivially the perturbations before and after inflation. Knowing the root mean
square (or the variance) of dp, ¢ and ¢ at the end of inflation in the super-
Hubble regime, one can use equation (4.42) to compute the root mean square of

-

(4.42)

R (k). But this root mean square is the same at the beginning of RD. Then one
can use the inverse of equation (4.42) to compute matter density fluctuations
at the beginning of RD. We will admit that a detailed study of perturbations
during inflation, based mainly on equation (4.39) for the initial quantisation,
on all the linearised equations of motion for the later evolution, and finally on
equation (4.42), gives the following prediction for the super-Hubble variance of
the curvature perturbation:

, 2561%  V(t)?
2y

(4.43)

Here, t; means “the time when the wavevectors k of wavenumber k crossed
the Hubble radius during inflation”, that is, the time when k ~ aH. So V()
stands for “the inflaton potential when k ~ aH” and V'(¢;) for “the inflaton
potential derivative ‘g—‘; when k ~ aH”. The symbol ~ is not very precise but
this does not matter, because quantities like V(t;) and V' (¢x) vary very slowly

with time during the slow-roll regime.
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We still have a problem to solve. We now have a prediction for the variance
of (|R(K)[2) that is valid at the beginning of RD in the super-Hubble regime,
but equation (4.42) only relates R to ¥ and dpiot. So how can we infer the
variance of the individual free functions of each species, (9., 0., cgvm, 04), to the
variance of R? We will solve this in the next section.

4.3.3 Adiabatic initial conditions on super-Hubble scales

Let us consider a toy model for a perturbed universe, in any perturbed quantity
A(t, Z) (which could be anything: density, metric coefficient, etc.) is related to
its homogeneous background solution A(t) via a single time-shift function §t(Z).
A priori, there is no reason that the universe is as simple as this. But if it it
was, we would have:

A(t, %) = A(t + 0t(Z)) = A(t) + [1(,5) SH(T) + O(6t(F)?) , (4.44)
and thus, in linear perturbation theory, we would have
SA(t, ©) = A(t) 6t(T) - (4.45)

After giving a second thought, we realise that there is a good reason for argu-
ing that we live in such a universe. If we study the sector of Bardeen scalar
perturbations and if we assume that all these perturbations originate entirely
from just the fluctuation of the inflaton field during inflation, dp(Z), then we
see that this fluctuation does play the role of a unique time-shifting function,
and that all perturbations must indeed be of the previous form! This famous
assumption (which can also be challenged and tested against observations) will
make our life considerably easier, because it means that all scalar fluctuations
are fully correlated. This brings many simplification. And most importantly,
we will see that this assumption is also confirmed experimentally (through the
observation of CMB acoustic peaks).

However this simplified mathematical description is expected to describe
very well the evolution of perturbations on super-Hubble scales. Indeed, when
particles are created after inflation, they start to interact in many ways (at least
with electroweak, strong and gravitational interactions). These interactions
have an impact on scales that are in causal contact, where the causal horizon
is defined with respect to a time at the beginning of Radiation Domination.
We know that this causal horizon is given in order of magnitude by the Hubble
radius. Thus, on super-Hubble scales, the perturbations of different species can
be thought to be decoupled and the previous picture applies. On sub-Hubble
scales, interactions change the evolution and we should no longer use equations
like (4.44, 4.45).

Then we can use equation (4.45) for the density perturbation of any species
X

)

~ o z ~ a, _ =

dpx (t, %) = px(t,T) — px (t) = A(t) 6t(%) = —SQ(pX(t) +px (1)) 0t(Z) . (4.46)
We group all the terms that depend on the index X on the left,
px (t) +px(t)
Since the right-hand side is independent of X, this ratio is the same for all
species X, and thus, for any pair (X,Y’), we have

610X(t7'f) — 6pY(tvf)

px(t) +px(t) — py(t) +pv(t)

VX, = ,32 SH(T) . (4.47)

V(X,Y),

(4.48)
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or equivalently
ox(t,7) _ Oy (t, )

l+wx  1+wy(t)
In a universe containing non-relativistic baryons and CDM with w = 0, and

ultra-relativistic photons and neutrinos with w = 1/3, this gives a simple rela-
tion,

Y(X,Y),

(4.49)

%:&M:Z%:%@, (4.50)

that must be satisfied at any time by super-Hubble Fourier modes.

Besides, you will prove in the exercises that equation (4.50) guarantees that
the sound speed of the multi-fluid made up of baryons, cold dark matter, photons
and neutrinos has a very peculiar sound speed, which is the same in every point,
and whose square is given by

5ptot (taf) — thot(t)
Sptot (6, T)  prot(t)

(4.51)

The square root of the ratio of the right-hand side is called the adiabatic sound
speed of the multi-fluid. Any fluid with g—z = % is said to have adiabatic fluctu-
ations. Thus, in cosmology, the famous relation of equation (4.50) is referred to
as “adiabatic initial conditions”. (Here “initial conditions” means “conditions
imposed on fluctuations at the beginning of radiation domination, on super-
Hubble scales”).

In the last sub-section, we said that the curvature perturbation R is con-
served on Super-Hubble scales. This is actually true only in a universe with
adiabatic initial condition.® However, the standard cosmological model always
assumes adiabatic initial conditions, since this has been proved to be correct by
observations.

In the exercises, you have used the linearised Einstein equation G§ = 87T
and Gg = 87TTZ to prove that on Super-Hubble scales, during both RD and
MD, the fluctuations dyot = —2¢ = —2¢) is constant in time (up to a decaying
mode that can be neglected). We will now put together all the information we
have from the adiabatic initial condition (4.50), the definition of the curvature
perturbation (4.42), and the fact that oy = —2¢ = —2W=constant. We will
study the consequences of these relations during RD and during MD on super-
Hubble scales.

First, during RD, that is, when p, and pcam are negligible compared to p,
and py:

e The total relative density perturbation is given approximately by

O0px _ 2x0px _ Dox PxOx
Px ZX Px ZX X
PbOb + PedmOcdm + Py0y + Puby
ﬁb + ﬁcdm + ﬁfy + ﬁl/

ﬁ’Y + ﬁu
’?—W 0y =0y =190, . (4.55)
p’Y + Pu
3We can now prove this fact explicitely. Here we just give the brute-force proof, which is

conceptually easy but computationally cumbersome (this calculation is not part of the pro-
gramme of the course). It just uses the Friedmann equation, the linearised Einstein equation

5tot =

R
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and the fact that the total fluid has an adiabatic sound speed:

5pfsot + 1 dptot (ﬁéot + ﬁ;ot)

R = ¢/ _ 1
3 ptot + Dot 3 (Ptot + Ptot)?
= - 1 0piet n 1 prot(1 + 2)Prot
3 Prot + Dot 3 (Ptot + Drot)?
. 1 3P40t B 1 dptot (1 + 02)3%’(p’tot ~+ Drot )
3 Ptot + Ptot 3 (Ptot + Drot)?
- 4 1 dpiot _ a’ (§prot + c25ptot)
3 Ptot + Dtot a Ptot + Dtot
= ¢ - 1 SPtot, _ ‘i’ (ptot + Iptot)
3 Ptot + Ptot @ Ptot + Dtot
1 a’ a’
= ¢ - |:5P, + 3—6dptot +3—0pt t]
3(ptot + Prot) vt a ° a °
, 1 , a’ a a
= ¢ — —————— [0ptor T 2—ptot + —Iptot + 3—IPptot
3(ptot + ptot) a a a
= ¢ — ! {(47?6’(125 ), + a—/47rGa2(5 + 3a—/47rGa25
1onCla? (Ptot + Prot) Ptot a Ptot p Ptot
!
1 a’ a'\2
= ¢ - - — 73—¢’73(f) )
127Ga?(ptot + Ptot) a a
/ / I\ 2
L <3a¢/ L (1) ¢,>
a a a
a’ a’ a a/2
+3— <¢“ +3—¢' + | 2— - 2) ¢>}
a a a a
1 a a’ a 2
_ ;o 3%y 3% /+3(7) /
¢ 127Ga?(prot + Prot) a ¢ a ¢ a ¢

I\ 2 " 3
—3(6‘—) ¢>’—6“ —¢+6(“) é— 3(
a a
+3“’—¢”+9(a—) ¢ +3% ( @ —“2>
a a a
= - . 3Ly +6(“) &
N 127Ga?(prot + Prot) a

g a(2)

47 Ga?(Prot + Drot)

EROR
|

- ¢+ (4.52)

To further simplify, we suspect that we should use the derivative of the Friedmann equation,
combined with the equation of conservation of energy:

a'\? ' 8rG
2 Tptot

a’” a?\ o 8
2 (an - 2a73> an = *T3*(Ptot +Ptot)
a a’?
(; — 20172) = 747rGa2(ﬁmt +ptot) . (453)

Finally we get

4 2(p
R — & — Ga ([jmt +ptoc)¢/ —0. (4.54)
47 Ga?(Prot + Dtot)
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e The curvature perturbation is given by

R o= Lt Ot 1 O
3 Drot + Ptot 31+ wiot
1 1 gt 1 1 3
= —§5tot 314 I = —§5tot - Z(Stot = _Zétot . (4.56)

e Putting everything together,
4 4 4
5t0t = 57 = (5;/ = géb = gdcdm = —2¢ = —2¢ = —gR = constant .
(4.57)

Thus, during RD and for any super-Hubble wavevector E, all variables are lin-
early related to each other by simple time-independent coefficients of order one.
This means that they are all statistically correlated.

Second, during MD, that is, when py, and p.qm are much larger than p, and
2%

e The total relative density perturbation is given approximately by
O0px _ 2ox0px _ Dox PxOx
Px B ZxﬁX B ZxﬁX
ﬁbéb + ﬁcdmfscdm + ﬁ’vé’y + ﬁl/(sll

ﬁb + l_)cdm + ,57 + py

PbOb + PedmOcdm

ﬁb + ,acdm
= Do Pedm sy = beam - (4.58)

Pb + Pcdm

5tot =

1

e The curvature perturbation is given by

R o= Lt Opor 1 Ot
o 3 Prot + Prot 31+ wiot
1 1 biot 1 1 5
2 tot 31 ¥ 0 2 tot 3 tot 6 tot ( )

e Putting everything together,

3 3 6
Otot = Op = Ocdm = —0y = =0, = —2¢ = —2¢ = —gR = constant .

4 4
(4.60)

Thus, during MD and for any super-Hubble wavevector E, all variables are also
linearly related to each other by simple time-independent coefficients of order
one. Again, they are all statistically correlated.

Finally, we come back to our statement that, thanks to the linearity of the
equations of evolution, for any generic perturbation A(¢, k), the solution can be
decomposed in a stochastic initial condition multiplied by a deterministic time-
evolution function. We see that all super-Hubble fluctuations can be simply
related to the curvature perturbation R, for which we have predictions from the

-,

inflation era (we know that each R(k) is a random number, Gaussian distributed,

-,

with zero mean and with a variance given by equation (4.43)). Thus, R(k)
can be conveniently chosen as a reference quantity in the expression of all the



4.3. INFLATIONARY PERTURBATIONS 85

perturbations with the same wavenumber k. In other words, we can write for
any generic perturbation A:

A(t, k) = Ta(t, k) R(K) , (4.61)

where T'a(t, k) is the deterministic solution of the equation of motion of A for
all modes k of wavenumber k, normalised initially to Ta(t;, k) = A(t;, k)/R(K).
The quantity T4 (¢, k) is called the transfer function of the perturbation A.

Let us illustrate this with a couple of concrete examples. Take for instance
the metric fluctuation for a given Fourier mode, ¢(¢, l;) This random number
can be decomposed as

(1, E) = T¢(ta k) R(E) ) (4.62)

where Ty (t, k) is the solution of the equation of motion for ¢, normalised on

super-Hubble scales and during RD to Ty(t;, k) = o(ts, k) R(F) = 2, where
we have inferred the coefficient % from equation (4.57). Instead, the trans-
fer function of the photon perturbation is normalised on super-Hubble scales
and during RD to T (t;, k) = 64(¢;, k)/R(k) = —3%, where we have used again
equation (4.57).

The variance of a generic perturbation A is then given by

(A F)?) = (Ta(t, k) ((R(E)) - (4.63)

As long as the mode k is super-Hubble, (T (t, k))? is just a numerical coefficient
of order one that can be inferred from equation (4.57) or (4.60), but as soon as
a mode enters the Hubble radius, it undergoes a non-trivial evolution caused
by different forces (gravity, pressure, interaction between particles) that we will
study in chapters 5 and 6.

In chapters 5 and 6, we will see that the most interesting cosmological ob-
servations that can be performed and compared to theoretical predictions are
summarised by variances. The measurement of CMB anisotropies leads essen-
tially to a measurement of the variance (|d, (¢, k)[2) (corrected by a few other
variances), while the measurement of the galaxy distribution around us leads
essentially to a measurement of the variance (|0cam(,k)|?) (corrected by the
variance of baryons). Thus, the goal of a theoretical cosmologist is to make
predictions for these variances, compare them with the data, and find which
cosmological model best describes our universe. But equation (4.63) shows that
the work of such a theoretical cosmologist can be decomposed in two parts: first,
make predictions for (|R(k)|?), and second, make predictions for Ty (t, k). We
have seen that the first problem is solved by inflation, which leads to the pre-
diction of equation (4.43). The second task will be addressed by us in chapters
5 and 6.

4.3.4 Tensor perturbations

The FLRW metric fluctuation 6g;;(¢,7) = a(t)?H;;(t,¥) contains a traceless
transverse component HZ:’; (t,Z) that encodes the two polarisation degrees of
freedom of gravitational waves. One can always define two independent fields
(h1(t, @), ha(t, #)) and two independent traceless transverse matrices (H;, H7)
such that

HE(t, @) = hy(t, %) H; + ho(t, &) H}, (4.64)

accounts for the propagation of GWs in a given direction.
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The equation of motion of the fields (hy(t, ), ha(t, Z)) is given by the vari-
ation of the Einstein-Hilbert action. After a long calculation, one sees that the
two degrees of freedom hi, ho obey to the same equation of motion,

Vi
W'+ Q%h’ ~Ah=0, (4.65)

where the prime denotes a derivative with respect to conformal time. This
equation turns out to be the same as that of an inhomogeneous massless scalar
field in FLRW. (In fact, in GR and for whatever metric, it is a generic fact that
the same evolution equation describes scalar fields and tensor modes).

The degrees of freedom (hq(t,Z), ha(t,Z)) are propagating degrees of free-
dom that should be quantised during inflation in the same way as the inflaton
perturbations. This leads to the following expression for the total variance of
the tensor H}; (t,k) summed up over all indices:

Same b - S (4.66)

i

Like in equation (4.43), the notation ¢, means “the time when the wavevectors

k of wavenumber k crossed the Hubble radius during inflation”, that is, the time
when k ~ aH.

4.3.5 Definition of the power spectrum

In cosmology and astrophysics, one calls “power spectrum” the variance of the
Fourier modes of a field A:

Pa(t, k) = (JA(t, K))?) . (4.67)

There is a wavevector on the right-hand side because this is really the variance
of each mode k. But there is only a wavenumber on the left-hand side, because
the assumption of a statistically isotropic universe implies that the variance is
the same for all modes k with the same k. The power spectrum can be computed
at each given time ¢, but in what follows we will omit the time argument for
concision.

Lots of measurable quantities in real space derive from an integral of the

type
37
M = /(;i:)g Py(k) K(k) , (4.68)

where K (k) is a dimensionless kernel. If A is a dimensionless perturbation, the
measurable quantity M is dimensionless too. For instance:

e you will check in the exercises that with K (k) = S2EE one gets the two-

point correlation function between pairs of points separated by R, that is,
(A(t,Z)A(t, ")) for any pair &, &’ such that |’ — 7’| = R.

e Taking the limit R — 0, we see that with K(k) = 1, one gets the
variance of the fluctuation A in real space, (|A(t, ¥)|?), which must be the
same at every point I as a consequence of the assumption of statistical
homogeneity.

e There are many other examples that we will not use hin this lecture.

For instance, with K (k) = 3 (S(ikné“)].f — ‘E‘,’:Rk)];), one gets the variance of A

smoothed over a spheres of radius R.
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In these integrals, we have k = k2dkdQ. Given that the integrand does not
depend on the direction, we can integrate over the solid angle and get a factor
47. Then,

M= /dlnk (;;PA(k)> K(k) . (4.69)

The quantity between parentheses plays a particular role. It is “the contribution
of each logarithmic interval” (i.e. of each scale) to the result. Intuitively, in a
universe where all scales have the same weight (a bit like in a fractal picture), this
quantity should be independent of k. Otherwise, the result can be dominated
either by large scales or by small scales. If A is dimensionless, the quantity
between parentheses must be a dimensionless quantity. It is commonly called
the dimensionless power spectrum Py:

Pa(k) = 55 Palk) . (4.70)

When P4 (k) is independent of k, the power spectrum is called “scale-invariant”.

4.3.6 Primordial spectrum of scalar and tensor perturba-
tions

According to equations (4.43) and (4.66), the power spectrum of primordial
curvature perturbations and of primordial tensor perturbations (computed on
super-Hubble scales) read

1287 V(p(ti))*

PRI = 5 MgVt .
Pn(k) ?v%\,}?)) , (4.72)

where tj, is the time when k = aH. It is striking that the remaining dependance
on k is only through the terms V(p(tx)) and V/(¢(t)). Due to the SR condi-
tions, these quantities must be varying very slowly with time and with %k, and
thus, the two spectra must be nearly scale-invariant. Then, at leading order in
a Taylor expansion of InP versus In k, one gets

Pr = As (k/k)* (4.73)
Prn = A (k/ko) (4.74)

where k, is an arbitrary pivot scale chosen for doing the expansion. Usually,
people just pick up randomly one of the typical scales that we observe in CMB
maps — thus the pivot scale 27/k, is of the same order of magnitude as the
current comoving Hubble radius, such that k, ~ agHy. As and A; are the
scalar and tensor amplitude parameters, while e, and e; are some scalar and
tensor exponents that we are going to precise. The amplitude parameters are
then given by

18 V(e
R T TS (+7)

_ 128 V(e(tk.))
A= 5 T (4.76)
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According to the definition of equations (4.73, 4.74), the exponents should be
given by the calculation of

dInPr (k)

es = dmk |, (4.77)
o dlnPh(k)
T Tdmk |, (4.78)

The derivatives with respect to k& can be computed bearing in mind that the
spectra depend on k due to the fact that the potential and its derivatives are
evaluated at the time t; when k& = aH. Using the chain rule and slow-roll
approximate formulas, one can do these calculations explicitly. For instance, for
the tensor exponent, we compute

dinPy EdV(gp(tk)) B ﬂdV(g&(tk)) _aHdVdyp dt

= 2T\ AR o . VA i it o 4.
dlnk \%4 dk V. d(aH) V dp dt d(aH) '’ (4.79)
where d(aH
(Zt ) GH ol = a(H? 4+ HT) . (4.80)

The second term is suppressed with respect of the first one by one power of
the slow-roll parameter €. So, at leading order in a slow-roll expansion, we get
d(aH)/dt ~ aH?. Substituting in the original expression, we now find

dIn Py, ﬁV’L 1

= . 4.81
dink V@ CaH? (4.81)
We now use the slow-roll formula 3Hg = —V’'. We get:
dIn Py, 1,V
dlnk VV 3H? (482)
With the slow-roll formula 3H? = 87GV, this simplifies into
dinPy (V)2
dnk &G v 2O (4.83)
Finally,
er = —2¢€(ty, ) = —2€, . (4.84)

A similar calculation gives the scalar tilt as a function of the two slow-roll
parameters:
es = —6e(tr, ) + 2n(tg, ) = —6€. + 2. , (4.85)

By convention, people decided to use the primordial tilts ns and n; instead of
the exponents e; and e;. They are related to each other through

ng = es+1, (4.86)
ng = e. (4.87)

There is no deep reason behind the term +1, only habits and conventions. So,
we expect that the scalar tilt ng is close to one, while the tensor tilt n; is close
to zero. We can also define the tensor-to-scalar ratio

A MRV(p(t)®
A, " w Viet)?

r 16 €(tg,) = 16¢, . (4.88)
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4.3.7 Constraints from observations

Inflation makes several non-trivial predictions that can in principle be con-
fronted to observations:

e Negligible spatial curvature.
e Gaussian primordial fluctuations.

e Fluctuations generated extremely early, such that they already exist on
super-Hubble scales during RD/MD (rather than being generated just
after Hubble crossing during RD/MD).

e Adiabatic initial conditions.
e Nearly scale invariant power spectra.
e Small but non-zero amount of primordial tensor modes (i.e. GWs).

In the late XXth century, inflation was competing with other plausible mech-
anisms for the generation of primordial fluctuations: for instance, mechanisms
based on the generation of topological defects during phase transitions. These
mechanisms usually predict different properties for the fluctuations (non-gaussian,
generated at Hubble crossing, non-adiabatic, significantly different from scale-
invariant, etc.) But observations of the CMB and Large Scale Structures (LSS)
over the period 2001-2018 has brought a strong confirmation of all the above
predictions, with the exception of the last one. Indeed, current data is not
sensitive enough to probe primordial GWs with a tensor-to-scalar ratio » much
smaller than 0.1. People are still building more accurate experiments in order
to try to detect the small tensor component.

Current observations of CMB anisotropies and LSS (e.g. galaxy and cluster
maps) will be detailed in the next chapter. We will see that they probe the
variance of density fluctuations, especially of photons and dark matter, over an
epoch ranging from redshift z ~ 10% to z ~ 0. LSS can only probe primordial
scalar fluctuations. In principle, CMB maps can probe both scalar and tensor
fluctuations, with a possibility to measure these two contributions independently
from each other.

A combination of recent CMB and LSS data* provides accurate measure-
ments of the scalar amplitude and tilt:

Ay = (2.105+0.030) x 107 (68%C.L.) , (4.89)
ns = 0.9665 =+ 0.0038 (68%C.L.) . (4.90)

Since primordial GWs are not observed yet, we only have an upper bound
r<0.1 (95%CL) , (4.91)
which can be translated into
€. < 0.006 (95%CL) , (4.92)

or, together with the measurement of Ay, into V < (2 x 1016GeV)* (95%CL).
Combining this with the measurement of n,, we infer that the second slow-roll
parameter can only vary in the range

n=-0.010T0008  (68%C.L.) . (4.93)

4These results use k. = 0.05 Mpc~! and are based on Planck and BAO data from 2018,
that will be explained in Chapters 5 and 6.
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This is sufficient to prove that the SR parameters are at most of order 10!
during inflation (or, at least, around the time at which k., ~ aH), and that the
inflaton potential is concave (at least in the same region).

But it would be better to measure primordial tensor modes, in order to:

e test one more predictions of inflation,
e determine the energy scale of inflation (given by V(¢x) and thus by A;),
e prove the “self-consistency condition” n, = —r/8.

This is the main goal of several future CMB experiments. The same primordial
GWs could also be detected in principle in future GW interferometers such as
LISA or the Einstein telescope.

4.4 Study of inflationary models

4.4.1 General method

We will present a general method for the study of inflationary potential, that
is, for checking that a given potential is compatible with successful inflation,
and for studying the constraints set by observations on the parameters of the
potential. In the next subsection, we will apply this approach to a particular
example.

Let us assume that we are given a parametric form for the potential V (),
depending on a few unkown parameters «;. Then, we can:

1. Check the slow-roll conditions. We compute (e(¢), n(¢)). Then, we find
under which condition (on ¢ and/or on the potential parameters) inflation
can take place, that is, under which condition €(p) < 1 and |n(p)| < 1
both hold. Then, we can find the condition for inflation to stop, that is,
find the value @enq such that at least one of the two slow-roll parameters
reaches ~ 1. Depending on the potential, € ~ 1 or |n| ~ 1 can take place
first, but in both case, this triggers the end of inflation.

2. Solve the background evolution. The goal is to find ¢ as a function of time
t, or even better, as a function of the scale factor a or its logarithm log(a).
We know that log(a) is called the “e-fold number” and can be defined
with respect to an arbitrary time of reference. In the current context, it
is particularly convenient to define N as the positive number of e-folds
between a given time during inflation and the end of inflation, that is:

N=hnZd 5. (4.94)
a

With such a definition, N decreases during inflation. It reaches N = 0
at the end of inflation. Thus we can say that “an event takes place N
e-folds before the end of inflation”. Our goal is now to find the function
©(N). Normally, one would do this by solving jointly the exact Klein-
Gordon and Friedmann equations. However, we can also assume in very
good approximation that the slow-roll conditions hold for any a < aepg,
and thus, that 3H? ~ 87 M2V and ¢ ~ —V'/(3H) (see equations (4.35,
4.36)). This gives us a way to find an approximation for p(N) very quickly,
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Figure 4.2: Evolution of two physical distances: the Hubble scale, and the
wavelength corresponding to the whole observable universe, which is of the
order of the Hubble scale today.

without solving the full Klein-Gordon equation. Indeed, we can write:

Gend tend da
N = Inaenq —Ilna= / dlna = / —dt (4.95)
o ‘ adt

Pend dt Pend H
= / H —dp :/ —dy . (4.96)
0 dy o P

Finally, using equations (4.35, 4.36), we get

Pend 3 T2 ¢ 8TMS2V &t [¥ V
N~ — = dp ~ — P " do=— —dp . (4.97
/w 4 /@ v /«: prde - (497)

end end

3. Use the constraint on the scalar spectrum amplitude. Indeed, we can now
compute A, at an arbitrary pivot scale k,. The best is to match k, with
one of the scales observable in CMB maps. By definition, these scales
are almost as large as the largest observable scale, that is, the radius of
our whole observable universe. We don’t know yet the value of N when
this scale crosses the Hubble radius during inflation. We decide to call this
unknown value N,: we will compute it in the next step. Thus, p(N,) is the
value of the inflaton field when this scale crosses the Hubble radius, that
is, at the time that we previously called ti,. To compute the observable
scalar amplitude A, at t,, we need to use equation (4.75) evaluated N,
e-folds before the end of inflation. Then, the observational constraint of
equation (4.89) can give us a constraint equation between the parameters
of the potential and N,.

4. Find the number of e-folds N,. We keep in mind a plot like the one
we did when discussing the horizon problem (see figure 4.2). Here, the
growing wavelength stands for the wavelength of the observable radius of
the universe, that we identify with the pivot scale k.. We know that it
crosses the Hubble radius twice: first, N, e-folds before the end of inflation
(according to the definition of N,), and second, approximately today (since
the radius of the observable universe coincides with the current Hubble
scale, as studied in Chapter 1). Moreover, the calculations of section
4.1.2 on the horizon problem proved a very simple but important result:
the number of e-folds between the first Hubble crossing and the end of
inflation, V., must be equal to the number of e-folds between the end of
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inflation and today.® Thus we can write

p1/4
N, =% g rbee (4.98)
¢ il

where p,peg is the radiation density at the very beginning of radiation
domination, p; o is the radiation density today, and we used the fact that
pr o< a~*. The first value of the radiation density can be identified with
V(end), because of the continuity of the total density in the universe at
the transition between inflation and radiation domination. The second
value is known to be of the order of (1073eV)*.® Then we get:

V(@end)1/4

N, ~1
1T 10-3%V)

(4.99)

Since we computed pgnq in step 1, we can use this expression to find N,.

Use the remaining constraints on the parameters (ns,r). Knowing N,, we
can compute the scalar tilt from (4.85, 4.86) and the tensor-to-scalar ratio
from (4.88). Finally, we can see if the results match the observational
bounds of equations (4.90, 4.91).

4.4.2 A simple example: the quadratic inflaton potential

We now assume explicitely the simplest possible potential: a quadratic potential,
that is, a mass term, with no additional self-coupling terms:

1
V(p) = 5m2<p2 : (4.100)

We follow the steps presented in the previous subsection:

1. Check the slow-roll conditions.

M2 (V'\® M2Z [(2\? 1 [Mp\?
e = Mp (VN _Mp 2y _ L (MpAT
16w \ V 167 \ ¢ T \ ¢

MV M2

= £ = 4.102
8 V 8 p2 ‘ (4.102)

"7 =
So, coincidentally, for this particular potential, the two slow-roll parame-
ters are equal. We see that inflation requires € < 1 < |¢| > (47)~ /2 Mp.
Note that this only gives a condition on the value fo the field, not on the
value of the mass. Inflation ends when € = 1 & |¢| = (47)"/2Mp. We
now understand that there are two possibilities for inflation:

e Either the field starts from a positive value ¢ > (47)"'/2Mp and
rolls down the potential towards the minimum, with ¢ < 0. Inflation
ends when ¢ = (47)~'/2Mp. Then, the field oscillates around zero,
which leads to reheating.

e Or the field starts from a negative value ¢ < —(47)~'/2Mp and rolls
down the potential towards the minimum, with ¢ > 0. Inflation ends
when ¢ = —(47)~Y/2Mp. Then, in the same way, the field oscillates
around zero, which leads to reheating.

5Strictly speaking, we proved this result in the case of exact exponential (De Sitter) infla-
tion. But it remains a very good approximation for other models of inflation.

6

as we know, a more precise number can be inferred from the value of w; in equation (2.63).
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These two branches follow from the symmetry ¢ <+ —¢ of our potential.
They are strictly equivalent, and we will assume for simplicity that we are
in the first case, with a positive ¢ and a negative ¢.

2. Solve the background evolution. We start from equation (4.97),

8t (¢ V 8 /“0 © 2
©

NS [ g B [T P AT (22 ) (4103
7 7= 3 °=3n (" = Pena) - (4.103)

2

Pend end

We can replace @eng by (47) =12 Mp:

2 1
i - (4.104)

N=-=Ep2o .
MzY T2

From the discussion of section 4.1.1, we expect that when observable scales
cross the Hubble radius, IV is in the rage from 37 to 67, so the factor %
can be safely neglected:

N~ 2% (4.105)

Inverting this relation, we get the kind of result that we expected:

P(N) = @Mp : (4.106)

3. Use the constraint on the scalar spectrum amplitude. We compute A, at
the pivot scale ty,, that is, IV, e-folds before the end of inflation:
A = 1287 V(ty, )3
S 3MS V()2
1287 m? p(ty,)*
3MS§ 8
167

— o 2 N*4
" P(Ny)

160 o, (N.\° .,
= — ) M
3G (%) P
4m? N?
P

We now impose the constraint As ~ 2 x 1079, and invert the previous
relation to get a constraint on the mass:

<37TA5>1/2 Mp (?m 109>1/2 Mp 10745
m = —

4 N. 2 N, © N,

Mp .  (4.108)

4. Find the number of e-folds N,. We know that

1
V(Qpend) = §m2@§nd . (4109)
Replacing m and @enq by the values that we just computed, we get
1 /1074 N\?( Mp \* 1077 10-10
V(gema) = = (——M L P
o) = 5 (M) () = s b~ T M
10~10 1010
= N (107GeV)* = N2 (10%eV)* . (4.110)
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We can substitute this result in equation (4.99):

V(¢ena) "/ 10-25 10%eV
Ne =~ In—20 =~
(10—3eV) VN, 1073eV
1 1
= In(10%%7) — SN, =65—SInN. . (4.111)

The result of this equation is N, ~ 63. Thus we have proved that in this
particular model of inflation, the observable scales cross the Hubble radius
approximately 63 e-folds before inflation. Knowing N,, we can determine
completely the value of the mass m:

10—4.5 10—4.5

~ Mp="—Mp~10"Mp ~103GeV . 4.112
m N, P 63 P P € ( )

In this particular model, a necessary condition for successful inflation is to
have an inflation mass of the order of 1013GeV (so, considerably heavier
than, for instance, the electroweak Higgs field detected at the LHC. Such
masses could appear in completely new sectors of particle physics, which
could be important at very high energies, and which would have decayed
completely in the early universe).

. Use the remaining constraints on the parameters (ngs,r). Since we know

the value of all model parameters like m and N,, we can compute the
value of:

1/ Mp \?> 12r 1 1
-1 _Lem ~ 4113
‘ An ((p(N*)) =N, 3N, 1 ()
N = e (4.114)
4
s = 1—6e +2p~1— — =0.968 4115
n €« + 21 136 ( )
16
— 166, = — ~0.13 4116
" “ 7 126 (4.116)

We find that this value of ny is in very good agreement with the observa-
tional bounds of equation (4.90), but the value of r is too large compared
to the bounds of equation (4.91). Thus, the model is excluded because it
predicts a too high level of tensor modes, that would have already been
observed in current CMB experiments. Since for a fixed amplitude Ay, a
high r implies a high A; and thus a high V (¢, ), another way to say this
is that inflation with a quadratic potential would have to take place at a
too high energy scale compared to observational constraints.

We could have guessed that this model was excluded already from the fact that
we mentioned in section 4.3.7 that only the potentials that are concave around
© ~ p(N,) can pass observational tests. The quadratic potential is obviously
convex everywhere. We studied it anyway, because it is simple and pedagogical.

Several other potentials with the required property of concavity pass the ob-

servational tests successfully. We can mention at least two categories of poten-
tials that work (with appropriate values of their free parameters), see figure 5.1.
The first class of potentials is that of symmetry-breaking potentials, in which
the inflaton field is rolling away from an unstable equilibrium point. Second,
there are models in which the slope of the potential is dominated either by log-
arithmic or inverse exponential term, V = Vy(14+aln(p)) or V = V5(1 —e™*?).
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Figure 4.3: Examples of potential shapes V(¢). The potential on the left is
everywhere convex and fails to pass the observational tests. Typical success-
ful potentials include the symmetry breaking potential in the middle and the
potential dominated by a logarithmic term In(y) on the right.

This second class of potentials often appears, for instance, in models beyond
Einstein gravity, that is, with additional corrections to the Einstein-Hilbert ac-
tion (for instance, of the order of the squared Ricci scalar R?), or with a direct
coupling term between the Ricci scalar and the inflaton field.
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Figure 4.4: Summary of current constraints on inflation. The axes stand for the
scalar tilt ng and the tensor-to-scalar ratio r. The best current bounds are shown
by the blue contours. The solid line shows the boundary between potentials that
are convex and concave for ¢ ~ ¢(N,). The various coloured lines, dots and
shaded regions correspond to the theoretical predictions far (ng,r) for various
models of inflation (after imposing already the constraint on the measured value
of A;). The model that we studied in this section is represented by the large
yellow dot. The space between the two green curves corresponds to a model with
a symmetry breaking potential. The two green dots and the line between them
correspond to a model of modified gravity with a logarithmic shape. Figure
taken from Astron.Astrophys. 641 (2020) A10, arXiv:1807:06211.
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Chapter 5

CMB anisotropies

We know that photons decouple around z ~ 1080 with Tge. ~ 0.25eV ~ 2900 K,
and then travel essentially in straight line up to us. Thus, they bring us an image
of an abstract sphere at z ~ 1080, centred on our own comoving coordinates,
which is called the last-scattering surface. Before decoupling, we know that
photons were in thermal equilibrium with a given temperature T'(¢,Z) in ev-
ery event. Because of the small density perturbations in all species including
photons, there were small perturbations of temperature d7'(¢, Z), obeying to

4 _opy 0T

py <X T = 4y 7 4 T (5.1)
After decoupling, we know that the photons keep a blackbody distribution,
but get redshifted along the line of sight, approximately by ag/adec = 1 + 2Zdec-
Thus, the average temperature of the photons is expected to decrease by a factor
1+ z4ec, down to 2.7 K, but the relative fluctuations ‘%T should survive. Thus we
should see small anisotropies on the map of CMB temperature, T'(0, ¢). This
is indeed the case since 1992, thanks to a series of satellite (COBE, WMAP,
Planck) and ground-based CMB experiments.

Since all primordial fluctuations can be described as stochastic gaussian
fields, we expect that the two-point correlation function of the map of T'(8, ¢)
contains all the relevant information about the model that describes these fluc-
tuations. In Fourier space (or, since we are talking about a sphere, in multipole
space), the information is contained in the variance of the modes, that is in the
power spectrum of the map. We even expect that this power spectrum could
be related theoretically to the spectra of primordial fluctuations Pgr and Py,.

The goal of this chapter is to show that there is indeed such a relation, and
that, in principle, the measurement of the power spectrum of the temperature
anisotropy map allows us to measure:

e the spectra of primordial fluctuations Pr(k) and Pp(k), and thus the
parameters describing inflation: Ag, ng, 7, etc.

e the parameters that describe the cosmological model, like the ;’s or Hy,
which play a role in the evolution of the photon perturbations between the
early universe and today, and thus, in the relation between the primordial
spectra and the observer temperature anisotropy spectrum.

97
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-300 K 300

Figure 5.1: Map of CMB anisotropies §7'(6, ¢) measured by the Planck satellite
in 2018, in units of micro-Kelvin. The data represents temperature differences
on a sphere (that can be thought to be our last scattering surface). Here, the
sphere has been projected on an ellipse. In this picture, the resolution has been
degraded in order to reduce the size of the file. Taken from Astron.Astrophys.
641 (2020) A1, arXiw:1807.06205; credits: ESA.

5.1 Back to Thomson scattering

5.1.1 Diffusion rate

We have seen in Chapter 2, section 2.2.7, that until the time of recombination,
there are efficient Coulomb interactions between photons and free electrons.
When T < 0.5 MeV, electrons are non-relativistic. Then we are in the Thomson
scattering limit of Coulomb interactions: the photons are just deflected by their
electromagnetic interactions with non-relativistic electrons, but the modulus
of the photon and electron momentum is unaffected by the interaction. The
Thomson scattering rate computed with respect to proper time reads

dN

o =T nfe = gr x.n, | (5.2)

where o is the Thomson scattering rate, n*® is the free electron number den-
sity, me is the total electron number density, and z. is the ionisation fraction
studied in section 2.2.7. Here we will call I' the Thomson scattering rate com-
puted with respect to conformal time 7, given by

75%:%%:0Taxene. (5.3)
After positron annihilation, the conservation of the number of electrons implies
ne o< a~3. Therefore, as long as the electrons are fully ionised, T, decreases as
a—2. At the time of recombination, the fraction of free electrons falls exponen-
tially, and then stabilises around a value of =% (see figure 5.2, top left). During
the exponential decay, the scattering rate becomes smaller than the Hubble rate
(figure 5.2, top right), making the photon-electron coupling inefficient and the
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Figure 5.2: Evolution of a few relevant rates and functions from an arbitrary
time before recombination until the present day: ionisation fraction x. (top
left), Thomson scattering rate I', compared to the Hubble rate in conformal
time (top right), optical depth 7 (bottom left), visibility function (bottom right).
The vertical lines indicate the times of decoupling (7qec) and reionisation (Myeio)-
Obtained with CLASS (class-code.net).

universe transparent. Most photons then travel freely and in a straight line to
us. They thus transmit the image of our last scattering surface to us.

After decoupling, the interaction rate continues to decrease as I', a2
Much later, when the first stars are formed, the fraction of free electrons in-
creases again to one: this is the epoch of reionisation. The I', rate also in-
creases, but without reaching the Hubble rate (figure 5.2, top right), because
the electrons are now too diluted. The universe thus remains transparent, but
with a small but non-zero probability of Thomson interaction of the photons
with the free electrons of the inter-galactic medium, which is equivalent to the
presence of a very diffuse fog.

5.1.2 Optical depth

The optical depth measures the thickness of this fog. It is obtained by inte-
grating the Thomson scattering rate between the observer and a given point in
the universe that has emitted its image at a given time. The optical depth 7
expressed in relation to the conformal time 7 is thus

ﬂmz/mmnmm (5.4)

where 79 is the conformal time today, called the conformal age of the universe.

With such a definition, note that the Thomson scattering rate reads I, = —7'.
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Starting from today and going back in time, we see that the optical depth
increases until the beginning of reionisation, then stabilises around a plateau
value due to a very low Thomson scattering rate between recombination and
reionisation, and finally increase sharply at recombination (see figure 5.2, bot-
tom left). The plateau value noted Ty is called the reionisation optical depth.
It quantifies the fog effect induced by the reionisation, which prevents us from
seeing perfectly the images coming from the recombination period. However the
measured value, Tyeio ~ 0.06, is much less than one, in agreement with the fact
that the universe is strongly transparent since the recombination.

5.1.3 Visibility function

The visibility function g(n) represents the probability that a CMB photon ob-
served today had its last interaction with an electron at the time 7. A statistical
argument shows that there is a simple relationship between this function and
the optical depth:

gn)=—-7e 7. (5.5)
This probability is correctly normalised to one:

o

lim g(n) =e 70 _Jim e ™M =1 -0 . (5.6)
n—0 n n—0

The evolution of the Thomson scattering rate described above is such that the
visibility function has two peaks (see figure 5.2, bottom right): a narrow and
very high recombination peak, and a broad but much lower reionisation peak
(on the figure, its amplitude is multiplied by 100). Between these peaks, the
interaction rate is negligible, and the visibility function is zero. The probability
that a CMB photon experienced its last interaction either during recombination
or during reionisation is given by the integral of g(n) under each of the peaks.
The integral of the reionisation peak gives a probability of 1 — e~ Treie ~ 6%:
in other words, about 94% of the CMB photons have travelled to us without
interacting.

5.1.4 Diffusion length

As the decoupling of the photons is not instantaneous, their mean free path
gradually grows from zero to infinity at the moment of recombination. Each
Thomson scattering points them in a random direction, so that their trajectory
resembles a Brownian motion. The scattering length of the photons is defined as
the distance they travel between an arbitrary time 7;,; chosen well before recom-
bination and a later time 7. The finite value of this length just before decoupling
plays an important role in the CMB spectrum. The comoving scattering length
rq obeys to a first approximation a random walk law,

rﬁ@»r:l/m 07 Ty (7) 12, 1. (7) (5.7)

Mini

where rm ¢, = ¢/I'y is the comoving mean free path of the photons, i.e. the
average distance travelled between two Thomson interactions, which occur at a
frequency given by I',. Finally the physical scattering length A\q is given by:

1/2
) = atyrala) =) | [ an e 59

ini
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5.2 Temperature anisotropy in a given direction

5.2.1 The linearised Boltzmann equation

We have seen in section 3.6 that the continuity and Euler equations do not
provide complete equations of evolution for the photon perturbations. Indeed,
decoupled photons should have an anisotropic stress o,. Thus the continuity
and Euler equations do not form a closed system, and it is necessary to use the
full Bolztmann equation

d

%fwzc[f77fe] ’ (59>
where f.(t,Z,p) is the phase-space distribution of photons in the perturbed
universe, and C'[f,, fe| stands for the Thomson scattering term that couples
photons with electrons (and thus, implicitly, with baryons, since electrons and
baryons form a single fluid). In any Boltzmann equation like (5.9), the total
derivative % is supposed to be evaluated along geodesics — in this case, along
any photon geodesic in the perturbed FLRW universe. For C' = 0, this equa-
tion would simply express the conservation of the number of photons along
each geodesic. Our goal will be to find a linearised version of equation (5.9),
accounting for the evolution of small photon perturbations o f, (¢, Z, p).

The first step is to study the geodesic equation that gives the evolution of
the photon 4-momentum P* defined in the FLRW coordinate system, or, if one
prefers, of the physical 4-momentum p* = (E, p*) that would be measured by co-
moving observers. The physical 3-momentum can be parametrised as p’ = p,
where the unit vector n gives the direction of propagation. The geodesic equa-
tion can be used to compute the evolution of both p(n) and 7(n) along geodesics
at first order in metric perturbations. The derivative Ufi—ﬁl is useful to understand
how metric fluctuations deflect photons, in order to study gravitational lensing.
However, this will not be relevant in this section, as we shall see below. The
derivative Z—p shows how metric fluctuations change the energy of photons —
producing a local red-shifting or blue-shifting of the photons. This derivative is

computed in one of the exercise sheets, and reads

dln(ap) , . =
7d77 =¢ —n-Vy . (5.10)

Equation (5.10) indicates firstly that in the absence of fluctuations in the met-
ric, the momentum would simply be redshifted due to the expansion stretching
the wavelengths and reducing the energy of the photons, p o a~!. Fluctuations
in the metric modulate this average evolution. The dilation effect associated
with ¢’ represents a local fluctuation of the expansion rate, and thus of the
stretching effect. The gravitational Doppler effect associated with 7 - ﬁw repre-
sents the energy gains and losses experienced by photons falling into or leaving
a gravitational potential well.

In the primordial universe, photons are in thermal and chemical equilibrium
at every point, with a Bose-Einstein distribution of zero chemical potential, i.e.
a blackbody spectrum

f(n,%,p) = ——, (5.11)

where T'(n, Z) is the local value of the photon temperature. This distribution
is isotropic, i.e. independent of the 7 direction of p. In the instantaneous
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decoupling approximation, this blackbody distribution freezes at the time of
recombination. Thereafter, 7' no longer has the thermodynamic interpretation
of a temperature, but continues to exist as a single parameter of the blackbody
distribution. For the sake of simplicity, it will continue to be called ”tempera-
ture”.

If the photons interact only gravitationally after decoupling, their blackbody
distribution cannot be altered. This is easily deduced from the geodesic equation
(5.10), which shows that even in the presence of metric fluctuations, the relative
momentum shift of photons along each geodesic, dp = dp/p, is independent of
the momentum p. Thus each momentum p evolves, as does the temperature
T which represents the typical momentum of the photons, but any distortion
with respect to a blackbody is impossible. On the other hand, in a given point,
an observer would see photons arriving from different directions along different
geodesics, and thus carrying a different temperature. The parameter T thus
acquires a dependence on the direction of propagation 7, which means that the
photons are described entirely by a variable T'(n, Z,n) (and not only T'(n, &) as
in thermal equilibrium).

We can therefore insert into the Boltzmann equation (3.26) a blackbody
distribution with a direction dependent temperature,

f’y(nvfapa ﬁ) = p; 9 (512)
eTn.zn) — 1

and then develop it to first order in perturbations. After expressing the rela-
tive perturbations of the temperature parameter to first order as ©(n, Z,n) =
8T (n,,7n)/T(n), and after writing the first-order total derivative d/dn in per-
turbations of the metric thanks to the equation of the geodesics (5.10), you
will find in on of the exercise sheets that the collisionless Bolztmann equation
d% f~ = 0 gives at first order in perturbations

O +n-VO—¢' +7a-Viy=0. (5.13)

In the steps of the exercise, you will find that this equation can be obtained
without an explicit calculation of (foﬂ along photon geodesics, because this term
would contribute to the Boltzmann equation at order two in perturbations. This
is very important: it shows that at leading order, CMB physics can be studied
while neglecting the effect of gravitational lensing, and pretending that ”fTﬁl =0.
In other words, we can pretend that photons travel in straight line between the
last scattering surface and the observer. We know very well how to calculate
the effects of gravitational lensing, but this is a next-to-leading-order effect that
can be safely neglected in a course of first introduction to the CMB.

We should now restore the collision term of equation (3.26). Repeating the
same exercise without neglecting the collision term is relatively complicated, but
the steps can be found in many textbooks, such as for instance [2,5,7]. We will
not explain these steps here and we will just give the final linearised Boltzmann
equation expressed in terms of ©,

O +n-VO—¢' +n-Vip=—T,(0—0¢—i-) , (5.14)
where I, = —7’ is the Thomson scattering rate, ©y(n, Z) is the temperature
fluctuation of photons at a point averaged over all n directions,

dn

Oo(n, &) = / Lo 7,n) (5.15)
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and ¥, is the group velocity of electrons, equal to that of baryons, v, = .
The right-hand side term of the equation (5.14) is presented here in a simplified
version, neglecting the angular dependence of the Thomson cross section: this
approximation is sufficient at the level of this chapter, but the angular depen-
dence must be restored to understand the CMB polarization in detail (that will
be briefly introduced at the end of this chapter).

By going from (3.26) to (5.14), we have reduced the dimensionality of the
problem, since the variable © no longer depends on the norm of the momentum
p: we have used the fact that the spectrum is of the blackbody type to eliminate
the momentum from the equation of motion.

This apparently complex equation is in fact very intuitive. In the absence
of gravitational (¢ = ¢ = 0) and Thomson (I', = 0) interactions, it is a free
diffusion equation, ©’ + 7 - VO = 0, solved by plane waves propagating at the
speed of light in the direction of n. Gravitational interactions modulate the
individual photon momentum and thus their collective temperature parameter
O, firstly by the dilation term ¢’, and secondly by the gravitational Doppler
effect 7 - 61/}. When the Thomson interactions are very effective (I'y — o0),
they force the temperature to find an equilibrium point such that the term
in brackets cancels, (6 — ©¢ — @i - ¥,) = 0. Indeed, the interactions push the
photons to form a perfect gas in equilibrium with the electron-baryon fluid, and
thus with an isotropic temperature in the instantaneous comoving reference
frame of this fluid, i.e. O(n,Z,n) = Op(n, ). The other reference frames are
obtained by a Lorentz boost according to ¥, which generates a dipole in the
photon temperature given by # - @, (n, £). Finally the equilibrium temperature
is given by

O(n,Z,n) = Oy(n,Z) + 1 - Uh(n, T) . (5.16)

5.2.2 Line-of-sight integral

The map of anisotropies visible today (n = 79) from our position in the universe
(Z = & with an appropriate choice of origin) looking in a direction 7 corresponds

to the function ST
?(ﬁ) = 9(7707 67 _ﬁ) - 60(77076’) ) (517)

since a photon observed in the n direction propagates in the —n direction. The
term —Oq (1, 0) is often omitted in the literature, but in order to be rigorous,
we have to put it here, in order to reflect the fact that observers estimate T
as the angular average of the CMB temperature map. Thus, by definition, the
angular average of ‘%T should vanish. Our goal is now to relate this quantity to
the cosmological perturbations along the line of sight, and in particular to the
point of intersection between this line and our last scattering surface. To do
this, we will integrate the Boltzmann equation along the line of sight.

The total derivative of an arbitrary angle-dependent function F(n,Z,n)
along a geodesic describing photons propagating in a direction n decomposes
into

- 7 n) — !
dn]:(n,x,n) 4 +zi: dn Ox; dn on;

In the theory of linear perturbations, if F is already a perturbation of order one,

it is sufficient to express 92 and 9% at order zero. This amounts to considering

dn dn
unperturbed geodesics, i.e. propagation in a constant direction n with ‘Z;;’ =0

and %’" = n;. The normalisation of this last equality comes from the form of
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the Friedmann metric in conformal time and natural units: ds® = 0 implies
dn? = d?. We thus reduce the equation (5.18) to

d -
d—n}'(n,f,ﬁ)zf’—i—ﬁ-V}'. (5.19)
We will now replace F(n, Z,7) by a particular combination of the optical depth 7,
the temperature perturbation © and the metric perturbation ¢, whose integral
along the line of sight is easy to calculate:

F(n,Z,n) =e ™M (O(n, Z,0) +¢(n,T)) . (5.20)

The total derivative of this function is

dle”"(© + )]

e —e Ty A V(O+ )| —TeTO+Y) . (521)

Up to one term (¢’ +1)’), we recognise between the second brackets the left-hand
term of the Boltzmann equation (5.14), which we substitute for the right-hand

term (while using I'y = —7" and —7'e™7 = g):
dle™™(©
W =g9(©@0+Y+n-t) +e (¢ +y) . (5.22)

We can integrate this equation along a geodesic corresponding to a ray of light
propagating in the n direction, between an arbitrary initial instant chosen well
before the recombination (n = 7i,;) and today (n = 79). The term on the left
being a total derivative, its integration simply gives

e (©+9)], —[eT(O+v)], . (5.23)
and using e~ 7(") =1 and e~ 7("n) | we find the identity
mo , ,
Ol,, + ¥, = / dn[g(Qo + v+ -,) +e (¢ +4)] . (5.24)

MNini

For the sake of compactness, we have omitted most of the arguments in this
equation, but we will now specify them. The first term is actually ©(ng, d,7),
i.e. the temperature anisotropy measured by an observer in the —n direction
of the sky. The second term is the gravitational potential at our point in the
universe, (1o, 0), and therefore does not depend on the direction. It is part of
©0(no, ) and, as such, it does not contribute to the map §7/T. In the integral,
all functions depend only on (7, #) and are evaluated at a current point that
moves along the line of sight in the 7 direction at the speed of light and reaches
the observer today, i.e. Z(n) = (n — no)h.

5.2.3 Sachs-Wolfe equation

To simplify the integral along the line of sight, we will neglect the reionization,
which will be reintroduced in a later section, and we will perform an instan-
taneous decoupling approximation. The combination of these two hypotheses
corresponds to I'y(n) = 0 for n > fgec and I'y(n) = oo for < nNgec. This is
equivalent to replacing g(n) by the Dirac distribution (17— 7qec), which preserves
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the normalization condition f:: dng(n) = 1, and e~ by the Heaviside dis-

tribution H (1 — ngec), equal to 1 for 1 > ngec. In this limit, the equation (5.24)
simplifies to

ST

7o
PR =00ty i+ [ @), 329

where the notation |qec is a shortcut for the argument (ngec, (dec — 170)7), i.€.
at the point of our last scattering surface seen in the —n direction of the sky.
The functions ¢’ and 1)’ remain evaluated at the current point of coordinates
(n,2(n) = (n — no)n). An equivalent form of this equation was first derived by
Reiner Sachs and Arthur Wolfe in 1967.

This equation illuminates the different terms that contribute to the CMB
anisotropy map. The contribution in brackets corresponds to perturbations
present at a point on the last scattering surface, while the integral takes into
account corrections that accumulate along the line of sight. Let us detail each
of these terms.

Intrinsic anisotropy

The term ©g|qec is the most obvious one: the anisotropy observed in a given
direction of the sky comes from a temperature fluctuation present at a point of
the last scattering surface. Indeed, between the decoupling and today, the indi-
vidual momentum of each photon is multiplied on average by a factor (agec/ao).
Consequently, the blackbody temperature is multiplied on average by the same
factor. The relative perturbation © = ‘%T is left invariant by this transformation.
It would therefore be logical to observe:

oT

(1) = Oolgee (5.26)
The other terms in (5.25) represent corrections to this relationship from arising
from several Doppler and gravitational effects in each direction.

Doppler effect

In the instantaneous decoupling approximation, one can imagine that the CMB
photons are ejected from the last scattering surface with a group velocity. Due to
the Doppler effect, this velocity shifts their frequency and individual momentum
p, thus contributing to the observed blackbody temperature. The relative shift is
given by the group velocity of the photon-electron-baryon fluid projected along
the line of sight and divided by the speed of light, i.e. in natural units 7- o, |,
N Volgee = M- Ublgee- A speed pointing towards the observer (7 - e|y,. > 0)
corresponds to an increase in the perceived frequency, and therefore in the
measured temperature.

Sachs-Wolfe effect

Along the line of sight, the photons are continuously subjected to a gravitational
Doppler effect from the term 7 - Vi) in the geodesic equation (5.10) and in
the Boltzmann equation (5.14). If the gravitational potential were static, i.e.
dependent on Z but not on 7, the effect would be conservative: it would depend
only on the difference between the values of the gravitational potential at the
interaction point and at our location. We see this in equation (5.24): taking ¢’ =
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" = 0, neglecting the Doppler effect and using the instantaneous decoupling
approximation, the remaining contribution is

S0l = O0lace = (¥l = Yaec) - (5.27)

We have seen that the term z/1|n0 is of no importance. On the other hand,
the term |4, is different in each direction, and contributes to the observed
anisotropy map. This term can be seen as the contribution of a gravitational
Doppler effect at the point of photon emission: a photon leaving the last scat-
tering surface from a gravitational potential well (1[;,. < 0) loses energy to
leave this well, and thus arrives with a lower temperature. This is called the
Sachs-Wolfe effect.

Integrated Sachs—Wolfe effect

On the other hand, when the perturbations of the metric depend on time, the
effect is no longer conservative, as is proved by the integral in equation (5.25),
which depends on the value of ¢’ and 1)’ at each point along the line of sight.
Imagine a large gravitational potential well that is widening over time due to the
gravitational collapse of structures in the universe. A photon passing through it
would gain less energy entering the well than it would lose energy leaving it, as
the well deepens over time. This results in a net redshift effect for the photon.
This cumulative effect is taken into account in the integral f;;oecdn (¢'+4'). This
is called the Integrated Sachs-Wolfe (ISW) effect.

In equation (5.25), the Integrated Sachs-Wolfe effect is the only contribution
to the CMB temperature map that is not related to the quantities at photon
decoupling. If this term dominated, the CMB map would not give a picture of
the primordial universe, but rather of local structure formation. Fortunately,
this contribution remains small because the fluctuations of the metric are almost
static during matter domination (in the linear perturbation regime), as seen in
the exercises (we will also see it again in the chapter on Large Scale Structures).
Variations can only take place near the beginning and end of matter domina-
tion, during A domination and/or in the non-linear perturbation regime. The
corresponding effects remain small. It is thanks to this property that the CMB
map effectively represents a picture of the baby universe.

The equation (5.25) is very useful for understanding the physics of the CMB,
but it only indicates the observable temperature in a given direction, whereas
the theoretical predictions concern the spectrum of temperature anisotropies.
We will develop this in the next section.

5.3 Spectrum of temperature anisotropies

5.3.1 Boltzmann equation in multipole space
Fourier transform

We saw in section 3.4 that in the case of scalar perturbations in the Bardeen
sense, all group velocities are the gradients of scalar quantities. For electrons
and baryons, according to previous definitions, v}, = a"2Vuy. Therefore, in
the linearized Boltzmann equation (5.14), the direction 7 always forms a scalar
product with the operator V. In Fourier space, this scalar product depends on
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the cosine of the angle between the propagation direction and the wave vector,
fi - k = k cosa. Then, equation (5.14) becomes:

O +ikcosa © — ¢ +ikcosa =1 (0 — Oy + ik cosa b)) , (5.28)

where we used equation (3.17), 6, = (Awv,)/a?, such that in Fourier space o, =
ikuy, /a? = —ik 0y /k%. Although the vector 7 depends in general on two angles,
we see that only one angle o appears in this equation. If the initial conditions
for ©(n, E, 7) also depends on 7 only through «, we can conclude that at any
time, © only depends on «, and can be written as (1, l% «). This is indeed
the case, because, in the initial tightly coupled regime, © is given by equation
(5.16), which reads in Fourier space:

O (Ninis
= G(ninh

>

) = O0(Mini, T) + 7t - Uy (Mini, T) (5.29)
ﬁ) = @O(ninh E) —if - E eb(ninh E) / kQ
= Oo(Mini, l_z:) — ik cosa Ov (Mini s l_s:) . (5.30)

T,
k,

Once more, we have reduced the dimensionality of the problem: from f(n,Z, p)
to ©(n, &, n), then ©(n, k,7), and finally O(n, k, a).*

Expansion in Legendre series

When a function depends on a single angle, it is useful to perform a transfor-
mation based on Legendre polynomials Pj(z). We define the expansion of ©(«)
into Legendre multipoles ©; as:

O(n,k,a) = (=) (2l + 1)0;(n, k) P(cos a) . (5.31)
l

Given the orthogonality condition of Legendre polynomials,

1
2
/ . d.’L’P[(l’)P"L(x) = mélm 5 (532)

the inverse transformation is given by

O1(n, k) = %/_1 d(cos @) O(n, k,a) Pi(cos ) . (5.33)

The prefactor (—i)!(2] + 1) in (5.31) is just a convention for this expansion.
It will lead to simplifications in some calculations. It is worth noting that in
previous sections, we already defined a monopole ©g for a general function of
two angles, just taking the average over a sphere:

1 1 ™ 2w
sphere __ - ~ 5) — 3
oy = 47T/dn@(n) 47r/0 do sm9/0 dp©(0,¢) . (5.34)

This definition can also be applied to the particular case of a function with
axial symmetry around €, not depending on ¢. However, in such a case, this

IThis is a consequence of the isotropy of the FLRW background metric, which contains
no preferred direction. In a Fourier expansion, the only direction that appears is that of the
considered wavevector k. It is therefore possible to form only one angle: the angle relative to

k.
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previous defintion of the monopole exactly coincides with that of the [ = 0
Legendre multipole, since:

1t 1 [
g _ L / d(cos)0(0) = 5 /0 40 sn00(0)  (5.35)

1 T 2m
= — / df sin 6 / dp©(0) = ePhere (5.36)
ar J 0

The perturbations 74" of the photon stress-energy tensor are related to the
Legendre multipoles. Indeed, in kinetic theory, T§" is obtained by integrating

f over the spatial part of the 4-momentum P as

) L, PRPY )
1 = [ ar, o D ettt (5.37)

where d?’Pj is the integration volume in the space of the momentum covector P;
(in cartesian coordinates, d*P = dpP; dP>dP3). In our case, after having replaced
fy by its expression (5.12), T by T(1+ ©), and © by its expansion in Legendre
multipoles, we can integrate with respect to P; by keeping only the terms of
order one in perturbations. We can then identify an explicit expression for the
four generic scalar perturbations {dp,dp.,v,, 04} introduced in section 3.4,
and finally with the four equivalent degrees of freedom {4, c% 60y, 04}

1
6, =46, A, =3
0, =3kO:, o, =20,. (5.38)

(5.39)

Note that the first two relations are obvious for ultra-relativistic particles in
thermal equilibrium, which obey p, = 3p, o< T* at each point. But these
relations are also valid after photon decoupling. Using the above relationship
between ¢, and ©;, we can reformulate the right-hand side of our Boltzmann
equation in Fourier space (5.28) as:

O +ikcosa © — ¢ +ikcosa 1 =

7! Z(—z’)l@l +1)0y(n, k) Pi(cosa) — écosa (6, —6y)| . (5.40)

1>2

We see again that in the limit of a very efficient Thomson scattering, |7/| — oo,
the Boltzmann equation tends to cancel the content of the brackets, that is, to
align the group velocity of the photons with that of the electron-baryon fluid
(0, = 01,), which fixes the temperature dipole ©1, and to make the fluid isotropic
beyond this dipole (©;>2 = 0).

Boltzmann hierarchy

The equation (5.40) can be expanded into mutipoles using the orthogonality
property of Legendre polynomials. Using the expansion (5.31), the definitions
Py(cosa) = cosa and Py(cosa) = 1, the recurrence relation (20 4+ 1)zP(z) =
(Il +1)Py1(z) + 1P —1(z)? and the relations (5.38), one obtains an independent

2Note that this relation gives, for | = 0, zPy(xz) = Pi(z), and for | = 1, 3zPi(z) =
2P2(£E) + Po(aj)
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relation for each coefficient of the Legendre expansion:

4
o+ 597 —4¢’ = 0, (5.41)
1
0, + k* <—457 + av> — K = 70,6, (5.42)
kl k(l+1 ,
TRl 2(z+1)®l+1 = 76 V=22 (5:43)

These equations form the Boltzmann hierarchy. The first two equations match
perfectly the stress-energy tensor conservation equations (3.24, 3.25) of a rela-
tivistic fluid, with the addition of the Thomson diffusion term. When 7/ is very
large with respect to a’/a, the last equation forces ©; to remain zero for [ > 2.
When 7" decreases around the time of photon decoupling, the amplitude of the
perturbations is transferred from [ = 0,1 (i.e. from J and 6,) to higher order
mutipoles, thanks to the coupling between neighbouring mutipoles.

Physically, this corresponds to the fictional experience of an observer in the
universe. As long as the photons are strongly coupled, the observer perceives
temperature anisotropies only as a dipole corresponding to its velocity relative
to the photon-electron fluid. Then, as time passes by and as the mean free
path increases, the observer sees photons coming from more and more remote
points, or more precisely from a spherical last scattering surface of increasing
radius. These photons give him an image of this surface with inhomogeneities
seen from a smaller and smaller angle, corresponding to a larger and larger
multipole moment /.

The equations (5.41-5.43) are considered as the most important ones in the
precise study of CMB physics. They play a central role in the numerical calcula-
tion of the CMB spectrum by so-called “Einstein—Boltzmann solvers”. However,
they will hardly intervene in the qualitative reasonings of the next sections.

5.3.2 CMB statistics in multipole space
Multipoles a;,,

To construct a quantity that can be both predicted theoretically and observed
experimentally, it is useful to expand the map of CMB temperature anisotropies
~introduced in equation (5.17)- in spherical harmonics®:

E(ﬁ) = 00,8, —1) — Op(n0,0) = > Y amYim(7) . (5.44)

T 1>1 —I<m<l

The term —Og (1, 8, —1) is often omitted in the literature, but in order to be
rigorous, we have to put it here, in order to reflect the fact that observers
estimate T as the angular average of the CMB temperature map. Thus, by
definition, the angular average of ‘%T should vanish.

We recall that 7 is a unit vector, consequently described by two angles (6, ¢).
Thus the function ‘%T(ﬁ) is defined on a sphere. The expansion in spherical
harmonics plays the same role as a Fourier transformation for functions defined
on a sphere: for larger I’s, the multipoles a;,, (with —m < I < m) represent
anisotropies at smaller angular scales. The fact that the temperature map is a

3By convention, we will always use the usual complex representation of spherical harmonics,
such tht Y}, (0, p) x e'™¥. Howewer, we will write both indices down, Y},,, instead of using
another frequent notation, Y;.
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real function and that ¥;* = (—1)"Y;_,, gives the constraint a;,, = (—1)" ;.
To obtain an inverse relationship, one uses the orthogonality relationship of
spherical harmonics,

/ A Yo () i () = 61505 (5.45)

where 6{1(, is the Kroenecker symbol, as well as the expansion of the temperature
perturbation into Legendre multipoles (equation 5.31), the relation between
Legendre polynomials and spherical harmonics,

l
~ 47 ~

P(n-k)= ——— Y ()Y (k) 5.46
1R k) m;l2l+ll (1) Yim (k) ( )
and the parity relation of spherical harmonic Yj,,,(—7) = (=1)!Y;,, (7). After
about ten lines of calculation, we arrive at an expression for each multipole a;.,
of the temperature map as a function of the Legendre multipole ©; evaluated

today (by defining the unit vector k = k/k),

2 - . -
A = \/;il/d% Yin (K) ©1(no, k) . (5.47)

Spectrum

We have seen in the previous section that each Fourier mode of a perturbation
can be considered as a Gaussian random variable. This is the case for the
multipole 91(77077;) for each k. The multipole a;,, is thus given by a sum of
Gaussian independent variables. Thus, it is also a Gaussian random variable,
whose properties are entirely described by a variance. The latter can be deduced
from

3w

(aimal,, ) = = iV / PEPE Vi (k)Y () (0110, K)OF (o, K)) . (5.48)

Using the definition of the primordial spectrum and transfer functions,
(©1(10, k) (1m0, K')) = ©1(no, k) O (no, k) 6p (k' — k) Pa(k) , (5.49)

as well as the relationships (4.70) and (5.45), we arrive at a simpler relationship

for the variance?,

dk
(A @) = 010K [zm / ?Gf(no,k)PR(k) ) (5.50)

The quantity between the square brackets plays a fundamental role for three
reasons:

e it contains all the statistical information about the CMB temperature
map, since it represents the variance of Gaussian random quantities;

4In this calculation, the fact that (alma;‘,m,) is zero for [ # 1’ or m # m/ comes from the
orthogonality relation. But more fundamentally, it is the consequence of the hypothesis of
statistical homogeneity of the Universe — just like in Fourier space the correlation functions
are zero for k #* K. Statistical isotropy implies that the part between square brackets can
only depend on ! and not on m: the statistical properties can depend on the angular scale 6
considered, and thus on | = 27/6, but not on the configuration and orientation of the axis
system, and thus on m.
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e it can be inferred from observations, since the multipoles a;,, can be

measured (we will then denote the multipole a??%);

e it can be calculated in a given theoretical model, since the transfer
functions O;(n, k) and the primordial spectrum Pg (k) can be predicted.

This quantity is therefore the most appropriate one to test cosmological models
based on the observation of CMB temperature anisotropies. It is called the
spectrum of temperature anisotropies Cj,

Cl = <|alm|2> = 47T/ %@%(Uo,k‘)?n(k) . (551)

Cosmic variance

Let us return to the meaning of the symbol (...) in equation (5.51). In cos-
mological perturbation theory, each a;,, is considered a stochastic number, and
the average is taken over all realizations of the theory, i.e. over the CMB maps
of all possible universes corresponding to a given cosmological model. But we
observe only one CMB map, i.e. one realisation of the theory. We cannot there-
fore know exactly the average theoretical value C;. At best, we can estimate
it from each observed realisation |aP|?. Fortunately, all a;,, with [ fixed and
m in the interval —I < m < [ obey the same probability distribution, i.e. a
Gaussian of variance ;. Therefore, we have the opportunity to approximate
C) by calculating the average value of |a?§f 2 over all m. In statistical language,
one says that the theoretical C; can be estimated from the observed multipoles

using the “estimator” C’l(alm):

A . 1 9

Cl(alm) = T—H Z ‘alm| . (552)
—I<m<l

This is an unbiased estimator of the theoretical Cj, as its mean (considered

again with respect to all realisations of the theory) is given by

o)) = 57 3 P =Cr (559)

—1<m<l

The quantity CA’l(a‘l’ff) is closer to the coeflicient C; of the underlying theory
than each term |a$P%|? taken individually. This can be quantified by calculating
the standard deviation between C; and C (again considered with respect to all
realisations of the theory). Using Wick’s theorem, {abed) = (ab){cd)+ (ac){bd)+

(ad)(bc), one can show in a few lines that:

2 2

(Cr—C1)?) ﬁcz :

(5.54)
Therefore, the larger [ is, the smaller the standard deviation is, and the more
accurate the estimate of C; is. Indeed, at smaller angular scales, we observe
more a?},)f multipoles, i.e. more theory-independent realisations. This standard
deviation is clearly visible in the observational results: the measured C; are
highly scattered at small [ and less scattered at large [ (see figure 5.3). The
standard deviation of equation (5.54) is called cosmic variance and plays the
role of a theoretical error. A given cosmological model can be considered as
providing an excellent explanation of observations if the data are close to the
theoretical predictions within cosmic variance.
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Since cosmic variance is large at small [, it will always be difficult to char-
acterise with great accuracy the aspects of the cosmological model that control
the shape of C; only at large angular scales.’. Fortunately, cosmic variance it
is sufficiently small at large [ for measuring most cosmological parameters with
high accuracy. The measurement of the temperature anisotropy spectrum is
said to be “cosmic variance limited” when the experimental errors on each C}

become smaller than the cosmic variance.

21530 500 1000 1500 2000 2500

Figure 5.3: Observation of the CMB temperature anisotropies spectrum by the
Planck satellite (2018 data). The points represent the measured central value
for each Cj, while the curve shows the theoretical C; for the ACDM model that
best explains the data. The scatter of the points increases at small [ < 1500 due
to the cosmic variance, and also at large [ > 1500 due to instrumental errors.
The light (resp. dark) grey band shows the cosmic variance predicted by the
theoretical model at 1o (resp. 20). A different scale is used on the z-axis at
[ < 30 to highlight the first data points.

5.3.3 Line-of-sight integral in Fourier space

Equation 5.51 shows that the knowledge of the photon transfer functions at the
present time, ©;(n, k), is of crucial importance for the theoretical calculation of
the CMB temperature spectrum. These functions can be calculated by a “brute
force method”. Their evolution equation is given by the Boltzmann hierarchy
5.41-5.43 for each k. We can truncate this hierarchy to a multipole li;ync. slightly
larger than the last multipole [,,x for which we want to compute the C;’s. This
gives a system of lyune. coupled differential equations, which can be integrated
between an initial time where kn < 1 (that is, in the super-Hubble regime) and
the current time.

However, there is another method which is both more efficient for numerical
calculations and more pedagogical for the purpose of a CMB course: the line-
of-sight integral in Fourier space. This method is based on an integral similar

5To improve this knowledge in a really significant way, it would be necessary to travel at
close to the speed of light to observe other last scattering surfaces, i.e. other independent
CMB maps, and return to Earth to pool all this information.
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to the one of section 5.2.2, but this time starting from the Boltzmann equation
in Fourier space (5.28). It is no longer an integral along the line of sight, since
the quantities are now expressed in Fourier space. Rather, it is an integral with
respect to time, which allows us to express the Fourier mode k of a current
multipole ©;(no, E) as a function of the same Fourier mode for other pertur-
bations evaluated at various times between the decoupling of the photons and
today. By writing the formal solution of the equation 5.28 in integral form, and
performing Legendre transformations, we arrive at the following expression for
the photon transfer function:

Mo
Oulno k) = / dn Sr(m, k) ju(k(no =) (5.55)
TNini
Sr(nk) = g(©@o+v) +(gk™20) +e (¢ +¢) ,  (5.56)
intrins. + SW Doppler ISW

where j;(z) is the spherical Bessel function®, and St (n, k) is called the temper-
ature source function.

The formal similarity between this result and the true integral along the line
of sight (5.24 is obvious). Three contributions are again identified as playing the
same role as in section 5.2.2: the intrinsic anisotropy corrected by the Sachs—
Wolfe effect (SW), the Doppler contribution, and the integrated Sachs—Wolfe
effect (ISW). This similarity is such that the equation (5.55) is also called —
somewhat abusively — the line of sight integral in Fourier space.

This integral can be put into other forms by means of integrations by parts.
All terms that depend on the visibility function g(n) and its derivatives are
zero today and negligible at 7;,;. Therefore, their integration by part does not
generate edge terms. For example, we also have

Orlm. 1) = [y {9(®0-+ ) ilhm — )
+g k™ 0y j{(k(no —n))
@ k) (557

Thanks to the line-of-sight integral (5.55), to compute the transfer functions
©:(no, k) up to an arbitrarily large [, it is sufficient to solve the Boltzmann
hierarchy just in order to obtain the transfer functions ©¢(n, k), 0(n, k), ¢(n, k)
and 9(n, k). The aim is therefore no longer to have a precise solution of the
Boltzmann hierarchy up to I = l;yax, but only up to I = 2 (because the Einstein
equation, which is necessary to obtain ¢ and 1, involves the multipoles up to
I = 2). For this, a truncation around lyyne. ~ O(10) is sufficient. The number
of equations is thus considerably reduced compared to the brutal method.

In addition to its numerical efficiency, the line-of-sight integral gives a much
better analytical insight into the shape of the final result and the dependence
of the spectrum on the cosmological parameters.

Angular projection

The previous calculation involves a spherical Bessel function evaluated in j; (k(no—
n)). Mathematically, this function appears in the calculation of the line-of-sight

6The spherical Bessel functions j;(x) are related to the usual Bessel functions of the first
kind Ji(z) by j; = %Jl_‘_%(a:)
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Figure 5.4: Left: Contribution of a Fourier mode A(, k) with fixed k fixed and
unspecified 7 to a multipole ©;(ng, k) for | = 7/0 fixed. Right: Spherical Bessel
function ji0(z).

integral when we perform a Legendre transformation of the plane wave function
e~ "% But more intuitively, it plays the role of a projection coefficient from
Fourier space to [-multipole space. In the multipole space, each [ corresponds
to a configuration on a sphere such that the angle between a maximum and
an adjacent minimum is given by 0 = w/l. Let us try to answer the following
question: can a Fourier mode Eof a given perturbation A(n, k) contribute to
the multipole [ of the transfer function 6;(no, k)?

To understand this, one must have in mind the diagram on the left of fig-
ure 5.4. If the mode propagates at time 7, the observer perceives a cross-
sectional view along a sphere whose radius is given by the angular distance d,
until time 7,

a

du=at) [ L = ato) | " dn = a(m) (o —1) - (5.58)
t n

The contribution of this Fourier mode to the I-multipole is non-zero if the ob-
server perceives differences between the values of the perturbation at two points
on the sphere separated by an angle § = [/w. The perceived contribution is
the average over all possible directions of the difference between such pairs of
points. The largest contribution to this average always comes from pairs of
points arranged parallel to the wave vector, such as the vertically aligned pairs
of points on the left of the figure.

There is a unique value of the distance d,(n), and therefore of the time 7,
such that these points correspond to an adjacent maximum and minimum of
the Fourier mode. On the figure, it is the sphere B. This value of 7 is the
solution of the equation A\/2 = 0d,, where \/2 is the half-wavelength, related
to the comoving Fourier mode k& by A/2 = a(n)w/k. Thus the contribution is
maximum if the relation

g T N2 _ ek (5.59)
L da a(n)(mo—mn)

is satisfied.”

7If a mode of the same k propagates later, the observer perceives a cross-sectional view
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In a completely equivalent way, we could have fixed the diameter of the
sphere d,(n) and thus the time 7, and looked for the values of k for which
A(n, E) gives a contribution to the multipole [. The largest contribution comes
from the modes verifying [ = k(ng —n): this is the main harmonic. With larger
k, we then find the first harmonic, which contributes with an opposite sign, the
second harmonic, which contributes with the same sign, and so on.

The spherical Bessel function j;(k(no —n)) can be seen as a projection coef-
ficient which takes all these effects exactly into account. Its characteristic form
appears in the diagram on the right of figure 5.4. It always has a maximum near
k(n —no) = [, giving the contribution of the main harmonic. For k(n — ng) < [
it tends rapidly to zero, and for k(n — n9) > [ it has an oscillatory behaviour
taking into account all harmonics.

Instantaneous decoupling approximation

In section 5.2.2, we introduced a double approximation: absence of reionisation
and instantaneous decoupling. This allowed us to simplify the integral (5.24) and
to obtain the Sachs—Wolfe relation (5.25). This double approximation amounts
to considering the photons as strongly coupled with the baryons and electrons
until the moment of decoupling, 74ec, and totally free afterwards. In this limit,
all photons have their last interaction at the same time, and thus really come
from a surface of last scattering (which is a two-dimensional sphere). In reality,
the decoupling is progressive and the photons come from a last scattering area
with a certain thickness. Moreover, some photons interact again at the moment
of reionisation. We will take these two effects into account later.

To better understand the shape of the temperature spectrum, we can apply
the same approximation to the line-of-sight integral (5.55-5.57), i.e. replace
g(n) by 6p(n — Naec), and e~ 7 by H(n — ngec). Starting from (5.57), we then
obtain:

Ou(no. k) = (Oo(Ndec, k) + ¥ (1dec, k)) ji(k(no — Naec))  (SW)
+k710b(7ldeca k) Jz’(k(ﬁo - 77dec)) (Doppler)
+ [0 dn (¢ (0, k) + 4 (0, k) u(k(no —m)) . (ISW)  (5.60)

Tdec

The interpretation of this result is very close to the discussion in section (5.2.2).
As expected, the Sachs—Wolfe term contains the photon density (6, = 40y)
corrected by the value of the gravitational potential ¥ at the time of decoupling:
the sum [Og + ] is often called the effective temperature. The Doppler term
contains the bulk velocity of the strongly coupled baryon-electron-photon fluid,
described by 6, up to a factor &% (see equation (3.17)). Since the Bessel function

along a smaller sphere, such as sphere A in the figure. It is immediately apparent that this
mode cannot contribute at the desired angle (it can only contribute at larger angles). If the
mode propagates earlier, the observer perceives a cross-sectional view along a larger sphere,
such as spheres C, D, E, F in the figure. For a certain value of n corresponding to sphere
D, the angle subtends a min—max—min-max contribution which also contributes, but with an
opposite sign. For sphere F, the angle 6 subtends a max—min—-max—min—max—min contribution
which is of the same sign. Sphere C, halfway between B and D, gives a zero contribution (the
compared points have the same value), as does sphere E between D and F.

8An additional complexity arises from the fact that in real space the Doppler effect is
deduced from a gradient term projected along the line of sight. In the line-of-sight formalism,
this translates into the presence of a derivative of the Bessel function. Since jj(x) has the same
oscillations as j;(x) but with a phase shift, if X (n, k)j;(k(no—mn)) represents the projection into
multipole space of the Fourier mode X (7, k) seen on a sphere, kX (1, k)j] (k(n0o —7)) represents
the projection of its gradient calculated at any point of the sphere in the direction orthogonal
to it.
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peaks around x ~ [, the Fourier modes that contribute the most to the SW and
Doppler terms are of the order of k = 1/(19 — Ndec). Our discussion of angular
projection effects in the previous section allows us to understand this result:
the main contribution comes from the main harmonic, i.e. from Fourier modes
whose adjacent minima and maxima are seen by the observer at an angle § = /[
when the mode propagates tangentially to the last scattering surface. Finally,
as we have already seen in real space, the integrated Sachs—Wolfe term depends
on the time variation of (¢+1) along the line of sight. The integral is not trivial
since it involves a partial derivative and not a total derivative.

5.4 CMB physics

5.4.1 Evolution of perturbations

According to the previous section, to understand the form of the photon trans-
fer function ©;(ng, k), and then of the temperature spectrum Cj, we need to
know the evolution of the transfer functions ©g, 6, ¢ and ¥. We will simply
give a graphical summary of this evolution in figure 5.5, and then comment
on the most important aspects and their physical origin. The upper plot of
figure 5.5 shows the evolution of the transfer function ¥ (n, k) for each k, cal-
culated almost exactly by an Einstein-Boltzmann solver. The evolution of ¢ is
very similar due to the negligible role of the anisotropic neutrino pressure (see
section 3.5). The lower plot shows the evolution of the effective temperature
transfer function, [©¢ + 9]. That of 6}, is not shown in the figure, but we will
describe it qualitatively in a later section.

Evolution of metric perturbations

The evolution of ¥(n, k) is quite simple. We have seen that the perturbations
of the metric remain constant in the super-Hubble regime for adiabatic initial
conditions. When a wavelength becomes smaller than the Hubble radius, the
total energy density contrast dio; experiences either:

e oscillations of constant amplitude due to pressure forces during radiation
domination,

e or some enhancement |Jio1| /* due gravity forces during matter or A dom-
ination.

The metric fluctuations react to this behaviour on sub-Hubble scales according
to the Poisson equation (3.23) — which is the limit of the Einstein (§) equation
on sub-Hubble scales:

k2
7¥¢ =47GOpror = ¢ = ——5 (a®Prot) Orot - (5.61)

This shows that during radiation domination (a?p; < a~2) and matter dom-
ination (a?pior o< a™1), |¢| tends to get damped even if |§ioq| is constant: the
expansion of the universe tends to smooth out metric fluctuations on sub-Hubble
scale. As a result:

1. during radiation domination, as a combined effect of pressure forces and
of the expansion, ¢ experiences damped oscillations on sub-Hubble scales.
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Figure 5.5: Transfer functions of the metric fluctuation t(n, k) (top) and of
the effective temperature [©¢ + 9](n, k) (bottom). The vertical axis represents
conformal time, flowing from the primordial universe (top) to the present day
(bottom). The horizontal lines indicate characteristic times: radiation/matter
equality, photon decoupling and matter/A equality. The oblique lines represent
the location of the points where the wavelength A = a 27 /k crosses the Hubble
radius Ry, the sound horizon d or the damping scale dgq. Obtained with CLASS
(class-code.net).

2. during matter domination, gravity forces lead to |dtot| < a, but this factor
is exactly canceled by another factor a~! coming from the expansion,
and ¢ remains constant in time. Another way to see this is through
the (¢) Einstein equation: as long as total pressure perturbations in the
universe are negligible (6piot < dptot, Which is true during MD and AD)
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?
i

the Einstein equation for (¢) gives a closed equation of evolution for ¢,

" 12

¢ +3=¢ + (22 = C(;) ¢$=0. (5.62)

During MD, a(n) o< 7%, the effective mass term in the previous equation
vanishes, and ¢=constant is a solution. This happens because the effect
of gravitational collapse and of the expansion exactly cancel each other.

3. Instead, during A domination (AD), an explicit calculation shows that

(2% — %2) is positive, which implies and that ¢ decays: expansion wins
against gravitational collapse, because the expansion is boosted by the

contribution of A.

All these behaviours are easy to identify on figure 5.5 (upper plot).

Sound waves

The evolution of [@g + ¥](n, k) is more interesting because of the phenomenon
of acoustic oscillations. Until decoupling, photons, electrons and baryons form
a tightly coupled fluid, with
3
op = 157 , 0,=0,, O152=0, (5.63)
as demonstrated earlier.

The pressure of the photon-electron-baryon fluid is dominated by the contri-
bution of ultra-relativistic photons: at each point, p, (¢, %) = 1p,(t, ). There-
fore, any over-density or over-pressure initially present in the fluid propagates
as a sound wave, with a speed of sound whose square is given by:

2 Opyt+opy _ F00y 5 1
;= o oo 5 oo o = 5 - (5.64)
P~y F0pp pytopp 1450 3(14 L)
We have seen that d,/d, is equal to 3/4. Finally, after having defined the
baryon-photon ratio R = (3py,)/(4p~), we obtain

1

2

= SR (5.65)
As pp, < a3 and Py X a~%, the ratio R grows proportionally to the scale factor.
During radiation domination, R is negligible compared to one. Indeed, using
the index m for the non-relativistic matter components and r for the ultra-
relativistic radiation components, pn, < p, implies py, < p,. The square of the
sound speed is then given by 1/3, because the fluid is entirely dominated by
photons. During the domination of matter, R becomes important. The sound
speed tends towards zero as the fluid becomes progressively dominated by the
baryons, which constitute an ultra-relativistic and pressureless species. The
propagation of sound waves then gradually ceases. Finally, the sound horizon
is defined as the physical distance travelled by an acoustic wave between the
primordial universe and an instant 7:

ds(n) = a(n) /On cs dij . (5.66)
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Acoustic oscillations

In general, the propagation of a real-valued plane wave with frequency w and
wave vector k is given by a function of the form U(t,7) = R[Be i(wi—F],
Therefore, when a field A(¢,Z) consists of a superposition of plane waves, each
Fourier mode A(t, k) is of the form A(t, k) = R[Be!] = | B| cos(wt 4 ¢): plane
wave propagation in real space corresponds to oscillating solutions in Fourier
space. In our case, the propagation of sound waves in the photon—electron—
baryon fluid must correspond to oscillating solutions for the Fourier transform
of the density fluctuations of photons and baryons, i.e. for §, = %57: this is
what we call the acoustic oscillations in the primordial universe.

To show this, one can combine the Euler equations of photons [5.41, 5.42]
and of baryons. You proved in the exercises that, after a few calculations,
one obtain an inhomogeneous linear differential equation of the second order
concerning the effective temperature [©¢ + 1],

R

R d
—__ Cyre . (567)

o+ a—/@’+k202® :—k—2¢+7
0 a Y 50 3 1+Ra

This is the equation of a driven oscillator. In the left-hand side:

e The third term contains — up to a factor p, — the product k*c28p, = k?dp-,
which comes from the Laplacian of pressure in real space: it represents
the pressure force, which resists to compression and thus allows the prop-
agation of sound waves.

e The second term is related to a famous gravitational effect in an expanding
universe. In general, an inhomogeneous non-relativistic fluid is subject to
the gravitational collapse mechanism, but the expansion slows down this
collapse. In the equations, this is reflected in a Hubble friction term
propertional to %/ = aH. In the present case, this term is only important
when the contribution of non-relativistic baryons to the density of the
photon-electron-baryon fluid is large: it is therefore multiplied by R/(1 +
R).

The right-hand side constitutes the source term of the driven oscillator. It
shows how fluctuations in the metric can generate density fluctuations in the
photon-electron-baryon fluid, or amplify existing fluctuations.

e The term —k?y comes from the Laplacian of the gravitational potential
in real space: it represents the gravitational force, which may cause grav-
itational collapse.

e The second term of the right-hand side has the same physical origin as
the second term of the left-hand side: it represents a local modulation of
the Hubble friction effect.

e The term ¢” takes into account the dilation effect (see section 5.2.1). This
effect can attenuate (respectively amplify) the overdensities at the places
where the local expansion accelerates (resp. slows down), by shifting the
photon wavelengths towards the red (resp. blue).

If we consider in first approximation that the metric fluctuation ¢ = 1 is con-
stant in time, and that the functions R and ¢? vary over a timescale that is
much longer than one period of oscillation, we can find an approximate solution
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using the WKB approximation scheme for second order differential equations.
You will do this in the exercises and find:

@+w~1(1+R)—1/4 k/n i) di) — R 5.68
ot¥ g cos Ocs(n)n V. (5.68)

As expected, this is an oscillating solution, that corresponds in real space to the
propagation of sound waves. The phase of the oscillation depends on the ratio
between the wavelength and the sound horizon, since the argument of the cosine
is equal to 27 ds(n)/A(n) (where we used the expression of the sound horizon
(5.66) and A = a2%). Since dy(n) increases faster than A(n), the phase increases
with time. In other words, the modes start to oscillate as they approach the
sound horizon. When they reach A(n) = ds(n), that is, k [ c,(7) dij = 2m, they
complete their first oscillation. Then, the further they are within the sound
horizon, the more times they have oscillated. This behaviour is clearly visible
in the bottom graph of figure 5.5: it corresponds to the positive and negative
bands parallel to the sound horizon crossing line. When baryons dominate, the
sound waves are gradually attenuated by the factor (1 + R)_l/ 4 while they
gradually stop to propagate due to k fon ¢s(77) di — constant.

Note that the oscillations do not take place around a zero mean value, but
around —Ry. Indeed, when the density of baryons becomes important (R > 1),
pressure forces become weaker relative to gravity forces. The areas of over-
density therefore become denser and those of under-density emptier. In Fourier
space, this results in a shift in the mean value of the ©¢+1) oscillations. Thus, for
an over-density (O > 0) associated with a gravitational potential well (¢ < 0),
the mean value —Rt > 0 increases, making the over-density denser (and vice
versa).

To understand qualitatively the additional impact of the time variation of
metric fluctuations on the right-hand side of the forced oscillator equation (5.67),
we have to remember that the fluctuations of the metric remain constant in the
super—Hubble regime, and then decrease in the sub-Hubble regime during radi-
ation domination, until they tend towards a constant for kn < 1. Consequently,
the source terms containing time derivatives of ¢ and v are non-zero only around
the crossing of the Hubble radius during radiation domination, when A\ ~ Rp.
They play the role of an amplifier for the forced oscillator. This effect is called
the gravitational boost of the acoustic oscillations. Thus, within the Hubble
radius, the approximate solution (5.68) underestimates the amplitude of the
oscillations.

Diffusion damping

The equation (5.67) is based on the strong coupling limit. In reality, photon
decoupling is not instantaneous: the mean free path of the photons increases
progressively. The photon—electron—baryon fluid thus passes through a regime
of weaker and weaker coupling, until the last photon scatterings occur around
the time 7 ~ Ngec.

In section 5.1.4, we found an analytical approximation for the diffusion length
Aa(n) = a(n)ra(n) = a(n) kf&) (see equation (5.8)), which gives the average
distance travelled by a photon at a time 7. At this time, in each sphere of radius
Ad(n), the direction of propagation of the photons is randomly redistributed,
which erases all perturbations of comoving wavelength smaller than

Ql < 2
k ka(n)

— ra(n) . (5.69)
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Figure 5.6: Evolution of the transfer functions 1 and [©¢ + ¢] as a func-
tion of the conformal time 7 for the comoving modes k; = 0.05Mpc~! (top)
and ko = 0.3Mpc~! (bottom). The vertical lines show four characteristic
times: radiation/matter equality, decoupling, crossing of the Hubble radius
(A = Rpy), crossing of the sound horizon (A = ds). Obtained with CLASS
(class-code.net).

This effect is only accurately described by the exact equations of motion, that is,
the full Boltzmann hierarchy with the precise time evolution of ', (n) = —7'(n).
However, it can be shown that, as a first approximation, it can be taken into
account by preserving the predictions of the strongly coupled acoustic oscillation
equation, and by multiplying the solution obtained for ©y by an exponential
cut-off function of the form exp[—(k/kq(n))?].

This damping effect of small-scale fluctuations is called Silk damping (after
the physicist Joseph Silk). It is clearly visible on the bottom graph of figure 5.5:
the perturbations are negligible below the line where A = \q.

Summary of the evolution of transfer functions

Figure 5.6 shows the evolution of ¢ and [©g + ¢] for two comoving Fourier
modes, between an initial time close to the end of inflation and a final time
chosen shortly after photon decoupling. Since the fluctuations are normalized
to R = 1, these graphs represent transfer functions: they are vertical slices (at
constant k) of figure 5.5. The velocity of the 6}, baryons is also plotted because
it will play a role in the next section.

For the longest wavelength (top graph), the crossing of the Hubble radius
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occurs shortly after the time of equality between radiation and matter, and
the potential v falls only slightly before stabilising around a constant value.
The effective temperature [© + 1] begins to oscillate as the mode approaches
the Hubble radius, and ends its first period of oscillation when A\ ~ ds. The
oscillations are centred around the equilibrium value — R 1, and not around zero.
The amplitude of the oscillations increases somewhat during the first half-period
(corresponding to the end of radiation domination) due to the gravitational
boost effect, and then decreases due to the role of baryons and the factor (1 +
R)’1/4. This mode has a too long a wavelength to be affected by the diffusion
damping (Silk damping) before decoupling.

For the smallest wavelength (bottom graph), Hubble radius crossing takes
place well before equality between radiation and matter. Around the time when
A = Ry, the potential ¥ tends rapidly towards zero. The effective temperature
[O0 + ] begins to oscillate as it approaches the Hubble radius and ends its
first period of oscillation around the time when A = ds. In this case, R is only
important when ¢ is almost zero. Consequently the product —R is always
very small, and the oscillations are approximately centred around zero. The
amplitude of the oscillations increases very sharply during the first oscillation
due to the gravitational boost effect. Then it slowly decreases due to the pre-
dominance of baryons. Finally, the fluctuations are almost completely erased
before decoupling by the effect of diffusion damping.

The curves in Figure 5.6 are simply two vertical cuts (at constant k) of the
surfaces in Figure 5.5. In the next section, we will use these results to establish
the shape of the temperature spectrum Cj: we will then be more interested
in horizontal cuts of these surfaces at constant time 7, and in particular, at

7 = TNdec-

5.4.2 Contributions to the temperature spectrum

We have seen that the photon transfer function ©;(ng, k) is composed of the
three Sachs-Wolfe (SW), Doppler and Integrated Sachs-Wolfe (ISW) terms (see
equations (5.55-5.56) or (5.60)). However, the calculation of the spectrum Cj
is based on an integral over k whose argument is (0;(no, k))? multiplied by
the primordial spectrum. Therefore, the spectrum is given by the sum of six
contributions: the SW spectrum, the Doppler spectrum, the ISW spectrum,
and three cross terms: SW-Doppler, SW-ISW, Doppler-ISW. We will describe
the first three contributions using figure 5.7, which shows the most important

transfer functions, their square, the total spectrum Cj, and the contributions

O[(SW) ’ C[(Doppler) 7 CZ(ISW) '

Sachs-Wolfe contribution (SW): large-scale plateau

The SW contribution to the temperature spectrum comes from the transfer
function of the effective temperature [©+1)] evaluated at the time of decoupling
(see equation (5.60)). In this subsection, we will focus on the contribution of
the modes that are still in the super-Hubble regime at 1 = 7gec.”

Since photon decoupling occurs during matter domination, one can use equa-
tion (4.60) to express the transfer functions that give the Sachs—Wolfe term as:

9We saw in 5.3.3 that a multipole | receives a contribution from the Fourier modes at
1N = Ndec Mainly for wave numbers k such that I ~ k(1o — ngec). Now, if these modes satisfy
kngec < 1, they were in the super—Hubble regime at the time of decoupling. Therefore the
multipoles obeying | < (10 — Ndec)/Ndec ~ 50, seen at an angle § = 7/l of the order of a few
degrees or more, are determined by the perturbations in the super—Hubble regime.
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Figure 5.7: (Top:) Transfer functions that are important for the calculation of
the temperature spectrum Cj, evaluated at decoupling and plotted as a function
of k. The vertical lines show the & modes whose wavelength is equal to the
Hubble radius or the sound horizon. (Middle:) square of the transfer function
[©0 + v], which gives the Sachs—Wolfe (SW) contribution, and [0y /k] (divided
arbitrarily by two for better readability), which gives approximately the Doppler
contribution. (Bottom:) Temperature spectrum C; plotted as a function of
1/(no — Mdec), and contribution of the SW, early and late ISW, and Doppler
spectra. Obtained with CLASS (class-code.net).
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[i(s‘y +w](ndecvlg) (_%+1) ¢(77dec,E) 1
[@0 + ¢](ndec,k) = = = = = = - (5.70)
R(ninia k) §7/)(77dec> k) 5
This calculation has a striking physical interpretation. The contributions of the
two terms ©g and 1 are of opposite sign, because when photons leave an over-
density on the last scattering surface (with a high temperature), they have to
climb a gravitational potential well and lose energy (which lowers their temper-
ature), or vice-versa: this is the Sachs-Wolfe effect. But in the equation (5.70),
we see that the second effect prevails, since in absolute value 1 > % So the hot
spots on the last scattering surface are perceived by the observer as cold spots:
on large angular scales, the CMB temperature map shows a negative picture of
the last scattering surface. (On small scales, it is the opposite, since in that case
Y(k,Naec) ~ 0. Then, the intrinsic temperature fluctuation does not receive a
Sachs-Wolfe correction, and the small hot spots on the map also correspond to
small hot spots on the last scattering surface.)
We can now calculate the C) spectrum given by this contribution using
equation (5.51). Parameterising the primordial spectrum by a power law as in
equations (4.73, 4.86), we obtain:

L[k AL (RN, A fdr 2\,
Cl =47 ?275 (k*> Jl (k(??()—'r]dec)) = 47'('% ? <x*> Wi (l'), (571)

where we have made a change of variable from k to @ = k(19 — dec), and defined
ZTx = ks (0 —1Ndec)- When the spectrum is exactly scale invariant, ng = 1, we can
use the exact formula [ dza™'j;(x)* = [21(1+1)]~! and get a simple solution,

_ 27mAs
C25l(14+1)

Consequently, the quantity [(I + 1)C; is constant. The case of scale-invariant
primordial fluctuations corresponds to Px (k) being constant in Fourier space,
and (14 1)C; being constant in multipole space. For this reason, when showing
the CMB spectrum on a figure, it is customary to plot {(l + 1)C;.

When ng # 1, there is also an analytical solution involving the Euler function
I'(xz). We will not give it here: it is enough to know that [(l 4+ 1)C; then
depends slightly on . With ng > 1 (spectrum Px (k) larger for large k or small
wavelengths, called a “red spectrum”), the I(I 4+ 1)C is larger for large | or
small angles. With ngy < 1 (a “blue spectrum”), it is the opposite. Therefore,
the SW contribution to I(I + 1)C; simply reflects the shape of the primordial
dimensionless spectrum Pr (k).

We will see that at these scales, the other contributions (Doppler and ISW)
are weaker (see also the graph at the bottom of the figure 5.7). This quasi-
horizontal branch of the CMB spectrum is therefore called the Sachs-Wolfe
plateau. A low angular resolution experiment like COBE-DMR (1992-94) could
only see this region of the spectrum, but this was sufficient to obtain an approx-
imate measurement of A and ng, and to obtain a first confirmation of one of
the predictions of inflation: ng ~ 1.

C (5.72)

Sachs—Wolfe (SW) contribution: acoustic peaks

The previous calculation shows that if the fluctuations remained constant and
nearly scale-invariant at all epochs and wavelengths (and not only in the super-
Hubble regime), the (I + 1)C; spectrum would be nearly flat. But physical
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phenomena occurring at sub-Hubble scales modulate the fluctuations. These
modulations are reflected in the CMB spectrum.

In figure 5.7, the upper plot shows the transfer function [@¢ +v](,.. k), cal-
culated by an Einstein—Boltzmann code. This function is simply a horizontal
cut of the lower plot of figure 5.5 at time 7gec. Its behaviour is in agreement with
the discussion in section 5.4.1. The modes that are still in the super—-Hubble
regime at the time of decoupling simply reflect the initial adiabatic conditions
(see equation (5.70)). Smaller wavelengths keep the imprint of acoustic oscil-
lations, for which we have seen an approximate expression in equation (5.68).
At the time of decoupling, some modes have oscillated for half a period (first
negative peak of the transfer function), or one period (second positive peak), or
one and a half period (third negative peak), etc. The oscillations are centred
on a mean value —RY(Nqec, k) which tends to zero in the sub—Hubble limit.
The amplitude of the oscillations relative to this mean value increases between
the first and second peaks, because the gravitational boost effect mentioned at
the end of the section 5.4.1 is weaker for modes that cross the Hubble radius
during matter domination, which is the case for the modes contributing to the
first peak (such as the k1 mode in figure 5.6). The amplitude is then roughly
constant for the next three peaks, and then decreases due to the exponential
cut-off exp(—(k/kq)?) caused by diffusion damping 5.4.1.

The spectrum Cj involves the square of the function [©g + ¥](,,...k) (see
(5.51)). This quantity appears on the middle plot of figure 5.7. We can ob-
serve the consequence of the shift in the mean value of the oscillations by
—RY(Ndec, k). As long as the transfer function —R ¢ (ngec, k) is non-negligible,
i.e. for the first five or six peaks, this shift makes the square of the negative
peaks higher than the square of the positive peaks. We therefore have an al-
ternation of large peaks (odd peaks: first, third, etc.) and small peaks (even
peaks: second, fourth). Beyond, the effect of this shift is negligible, and the
exponential cut-off in exp(—2(k/kq)?) takes over: the amplitude of the peaks
decreases monotonically.

Finally, according to the discussion in section 5.3.3, the ClSW contribution
of the SW term to the temperature spectrum should look like [©¢ + ¢]%ndec,k)’
applying the k +— | = k(19 —Ndec) mapping. To illustrate this, the graph at the
bottom of figure 5.7 shows CPW not as a function of I but of /(179 —7dec). In this
way, we can effectively identify the same behaviour in the functions [©+1]? and
Clsw, with the same structures at the same positions: a Sachs—Wolfe plateau,
some peaks called the acoustic peaks, and an exponential cut-off.'°

Equation (5.68) gives us an analytical approximation for the position of
the peaks of the CZSW spectrum in mutipole space: as the extrema of [©¢ +
U (ngeerk) ~ cos(k [)4 codi]) are given by k [ cgdij = N, with N = 1,2,3, ...,
the peaks correspond to

Mo~ e _ ;. da(Mace)

In ~ k(10 — Ndee) = NT—2=

= N=n , 5.73
0 csdi ds (ndec) ( )

where d,(n) is the angular diameter (5.58) and ds(n) the sound horizon (5.66).
By substituting ds(ndec) with Aq(ndec), we could get a similar estimate of the

10The mapping k +— | = k(no — Mdec) would only be perfect if we only considered the
main harmonic and used the instantaneous decoupling approximation; but the exact result
takes into account the secondary harmonics and the progressivity of the decoupling, since
the integral over 7 in equation (5.56) involves all the peaks of the Bessel functions as well as
the width of the visibility function g(n). This explains why the CZSW curve has a smoother
appearance than the [@g + ]2 curve: the zeros of the transfer function become minima in
the spectrum, and the relative amplitude of the peaks is somewhat different.
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d/\

last
scattering
surface

Figure 5.8: Two points on the last scattering surface separated by a distance
2ds(n4ec) are statistically correlated due to an identical contribution of the sound
waves emitted at the midpoint in the primordial universe in two opposite direc-
tions.

multipole {4 at which we observe an exponential cut-off in the enveloppe of the
acoustic peaks, well approximated by exp(—2(1/14)?).

We have described the acoustic peaks in Fourier space (as a function of k)
and then in multipole space (as a function of [). To get a better intuition, it is
useful to think also of their physical origin in real space, sketched in figure 5.8.
Imagine two points on the last scattering surface separated by a physical dis-
tance 2ds(ngec). These two points must have received the contribution of sound
waves emitted in the primordial universe at the midpoint. Therefore, they both
carry information about the initial density fluctuation at the same point: they
are statistically correlated. If we define 8 = ds(dec)/da(Ndec), such a pair of
points must be seen today under a separation angle 26s. If we measured the

angular correlation function (g(ﬁ)%(ﬁ’ )) on the last scattering surface, we

should see a peak correspondin:% to this correlation when the two directions 7
and 7' are separated by such an angle 26, that is, for 7 - 7/ = cos26;. Thus,
in multipole space, the spectrum C; must have a peak at the corresponding
mutipole, Iy = 7/, which corresponds to the main harmonic of the correla-
tion'!. There should also be other peaks at Iy = N/, which correspond to

the secondary harmonics'?.

11'When we decompose the map into mutipoles, each a;,, corresponds to configurations
where an adjacent maximum and minimum are separated by an angle 7/l. Therefore, two
adjacent maxima or minima are separated by an angle 27/l. For example, in the case of the
quadruple, | = 2, two maxima are separated by an angle 7. If any pair of points separated
by 265 is statistically correlated, these two points can typically correspond to two maxima or
two minima. The correlation will therefore increase the absolute value of the coefficient a;, ,
with 27 /l; = 26, i.e. I3 = 7/60s. This correlation should therefore produce a peak in the C}
spectrum for this mutipole.

121n the multipoles Iy = NI with N = 2,3, ..., we also find maxima or minima separated
by 260s. Correlation must therefore also contribute to the value of these multipoles, and to
other regularly spaced peaks in the C; spectrum. These are the harmonics in multipole space
of the correlation length 2ds in real space.
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Doppler contribution

Returning to equation (5.60, the second contribution to the ©;(n, k) transfer
function comes from the Doppler term (the physical origin of which is explained
in section 5.2.3). The CZD °PPler o ontribution can be roughly deduced from the
transfer function [0y, /k] evaluated at the time of decoupling and with a corre-
spondence!® k <— | = k(1o — gec). According to the continuity equation (3.24
applied to photons, 6}, is given mainly by the derivative of dy, i.e. by 40( in the
tight coupling approximation. Figure 5.6 shows indeed that 6 (7, k) oscillates as
a function of 1, with a phase shift of ~ 7 with respect to ©g. We observe again
this behaviour for 0}, (7dec, k) as a function of k in figure 5.7 (upper plot). The
middle plot shows the square [01,/k]? at 1 = 74ee, and the bottom plot proves
that this square does indeed give the approximate shape'* of C’lD oppler

In summary, the Doppler effect does not contribute to the Sachs-Wolfe
plateau, but, at the angular scales where acoustic peaks are observed, it con-
tributes to the spectrum, with a phase shift such that the maxima of ClD oppler
almost coincide with the minima of CPW. This shown in figure 5.7 (lower plot).

Integrated Sachs—Wolfe (ISW) contribution

We recall that the ISW contribution to the transfer function (0;(no, k) is given
by an integral over (¢’ + ¢') between the instant of decoupling and the present
day (see equation (5.60) and its physical interpretation at the end of the sec-
tion 5.2.3). Neglecting the role of the anisotropic pressure of photons and elec-
trons, we can write (¢’ + ¢’) =~ 2¢'. However, the upper plot of figure 5.5 shows
that v is constant with respect to time for most values of k and 7 after decou-
pling. Therefore, the integrated Sachs—Wolfe effect only receives contributions
from very localised regions in the space (17 > 7Ndgec, k). In figure 5.5, these regions
are those where a vertical gradient for ¢ is observed after decoupling. It can be
seen immediately that there are only two regions that meet these criteria.

The first region is located immediately after decoupling, for modes crossing
the Hubble radius. The physical interpretation is simple. We know that dur-
ing radiation domination, the metric perturbations decrease in the sub-Hubble
regime, while during matter domination they remain constant. Decoupling oc-
curs at the beginning of matter domination, but the transition between the
two eras is not instantaneous. Consequently, for metric fluctuations, the modes
that cross the Hubble radius around decoupling are still subject to damping.
These modes are precisely those that contribute to the first peak. The Cll SW
spectrum is therefore non-zero in the vicinity of this peak, as confirmed by the
lower plot of Figure 5.7. Since this effect comes from the evolution of the metric
fluctuations at times close to decoupling, it is called the early ISW effect.

The second region corresponds to the domination of the cosmological con-
stant. Using Einstein’s equations, it can be shown that the metric fluctuations
decrease at all scales during this period. However, for modes that have crossed
the Hubble radius during radiation domination, the metric fluctuations are al-
ready erased. Therefore, the variation of 1) ~ ¢ during the domination of the
cosmological constant is only significant for long wavelengths that have crossed
the Hubble radius during matter domination. This variation can be seen in the
lower left end of the upper plot in Figure 5.5, where the red tone lightens slightly.

13Indeed, the derivative Jj(xz) has a main peak slightly shifted with respect to j;(z), but
always close to | ~ .

14The differences arise from the fact that decoupling is not instantaneous, and from convo-
lution with the Bessel function j;(x) instead of a Dirac function.
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This region generates a late ISW effect that contributes to the smaller mutipoles,
as confirmed by figure 5.7. The late ISW lifts the Sachs-Wolfe plateau.

In the lower plot of figure 5.7, it is obvious that the total spectrum is
slightly greater than the sum of the individual SW, Doppler, early ISW and
late ISW contributions. The difference comes from the SW xDoppler, SW xISW
and Doppler xISW cross terms, which we will not describe here for the sake of
brevity.

Reionisation effect

In order to understand the SW, Doppler and ISW contributions more simply, we
have not used the full expression (5.56) of the photon transfer function ©;(no, k),
but its approximate form (5.60), derived from the instantaneous decoupling
approximation. Concretely, we have replaced the visibility function g(n) by
a Dirac function 6(n — 7dqec). In doing so, we have not only neglected the
progressivity of decoupling, corresponding to the width of the peak of g(n) for
1 ™~ Ngec, but also the effect of reionisation, corresponding to the presence of a
second peak around 1 =~ 7o, visible in figure 5.2 (bottom left). To estimate
this second effect, we can adopt a new approximation,

g(n) = e T°8(n — Naec) + (L — €7 7)1 — Nreio) (5.74)

always normalized correctly to fom’ g(n) dn = 1, and respecting the fact that a
fraction e~ "o of the photons had its last interaction at the time of recombina-
tion, and (1 — e~ i) at the time of reionisation. The photon transfer function
then decomposes into two terms:

e the first peak generates the contribution of recombination, already de-
scribed in the previous sections, but with the addition of a global nor-
malisation factor e” e < 1. The C} spectrum is thus renormalized by
e~ 2meio Physically, this corresponds to the fact that the photons that
re-interact at the time of reionisation are scattered in random directions:
part of the coherence of the anisotropies coming from the last scattering
surface is then lost.

e the second peak generates the contribution of reionisation, corresponding
to correlations in the temperature distribution of photons that re-scattered
at the time of reionisation. This contribution is very different from the
one from recombination for two reasons. Firstly, it comes from another
virtual last scattering surface, which is closer to us. Secondly, at the time
of reionisation, the photon and baryon fluctuations are strongly attenuated
on sub-Hubble scales, and only the super-Hubble scales (or the scales at
the boundary between the two regimes) contribute to the photon transfer
function. The contribution of reionisation is therefore only significant at
very large angular scales, of the order of [ < 50. Further study would show
that in the C) temperature spectrum, the reionisation contribution almost
perfectly compensates the suppression of the recombination contribution
by a factor e=27reio,

Therefore, in the end, the effect of reionisation on the Cj spectrum is equivalent
to a multiplication by a progressive step-like function, equal to 1 for small [
(approximately [ < 14) and to e~27ric for large .
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Effect of parameters on the temperature spectrum

The dependence of the C; spectrum on a number of parameters depends of course
on the cosmological model considered. In this chapter, for the sake of simplicity,
we restrict ourselves exclusively to the minimal ACDM model, containing only
photons, baryons, electrons, cold dark matter, a cosmological constant, and
neutrinos considered as an ultra-relativistic (of negligible mass), whose effects
on photon perturbations we will neglect. For the effects of neutrinos (with or
without mass) and of the relic density of radiation, the reader may refer to
reference [6]. The effects of other parameters, such as the spatial curvature
of the Friedmann-Lemaitre metric or the parameters describing more complex
models for the primordial spectrum, dark matter, dark energy, modified laws of
gravity on large scales, etc., are described in the specialised literature.

The total density of ultra-relativistic particles w, is not an unknown in the
standard cosmological model, it is deduced from the current CMB temperature
The minimal ACDM model has therefore only six independent parameters. We
will choose here the following parameter basis:

{wh, W, Q4 As, Ns, Treio } (5.75)

where wy, is the density of baryons and wy, the total density of non-relativistic
particles. The first three parameters are sufficient to fully characterise the
evolution of the background quantities: the dark matter density is given by
wm — wp, and the reduced Hubble parameter by h = /(wm + wy)/(1 — Q).
The parameters A and ng characterise the primordial spectrum Pgr, and the
reionisation optical depth 7., is sufficient to estimate the impact of reionisation.

The previous sections have proved that the spectrum C; depends on a cer-
tain number of characteristic quantities, whose value can be deduced from the
parameters of the basis (5.75):

[C1] The angular scale of the acoustic peaks 05 is given by (see (5.73):

MNdec s d
g, = T — Golaee) _ Jo™ eslm)dn (5.76)
l da(Mdec) dn

Tldec

In the basis (5.75), this angle depends on {w,, wm, 24}

[C2] The angular scale of diffusion damping 64 obeys:

dec T1— 1/2
_ Aa(dec) _ [Jo"* L5 (m)dn] . (5.77)
da(ndec) o d77

Tdec

04

~13

Comparing this expression with that of 65, we see that the denominator is identi-
cal, and therefore always a function of wy, and 4. Since the Thomson scattering
rate depends almost only of wy, in both cases the numerator is a function of
wp, and wy,, but with a totally different expression. A variation in one of these
parameters therefore has a different impact on the scale of the peaks and on
that of the exponential cut-off.

[C3] The baryon-photon ratio at decoupling R|4ec is given by:

3 Pbldec 3
3pvlace _ 3y (5.78)

R d = — =
‘ “ 4p'~/|dec 4w,
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The study of recombination shows that zqe. depends very weakly (logarithmi-
cally) on the cosmological parameters: thus R|qe. depends mainly on w,. We
saw in section 5.4.2 that this ratio, which determines the impact of gravity
forces relative to pressure forces in the photon-electron-baryon fluid at the time
of decoupling, controls the asymmetry between the amplitude of the first even
and odd peaks.

[C4] The amount of expansion between the time of radiation/matter
equality and that of decoupling, adec/@eq, depends on:'®

Qdec 1+ Zeq Wm
acq 1 + Zdec Wr(]- + chc) -

(5.80)

With the parameters w, and zge. (approximately) fixed, this ratio depends
mainly on wy,. It controls two effects. First, the early ISW effect of section 5.4.2
is greater if the perturbations of the metric are not yet fully stabilised at the
time of decoupling, and hence, if equality takes place closer to decoupling. Sec-
ond, there is an interval in k-space such that, if the period between equality and
decoupling is long, the modes cross the Hubble radius during matter domination
(which starts earlier) and experience a weak gravitational boost, whereas if this
period is short, the modes cross the Hubble radius during radiation domination
(which ends later) and experience a strong gravitational boost (see section 5.4.2
and figure 5.7). These two effects go in the same direction: a longer period be-
tween equality and decoupling (or more precisely, a larger ratio aqec/deq) leads
to a decrease in the amplitude of the first and second peaks.

[C5] The amount of expansion during the domination of the cosmo-
logical constant ag/a, depends only on Q4.!¢ This ratio determines the
magnitude of the late ISW contribution (see section 5.4.2).

So far, we have discussed five distinct effects on the temperature spectrum Cj,
governed by only three parameters {wp,wm,2a}. Thus, we expect that, by
measuring the shape of the C; experimentally, we can infer the value of these
three parameters. Besides, there are three other independent effects on the Cj’s,
controlled by three additional parameters in our basis (5.75):

[C6] The global amplitude of the primordial spectrum Ag appears as a
multiplicative factor in the expression of the temperature spectrum (5.51). An
increase in Ag therefore increases the overall amplitude of the C}’s.

[C7] The spectral index ng controls the overall slope of the Cj, as discussed
in section 5.4.2. For instance, an index ng > 1 (blue spectrum) amplifies the
Cy’s at large [ (beyond the pivot scale), and attenuates it below.

[C8] The reionisation optical depth Tyeio has an effect explained in the

15The redshift zeq of radiation/matter equality is deduced from

4 3
a a a w
pr=Pm=‘Wr( 0) :“‘“( O) = ldzeq=— =" (5.79)
Qeq Qeq Qeq Wr

16The redshift z of matter/A equality is deduced from

aop 3 ao
Pm =pA = Om [ — =QpA = 142p=—=
ap ap (

1/3
15_27?2/\)} . (5.81)
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Figure 5.9: Effect on the temperature spectrum Cj of varying one of the ACDM
parameters in the basis (5.75), all other parameters being fixed. The black spec-
trum is a reference spectrum. The increasing intensity of red corresponds to in-
creasing values of the free parameter. Obtained with CLASS (class-code.net).

section 5.4.2. An increase in Tyeio (with A fixed) lowers the normalisation of
the C}’s, except for the smallest multipoles [ < 14 which are approximately
invariant.

The effect of varying each parameter in the basis (5.75) is summarised in fig-
ure 5.9. Each effect can be understood by a careful reasoning based on the
previous bullets.

Since in the ACDM model, all six parameters have distinct and independent
effects, it is theoretically possible to measure them individually from an accurate
observation of the temperature map. This conclusion is correct despite the role
of cosmic variance, which is important at large angular scales and limits the
accuracy with which we measure, for example, the late ISW and reionisation
effects.

The case of extended cosmological models is beyond the scope of this chapter.
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It is a priori more difficult to constrain models containing more free parameters.
Fortunately, many of these additional parameters describe physical ingredients
that have other independent effects on the CMB spectrum. This is the case,
for example, for the relic radiation density, the total neutrino mass, or several
parameters describing non-minimal models of inflation, dark matter and dark
energy. The CMB temperature spectrum is therefore a treasure trove of infor-
mation about the physics that affects — or could possibly affect — the evolution
of our universe. This justifies its nickname of Rosetta Stone of the universe.

5.4.3 Overview of CMB polarisation

The CMB can be described at all times as a superposition of electromagnetic
waves, each with its own frequency, direction of propagation and polarisation
plane. Assuming that the photons were in thermal equilibrium before decou-
pling, and considering a given point and direction of propagation, the superpo-
sition of all frequencies and polarisation planes produces a blackbody spectrum
of zero total polarisation, because the polarisation planes are isotropically dis-
tributed and their average vanishes.

Around each electron, photons are deflected by Thomson scattering. The
conservation of the electric field implies that photons deflected by 90° in their
own incident plane of polarisation cannot have a transmitted polarisation. Con-
sider a stream of photons coming from a given direction with zero average polari-
sation. When this stream encounters an electron, the polarisation is transmitted
completely for photons deflected by an angle close to zero, but partially for pho-
tons deflected by a right angle. Therefore, Thomson scattering is able to induce
a net polarisation in some directions. However, as long as the photon-electron-
baryon fluid is strongly coupled, each electron perceives a totally isotropic inci-
dent photon flux. So all these effects cancel out, and the average polarisation
of the transmitted photons in each direction remains zero. On the other hand,
as they approach decoupling, the electrons perceive an anisotropic photon flux,
which first develops a quadrupole, then an octopole, and so on, as described
in section 5.3.1. When the incident photon intensity has a quadrupole compo-
nent, then the transmitted flux can acquire a non-zero average polarisation in
some directions. A net polarisation is thus generated in the vicinity of the last
scattering surface at each point and for each direction of propagation.

The CMB photons observed in a given direction originate approximately
from a given point Z, on the last scattering surface. They therefore have a
non-zero mean polarisation, correlated to the quadrupole of the temperature
distribution O2(ngec, Z+). By placing polarised filters in front of the CMB de-
tectors, it is possible to reconstruct the polarisation map of the CMB. It can be
represented in each direction by a stick, whose direction and size indicate the
plane and fraction of polarisation of the photons (relative to their intensity).
Mathematically, this map forms a spin two field on the last scattering sphere,
i.e. a non-oriented vector field. As for a traditional vector field (of spin one),
it is possible to decompose this map into two scalar components (of spin zero):
an E component describing the curl-free part (as for the electric field), and a
B component describing the divergenceless part (as for the magnetic field). Fi-
nally, one can in principle obtain three scalar maps: one for the temperature 7T,
one for the mode F, and one for the mode B. For each of the three maps, we
can perform a spherical harmonic decomposition and calculate a power spec-
trum: we thus obtain three spectra ClT T CFPF and ClBB . Furthermore, we
have seen that polarisation is generated by a temperature quadrupole: there
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Figure 5.10: Solid lines: spectrum of scalar temperature anisotropies C’Z(S)TT
studied in section 5.4.2, and of the E-mode of scalar polarisation anisotropies
CZ(S)EE, presented in section 5.4.3. The spectrum of the scalar B-mode, CI(S)BB,
is always zero. Dashed lines: contribution of the tensor modes to the spectra
Cl(T)TT, C’l(T)EE, CI(T)BB presented in the section 5.4.4, assuming a tensor-
scalar ratio r = 0.1 (the overall amplitude of these spectra is proportional to
7). Dashed lines: contribution to the ClBB spectrum of a noise generated by
gravitational lensing effects, which are not studied in this course. Obtained with
CLASS (class-code.net).

should therefore be statistical correlations between the temperature map and
the polarisation maps, described by cross spectra C{ E and ct B Since the cor-
relation between temperature and polarisation is only partial, the cross spectra
do contain additional information. However, for geometrical (and symmetry)
reasons, it is impossible for the scalar modes of cosmological perturbations —
which are associated with gradients and an irrotational distribution of matter,
see section 3.4 — to generate B modes. In the end, the quantities that can be
measured in the presence of only scalar modes — and neglecting some “secondary
anisotropies” not studied here — are the T and E maps, as well as the associated
spectra C’lTT, CZEE and CITE.

The ClEE and ClTE spectra can be predicted theoretically with the same kind
of calculation as for C'7, but this goes beyond the scope of this lecture (see for
example [7]). In the same way that there are transfer functions ©;(n, k) for tem-
perature anisotropies, there are transfer functions for polarisation anisotropies.
The spectra CFF and CI'F depend on the same cosmological parameters as
C'ZTT, with a lower sensitivity to some quantities (e.g. to 4, because the polar-
isation transfer function involves no Sachs—Wolfe effect) and a higher sensitivity
to others (e.g. to Tyeio, because at the time of reionisation some photons are
scattered again by electrons in a strongly anisotropic environment, which am-
plifies the polarisation spectrum at small angular scales). The shape of CEF is
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shown in figure 5.10. The first peak at [ ~ 5 comes from re-scattering at the
time of reionisation: its amplitude depends directly on 7ye0. The other peaks
come from acoustic oscillations. Their precise position is slightly different in the
temperature and polarisation spectra, because the CZEE spectrum is not influ-
enced by the Doppler and early ISW effects. We will see in section 5.5 that the
CFPE and CI'F spectra have been measured and can be compared with theoret-
ical predictions, which further contributes to the measurement of cosmological
parameters.

5.4.4 Overview of the role of gravitational waves

We have seen in the section 3.4 that the metric g,, includes tensor perturba-
tions that correspond to the two degrees of polarisation of gravitational waves
in each direction and for each frequency. The chapter 4 shows that during in-
flation, quantum fluctuations in the metric can generate tensor perturbations
that remain imprinted in the metric until the present day. These fluctuations
can influence the CMB photons. Indeed, suppose that an observer perceives an
isotropic distribution of the photon temperature. If a gravitational wave passes
through this location, it produces a distortion of spacetime such that the ob-
server will perceive a quadrupole of temperature ©,. Through the Boltzmann
hierarchy, this anisotropy will propagate to all other multipoles. Mathemati-
cally, this effect is described by a new source term in the Boltzmann equation,
involving not only scalar perturbations but also tensor perturbations of the
metric.

The corresponding temperature and polarisation anisotropies can be de-
scribed by spectra CZ(T)XY, where X,Y € {T,E, B}. For tensor perturbations,
there is no symmetry preventing the creation of B modes. These spectra add
up to the scalar spectra CI(S)XY (without statistical correlations between the
two sectors) to form the total observable spectra C;*Y.

The global amplitude of the tensor spectra CI(T)XY depends on the consid-
ered inflationary model. It is generally expressed relative to the amplitude of
the scalar spectra, thanks to the tensor-to-scalar ratio r defined in the equation
(4.88) of chapter 4. Since this parameter is related to the energy scale of infla-
tion, its measurement would provide crucial information to better understand
the primordial universe. Figure 5.10 compares the tensor spectra CZ(T)XY with

the scalar spectra CI(S)XY for a hypothetical value of the parameter r = 0.1. We
will summarise in section 5.5 how the present constraints on the tensor contri-
bution and on the parameter r have been obtained. At the end of section 5.5,
we will also explain why a better measurement of the B modes is essential for a
future detection of the CMB tensor modes and of the energy scale of inflation.

5.5 Observations of the CMB

Current observations

The CMB anisotropies were first detected by the COBE-DMR experiment, on
board the NASA satellite COBE. Since then, many instruments have refined
the COBE-DMR measurements considerably. These include ground-based de-
tectors, balloon-borne instruments, and two other satellites: WMAP (NASA)
and Planck (ESA). Current data on CMB anisotropies are dominated by re-
sults from the Planck satellite, the bulk of which was published in 2018. Planck
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Figure 5.11:  All-sky map of temperature anisotropies (left) and polarisation
(right) obtained by the Planck collaboration. Extracted from Astron. Astro-
phys. 641 (2020) A1 (e-Print: 1807.06205 [astro-ph.CO]). Credits: ESA. The
equator corresponds to the plane of the Milky Way. The region heavily contami-
nated by the foregrounds of our galaxy appears in grey. In the polarisation map,
the colours show the amplitude of the polarisation, and the sticks the plane of
polarisation at each point.

observed the entire sky for four years (2009-2013) and in nine channels (or
frequency ranges) covering the interval from 15 GHz to 1000 GHz. However,
on large angular scales corresponding to [ ~ 50 — 170, the Keck and BICEP2
ground-based telescopes have made more accurate measurements of polarisation
anisotropies than Planck.

The Planck temperature map reveals a dipole of 3362 pK, which allows
us to estimate the velocity of the solar system with respect to the Friedmann
reference frame in which the universe is statistically homogeneous and isotropic:
v = 369.8km.s~!. After subtracting the monopole and the dipole, we obtain the
temperature anisotropy map of figure 5.11 (left). The presence of polarised
detectors also gives a polarisation map (figure 5.11, right).

From the maps, it is possible to measure the temperature spectrum ClT T the
polarisation spectrum CF¥ and CP®, and the cross spectrum C{¥. The con-
straints obtained by Planck and other experiments on these spectra are shown in
figure 5.12. The errors on the CJ7 spectrum are dominated by cosmic variance
up to [ ~ 1600, and then by foreground uncertainties and instrumental noise.
This excellent result leaves little room for improvement in the measurement of
temperature anisotropies in the future. Planck’s errors on the ClE E spectrum are
dominated by cosmic variance only up to I ~ 800, while Keck/BICEP2/Planck’s
errors on the CZBB spectrum are much larger: a much better measurement of
the polarisation is therefore still possible.

Constraints on the minimal ACDM model

The most remarkable result of WMAP and Planck is the fact that it is possible
to satisfactorily fit all data with the minimal ACDM model with six free pa-
rameters. Let us first describe the constraints on these six parameters before
extending the discussion to tests of the ACDM model itself. In the following,
unless otherwise stated, all error bars are standard deviations, corresponding to
a confidence level of 68%.

The following results are based on a simultaneous fit of the TT, TE, EE
spectra (and also, of the spectrum associated to the effect of gravitational lensing
of the last scattering surface, which we do not study in this lecture, and which
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Figure 5.12: Data from Planck, BICEP2/Keck and other experiments on the
temperature spectrum C’lT T on the polarisation spectra CIEE and C’lBB (top),
and on the cross-spectrum C7® (middle). (The bottom spectrum has to do
with gravitational lensing effects not discussed in this course). Extracted from
Astron. Astrophys. 641 (2020) Al (e-Print: 1807.06205 [astro-ph.CO]). For
temperature and polarization, the quantities plotted here are the renormalized
spectra DY related to the spectra C;XY defined in this chapter by DY =
11+ 1)CXYTE/(2m).

increases slightly the sensitivity to some parameters).

e The amplitude and spectral index of the primordial spectrum are
constrained by In(10'°As) = 3.044 4 0.014 and ns = 0.9649 & 0.0042. This
confirms the prediction by inflation of a nearly scale-invariant spectrum (ng = 1).

e The baryon density is given by wp = 0.02237 4+ 0.00015, in remarkable
agreement with the value deduced from the observation of the relative density
of hydrogen, deuterium and helium in the universe and the standard model of
primordial Nucleosynthesis studied in chapter 2, section 2.2.5. This agreement
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between two completely different and independent ways of measuring the same
parameter is one of the most spectacular achievements of modern cosmology.

e The density of cold dark matter is given by w. = 0.1200 + 0.0012. The
CMB alone therefore offers a proof of the existence of dark matter at 1000.
In fact, we have seen in section 5.4.2 that the CMB independently constrains
the density of baryons and of total non-relativistic matter, wy, = wp + w.. Dark
matter is therefore required by the CMB to explain a missing mass phenomenon:
wm > wp. This is a conclusion analogous to the historical argument for dark
matter from the dynamics of galaxies and clusters.

e The fractional density of cosmological constant is 2y = 0.6847+0.0073.
Under the assumption of the ACDM model, the CMB alone implies the existence
of a non-zero cosmological constant (or equivalent dark energy) at 94c, and
conforms the results of the experiments that measure the acceleration of the
expansion of the universe.

e The reionisation optical depth is 7ej, = 0.054440.0073. This is consistent
with the hypothesis of a reionisation around the redshift z ~ 7, suggested by
the analysis of absorption lines in the quasar spectrum.

Beyond the minimal ACDM model

These constraints were obtained after intensive investigations to assess the va-
lidity of the Friedmann-Lemaitre model in general, and the ACDM model in
particular.

e A battery of tests has been carried out to check the assumption of a homo-
geneous and isotropic universe, at least up to the largest scales observed by the
COBE, WMAP and Planck satellites, i.e. up to the diameter of our observable
universe. To a first approximation, isotropy is well established (some cosmolo-
gists are interested in possible anomalies at large scales, but it is very difficult
to establish whether they are statistically significant).

e An assumption of the minimal ACDM model is that the radiation density
is equal to w, = 4.168 x 1075 (equation (2.63)). This assumption can be re-
laxed by introducing a free parameter: the effective neutrino number, N,
whose effects on the CMB are described in [6]. However, the Planck data gives
Neg = 2.99 + 0.34, which is perfectly compatible with the assumption of the
minimal model (Neg ~ 3).

e The minimal ACDM model also assumes that the primordial spectrum is a
power law. Numerous alternatives have been tested without any significant de-
viation from this assumption being detected.

e The minimal ACDM model is based on a Friedmann-Lemaitre metric with
zero spatial curvature. A non-zero curvature can be parameterised by Qi =
1—-Q, — Q. —Qx. A variation of Qi would influence the temperature and
polarisation spectra, mainly via 65, 64 and the late ISW effect. However, the
position of the acoustic peaks is in excellent agreement with the assumption of
zero curvature: Planck gives 2 = —0.011 £ 0.006. The case of a universe with
a slight positive curvature remains possible and interesting, but is not required
by current observations.

e Tests have been carried out to determine whether dynamical dark energy (i.e.,
a slowly time-evolving species with w close to -1 but not necessarily exactly equal
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to -1 at all times) could explain the data better than a plain cosmological con-
stant, but again without positive results.

e Moreover, the CMB spectra are sensitive to the total neutrino mass summed
over the three mass eigenstates, Y m,, mainly due to gravitational lensing of
the temperature and polarisation spectra, but also via 65, 64 and early and late
ISW effects, as explained in [6]. The Planck data impose Y m, < 0.12 eV.

e In principle, tensor modes (i.e. primordial gravitational waves) could have
been detected as a contribution to the temperature spectrum at [ < 100 (see
section 5.4.4 and figure 5.10). The WMAP and Planck data show no such con-
tribution, which rules out the possibility of detecting a non-zero value of the
tensor-to-scalar ratio in the future using the temperature spectrum alone. On
the other hand, detection is still possible using the polarisation spectra, and
in particular with better measurements of C’IBB . Indeed, the spectrum C’IBB
only receives a contribution from the tensor modes. In reality, there is a second
contribution to CPB coming from an effect of gravitational lensing, that we
will not treat in this course; but this second contribution can be disentangled
and removed up to some extent. The best current constraints come from the
combination of the Keck, BICEP2 and Planck experiments. This results in an
upper bound r < 0.05 which has profound implications for inflationary models.



Chapter 6

Large Scale Structure of the
Universe

6.1 Linear matter power spectrum

6.1.1 Definition and range of validity

In chapter 5, the main observable was the CMB temperature map ‘%T(ﬁ), a
two-dimensional function on a sphere. In order to express it as a sum over inde-
pendent modes that can be predicted by the theory, we performed an expansion
in spherical harmonics. Form the theory point of view, the spherical harmonic
coefficients a;,, should be stochastic variables with a Gaussian distribution of
probability, for which we can predict the variance. This led us to the definition
of the CMB power spectrum C; = {|a;,|?). This spectrum is the most impor-
tant quantity for CMB physics, since it can both be predicted theoretically and
measured from observations.

In this chapter, we are interested in the large scale structure of the universe,
described by the density fluctuation of non-relativistic matter (CDM, baryon,
and possibly more in some scenarii),

6pm (t, %)

ot 3) =20

(6.1)

At each time, this three-dimensional function can be expanded in Fourier modes
Om (¢, E) As long as cosmological perturbations undergo a linear evolution, from
the theory point of view, these Fourier modes should be stochastic variables, in-
dependent from each other, and obeying a Gaussian distribution of probability
for which we can predict the variance. This variance is just called the matter
power spectrum Pp,. It is a very important quantity since it can both be mea-
sured from observation and predicted by the theory. Following the definition of
power spectra in 4.3.5, we know that we can define the matter power spectrum
P, as

Pu(t,k) = (|dm(t. B)%) (6.2)

in the case of discretised Fourier modes &, while in the continuous Fourier picture
we would use

(O (t, )%, (£, K)) = Pu(t k) 6(k — k') . (6.3)
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We already discussed the fact that the matter power spectrum depends on
the wavenumber k and not on the full wave-vector k as a consequence of the
statistical isotropy of the Universe in the FLRW model.

Applying linear perturbation theory clearly made sense in the case of CMB
physics: primordial fluctuations are of the order of 10~°, and until the time
of photon decoupling there is no mechanism leading to a significant growth of
the fluctuations that are most important for the CMB (the photon temperature
anisotropy © and the metric fluctuations ¢ and ). However, during matter
domination, we expect gravitational collapse to enhance the non-relativistic
matter fluctuation §,,. Thus, we wonder whether linear perturbation theory
can be applied today to the description of the matter power spectrum, and if
yes, down to which scale.

To answer this question, we must introduce the notion of smoothed density
fluctuations. In the course of this chapter, we will briefly discuss several tech-
niques to measure the density fluctuation J,, and the matter power spectrum
Py They all involve at some point a smoothing over small scales. It means
that we never measure the full field d,,(¢, Z) but only the field d,,, r smoothed
over a given scale R,

5m,R(t7 f) - /d?’jﬂ WR(f/ - f) 5nl(t> ZE’/) ) (64)

where Wr is a smoothing kernel (also called window function or Wiener filter)

over the length R. There are different possible smoothing kernels. A well-
—2

known one is the Gaussian smoothing kernel Wgr(Z) o exp( —%%). If we have

measured a smoothed field é,, r(t,T), we can measure its variance o2, which

only depends on time and on the smoothing length R,
U%%(t) = <|Sm,R(tvf)|2>f . (65)

From the theory point of view, once we have predicted the matter power spec-
trum, we can predict the variance 0%(¢) as an integral over the power spectrum,

&Pk o
7h(0) = [ G WAG) Pult.b) (6.6)
where Wi(K) is the Fourier transform of Wx(#).! Again, there are different
possible expressions for this kernel, but they are all such that Wr (k) is negligible
in the limit kR < 1, to account for the fact that the variance comes from a sum
over wavelengths smaller than R, but does not depend on larger wavelengths.
We expect that small wavelengths cross the Hubble radius earlier, and thus, that
Om(t, k) starts to grow earlier for larger k: small scales experience gravitational

ISince a convolution in real space gives a product in Fourier space, it is trivial to show

that at fixed time t, ~ . . .
om,r (k) = Wg(k) om(k).

The theory point of view consists in replacing averages over & by averages over realisations
of the stochastic theory: this must be correct in a universe where we assumed statistical
homogeneity. Then,
- d3k d3k' " - " - e
2 2 7 —i(k—k
oh = G (@) = [ “sr Wr) WaE) (Gn(®) 51, (F))e FH07.
After replacing (6m (k) 6% (k') by Pm(k) §® (k' —k) and integrating, one gets Eq. (6.6). Note
that one usually chooses isotropic window functions depending only on the modulus of Z and

k.
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collapse earlier than large scales. Therefore, at a given time, it is plausible
that small scales entered the regime of non-linear perturbation theory, while
large scale are still linear. We can thus define a scale of non-linearity Axg such
that 5m(t, Z, R) smoothed over any scale R > Ang is a linearly perturbed field
obeying [0, (t, ¥, R)| < 1 everywhere. Instead, 0, (t, 7, R) smoothed over any
scale R < Axgr should be a non-linear field with |6y, (¢, Z, R)| ~ O(1). This
definition of the non-linearity scale can be done directly at the level of the
variance o2(t, R): this variance should be smaller than one for R > Axgr, and
ANR can be defined as the largest scale such that o2(¢, R) ~ 1 (or 0.1 or a similar
number: this is just a matter of definition).

This is the typical way in which the scale of non-linearity is defined (with
small differences between different conventions). Today, this scale is typically of
the order of ~20 Mpc (to be compared to the typical distance between neigh-
bouring galaxies, ~1 Mpc).

Is it possible to map the large-scale structure of the universe on scales big-
ger than the non-linearity scale? Actually, it is, because the theoretical limit
on the largest scale that we can map is the observable radius of the Universe
Robs, known to be of the order of Ry (tg) = 4000 Mpc. So, in theory, we can
reconstruct a linear density field containing several scales spanning about two
decades, from Apin ~ 20 — 40 Mpc to Apax ~ 4000 Mpec. In practise, it is very
difficult to map the large-scale structure up to Rps, but we do have better and
better maps covering about one decade of linear scales, up to several hundreds
of Mpc.

Moreover, we observe large scale structures in our past-light cone: we map
remote objects that emitted light in the past, at some redshift z > 0. We can
see millions of objects at high redshifts of z = 1, 2, 3, and even more. These
high redshifts correspond to early times at wich the scale of non-linearity was
smaller, and the range of validity of linear perturbation theory was wider.

Thus, being able to predict the linear matter power spectrum is very useful
for several reasons:

e we can directly compare the predicted linear matter power spectrum with
the power spectrum inferred from large-scale structure maps provided that
these maps are smoothed over a scale of the order of 20 Mpc at z = 0,
and even less at high redshift,

e when using a smaller smoothing scale in order to keep more information,
we need to model the non-linear evolution of §,, and predict a non-linear
matter power spectrum. But even for this problem, we need to understand
first the linear matter power spectrum, which plays the role of an initial
condition.

According to linear perturbation theory, 5m(t,E) can be decomposed into
a transfer function times an initial curvature perturbation. Using the discrete
Fourier convention, we can then express the matter power spectrum as:

Paltsk) = {0t F)P) = 6200 8) (R(F)P) (67
2

= (LK) Pr(E) = (0 0) T Pr(h) (63

= 82(t,k) % A, (:) N (6.9)

o 02 (t k) Ay k"1 (6.10)
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where in the last two lines we assumed a standard inflationary model leading to
a power-law primordial spectrum. The fluctuation é,, is defined as a fluctuation
in the density field of non-relativistic matter, that is, in the minimal ACDM
model, of baryons and cold dark matter (denoted respectively with a subscript
‘b’ or ‘c’). Thus, the transfer function §2 (¢, k) can be expanded as:

(Spim: 5pc+5pb :ﬁc 5c+ﬁb 6b

om = — — — (6.11)
Pm Pc + Pb Pc + Pb
_c 5c o 1 QC (SC Oy, 0
_ Peo + Pbo Ob _ 4 0 (6.12)
Pc,0 + Pb,0 Qc + Qb

To understand the matter power spectrum, we can follow the following strategy:

1. Understand semi-analytically the individual behaviour of the transfer func-
tions d.(t, k) and 0y (¢, k).

2. Infer the behaviour of their weighted sum &y, (¢, k).

3. Multiply 2 (¢, k) by the primordial spectrum Pg (k) to infer the behaviour
of the matter power spectrum.

We will follow these steps in the next two subsections.

6.1.2 Theoretical prediction neglecting baryons

For simplicity, we will first work in a Universe containing a negligible baryon
fraction, ), < Q, such that 6,,(¢, k) ~ d.(¢t, k). Thus, we only need to un-
derstand the behaviour of the transfer function d.(t, k) in a universe dominated
first by radiation (photons and neutrinos), then by matter (assumed to be cold
dark matter only) and finally by A (a background component that does not have
spatial fluctuations).

We discussed the evolution of §. (or more generally of the total non-relativistic
fluctuation d,,) superficially at the beginning of section 5.4.1, and in more in de-
tails in one of the last exercise sheets. Let us discuss it explicitely here. By com-
bining the continuity and Euler equation of CDM perturbations, which are really
simple since, for non-relativistic matter, one has w, = ¢5 5z = cqr = 0, = 0,
we can write an equation of motion for d,,, valid at all times and in all regimes
(super- and sub-Hubble):

" g//_ 2 1 ail /
O+ —0 = —k*p+ 30" +3—¢' . (6.13)

The physical interpretation is simple. In an expanding universe, the clustering
rate depends on the expansion rate: expansion increases distances, weakens
gravitational forces, and slows down clustering processes. In the above equation,
this is accounted by the second term, the usual Hubble friction term. On the
right-hand side, the first term represents gravitational forces, and the last two
terms account for dilation and for the local modulation of Hubble friction. There
is no term linear in d.: in general, there should be a term c2k%§. accounting for
pressure forces, but CDM is pressureless.

On super-Hubble scales, we have seen that in the Newtonian gauge, adia-
batic ICs predict constant density fluctuations d.. To be precise, we have seen
in previous exercises that ¢ and . vary on super-Hubble scales only when the
total equation of state of the universe changes (i.e. around the time of radia-
tion/matter equality, and during A domination). Instead, they remain constant
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on those scale during the radiation and matter dominated regime. When writing
the adiabatic ICs during RD, we found the following relation with primordial
curvature fluctuations: &.(n, k) = —R(k). Thus the transfer function normalised
to R = 1 simply reads d.(n, k) = —1.

Deep inside the Hubble radius, one can show that the terms with the deriva-
tive of the metric are always very small compared to those with the Laplacian

of the metric, such that
/
5+ L5l =~k (6.14)
a

During RD, we know that the metric is driven to zero on sub-Hubble scales.
The evolution of J. is thus governed by

a/
o + 562 ~0, (6.15)
with the general solution
be=A+Blnn=A+Bla, (6.16)

where (A, B) or (A, B) are integration constants (remember that a o 7 during
RD). Thus, in this regime, CDM fluctuations grow logarithmically, that is, very
slowly. The reason is that CDM is not yet a self-gravitating fluid experiencing
gravitational collapse. It is only a test fluid in an environment dominated by
relativistic particles (photons, neutrinos). The gravitational potential responds
to the latter particle, which do not cluster. Thus, CDM can fall in potential
wells but cannot contribute to make the potential wells deeper. This is the
fundamental reason for which the growth of §. is so slow at this stage.

During matter domination, we cannot neglect the term —k21) on the rhs of
the evolution equation, but since CDM now dominates gravitational forces, we
can replace it in terms of . using the Poisson equation, as already seen in the
exercises. We obtain:

a' 3 /a\?
M+ =8 —-=(=] 6=0, 6.17
+2a-3 (%) (6.17)
where the second term accounts for the expansion effect and the third term for
gravity forces in the self-gravitating CDM fluid. Using the fact that a oc n?
during MD we get the general solution

be=Cn 3+ Dn?=Ca3?+ Da, (6.18)

where (C, D) or (C, D) are integration constants. The C solution is a decaying
mode that we can neglect, but the D solution is a growing mode: we find that §.
grows linearly with the scale factor during MD on sub-Hubble scale, which is a
very famous and important result that you should remember to understand all
the rest of this chapter. Thus, in this regime, CDM fluctuations grow efficiently,
since now CDM is a self-gravitating fluid experiencing gravitational collapse.
The gravitational potential responds to CDM. CDM accumulates in potential
wells, which makes these wells deeper, so CDM accumulates even more, and
so on and so forth. Note that growth rate of J. does not depend on k (i.e.,
48! /6. = a'/a is independent of k).

Finally, to account for A domination, we just need to write the Poisson
equation more carefully, noticing that gyt is now given by p. + pa. We can
write the result as

3

/ 7\ 2
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Figure 6.1: Qualitative evolution of the transfer function d.(n, k) (normalized
as usual to R(k) = 1 at initial time) in different regimes: during radiation
domination, matter domination, A domination, and on super/sub-Hubble scales.

where Q.(a) is the fraction of the critical density coming from CDM at a given
value of time (or of the scale factor). During A domination, the function a(n) is
more complicated than during MD, and Q. (a) decreases from 1 to approximately
0.7 today. With a bit of work, one can show that J.(n) grows at a smaller rate
than during matter domination (i.e. slower than #?), and that the growth rate
still does not depend on k.

In summary, during radiation domination, d.(n, k) is constant on super-
Hubble scales and grows logarithmically on sub-Hubble scales. A more precise
calculation would show that up to a numerical factor of order one, ¢, is given
on sub-Hubble scales by d.(7, k) = log(kn). During matter domination, d.(n, k)
is still constant on super-Hubble scales, and grows like ? on sub-Hubble scales.
Finally, during A domination, it grows more slowly. These different behaviors
are reported in Fig. 6.1.

This simple discussion is sufficient for understanding the shape of the mat-
ter power spectrum at different time. Like in a cartoon, Fig. 6.2 shows this
shape at four different times: at some initial time when all relevant modes are
super-Hubble; at radiation/matter equality; at matter/A equality; and today.
Let us comment these plots. We first need to define the comoving wavenum-
bers corresponding to wavelengths crossing the Hubble radius at the time of
radiation/matter equality, of matter/A equality, and today:

kcq = achcq s kA = (LAHA 5 kO = aoHO . (620)

We can now review the evolution of P(k) with respect to time, following the
same steps as in Fig. 6.2.

1. At initial time, if we assume a scale-invariant spectrum with ng = 1, we
know from (6.10) that Py (k) oc k3, with an amplitude given by As.

2. During radiation domination, modes grow logarithmically inside the Hub-
ble radius, like log(kn). At equality, super-Hubble modes (keqn < 1) are
still shaped like at initial time, while sub-Hubble modes (keqn > 1) have
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Figure 6.2: Shape of the matter power spectrum P(k) (log-log scale) at four dif-
ferent times: (upper left) when initial conditions are imposed (and all wavenum-
bers are super-Hubble); (upper right) at radiation/matter equality (arrows show
the logarithmic growth during radiation domination); (lower left) at matter/A
equality (lower set of arrows show the growth during matter domination); (lower
right) today (lower set of arrows show the growth during A domination).
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been enhanced by a factor [§c(7eq, k)/c(Minis k)] == [log(kneq)]?. The two
asymptotes of P, (k) are then given by k=3 for k < keq and k~3[log(k)]?
for k> keq.

3. At the end of matter domination, when a = a, modes still outside the
Hubble radius keep being shaped like at initial time. This concerns all
modes with & < kx. Modes k > k.q have been amplified during mat-
ter domination by a factor [6c(na,k)/c(Neq, k)]? = (NA/Neq)*. This factor
does not depend on k and preserves the shape of the power spectrum on
those scales. Finally, intermediate modes entering the Hubble scale dur-
ing matter domination have been amplified by (1a /7:)*, where 7, is their
time of Hubble crossing, given approximately by 7. = 1/k. Hence they
have been amplified by (kna)*. Putting all these informations together,
we see that the spectrum has three branches, scaling respectively like:

o Pp(k) oc k=3 for k < ka,
o Pu(k) xk2k* =k forky <k< eq,
o Py(k) o< k=3(logk)?  for k > keq.

4. During A domination, é.(k,n) grows more slowly than 72, but it still grows
at the same rate for all sub-Hubble modes. So the shape of the power spec-
trum today is unaltered by this stage, and given by:

o Pu(k)oc k™3 for k < ko,
o Pu(k) xk3k* =k forky <k< Keq,
o Py(k) oc k=3(logk)?  for k > keq.

We do not enter into details for the small range of modes obeying ky <
k < kp.

All this discussion was carried under the assumption of a scale-invariant
primordial spectrum. If ng # 1, the above shape should simply be rescaled by
k™1 and the three branches of the power spectrum are given by:

o P(k) ox k=4 for k < ko,
o P(k) o k" for kp < k < keq,
o P(k) < k™~4(logk)? for k > keq.

We will study observational techniques later on. In any case, it is clear that
we cannot see modes with k& < kg wich are of the order of the observable radius
of the universe or bigger. Thus, we expect observations to return a matter power
spectrum with two branches: a large-scale (small-k) branch growing like k™, a
broad peak around k =~ keq, and a small-scale (large-k) branch decreasing like
k™=~%(log k)2. This is exactly what observations tell us.

It is also clear that the matter power spectrum contains information on the
cosmological parameters:

e The overall amplitude should depend on Ay (through the primordial spec-
trum), on the total time that perturbations had to grow, which depends
on 1y Or wy,, and on the duration of A domination, which depends on €24.

e The overall slope of the spectrum on all scales depends on the tilt n,.

e The location of the broad peak depends on keq, that is, on wp,.
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Figure 6.3: Qualitative evolution of the baryon transfer function.

This closes the presentation of the shape of the linear matter power spectrum
Py (no, k) in the limit Qp < Q.. The shape of Py, (n, k) at some slightly earlier
time would be the same with just a slightly different overall amplitude. What
remains to be seen is the impact of a non-negligible baryon fraction on the power
spectrum.

6.1.3 Baryon acoustic oscillations

Let us now take into account the fact that the total non-relativistic matter
density includes a baryonic component, with relative fluctuations d,. We work
in the approximation in which baryons and photons decouple instantaneously
from each other at the time of decoupling ngec.?> The qualitative behaviour of
dp, is summarised in figure 6.3:

e Until decoupling, baryons are tightly coupled to photons, such that

3
op = 157 =30, (6.21)
and we know that ©( experiences damped oscillations within the Hubble

radius, with ©9 — 0 when kn — oco.

e After decoupling, baryons play the role of a decoupled non-relativistic
matter component with the same equations of motion as CDM and the
same solutions (with a growing mode &, x a x n?).

A simple way to explain the role of baryons is to consider that after decoupling,
there is no need to distinguish between baryons and CDM: we can treat them as
a single effective fluid ‘m’ obeying to the equation of motion of non-relativistc
matter fluctuations (6.19),

a

L, a 3 /a\?
O + E5m —5\ 7 Qm(a) 6 =0. (6.22)

The only difference with respect to the discussion of the previous subsection
is that we must take initial conditions for this equation at 74e. given by the

2In a more accurate approach, we would make a subtle distinction between the “photon
decoupling time” 7gec at which the probability that photons interact becomes negligible and
the “baryon drag time” 7)qrag at which the acceleration of baryons is influenced more by
gravitational force stronger than by Thomson interactions. This 74;ag is slightly bigger than
Tdec » but this can be ignored in first approximation.
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Figure 6.5: Impact of baryons on the shape of the matter power spectrum
Pm(noa k)

weighted sum

Qc Qb

Om (Ndec, k) = m c(Ndec, k) + m

(5b ("7de07 k‘) s (6.23)

with 8¢ (Ndec, &) # Ib(Ndec, k). At decoupling, the transfer function (5 (Ndec, k)
and 0 (Ngec, k) are equal to each other on super- =
dicted by adiabatic initial conditions. However, on sub-Hubble scales, d.(ndec, k)
has the shape studied in the previous subsection, with a quadratic increase
6m o< k% for - < k < keq, and a logarithmic increase &y, oc In(kneq) for
k> koq. Instead the baryon fluctuations exhibit the same damped oscillations
as the photons. This behaviour is summarised in figure 6.4. The middle curve
in the plot gives a hint of the shape of the weighted sum &y, (7dec, k)-

At the level of the power spectrum, the impact of baryons can be summarised
by the fact that the initial condition for 6, at n = ngec is no longer given by
the upper curve but by the middle curve in figure 6.4. Thus, all what we said
on the power spectrum remains true, apart from a reduction of power with
superimposed oscillations for k > keq. This is illustrated in figure 6.5. At large

k, the oscillations become gradually negligible and the matter power spectrum
2

The oscillations are a signature of acoustic oscillations in the early universe
(just like the peaks in the CMB spectrum). Given our discussion on acoustic
oscillations in the CMB chapter, in first approximation, these oscillation should
originate from a factor cos[krs(ngec)] ~ cos(kcsngec) in the transfer function of

is just multiplied by the scale-independent factor (
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baryons, where 74(1qec) is the comoving sound horizon at decoupling. They are
called the baryon acoustic oscillations (BAOs). Like in the CMB, the scale of the
first oscillation is set by kgao = 1/7s(1dec), and the other peaks, standing for
the harmonics of the first one, are regularly spaced. The intuitive understanding
of the sound horizon playing the role of a correlation length seen under a given
angle in figure 5.8 applies as well to BAOs as to CMB peaks, but instead of seeing
this correlation on the last scattering surface, we see it in the neighbouring
distribution of matter, that is, on spheres with a radius much smaller than
(770 - ndcc)~

We can now complete our discussion concerning the information on cosmo-
logical parameters contained in the linear matter power spectrum. We still
assume a minimal ACDM model with parameters {wp,wm, Qa, As, ns}. We see
that:

e The overall amplitude depends on {A;,wm, 2} (see previous subsection).

e The overall slope depends on the tilt ng.

The location of the broad peak depends on keq, that is, on wp,.

wp
Wi

The step-like suppression at k > k.q depends on Qb% =1-

e The scale of the BAOs depends on the sound horizon, and thus, like for
the CMB, on {wp, wp, }.

Thus, the measurement of the matter power spectrum contains a lot of infor-
mation complementary to the one in the CMB spectrum. This is even more
true when one considers models beyond ACDM, with a possible signature from
neutrino masses or non-minimal properties of dark matter or dark energy. The
matter power spectrum has the additional advantage that the measurement is
performed in a 3D sphere rather than a 2D surface, so one can probe many
independent Fourier modes and get a very small theoretical error compared to
the cosmic variance of the CMB.

We will see that the full modelling of the matter power spectrum —including
non-linear corrections— is tricky. Thus, observers have developed a technique
to extract information from the measurement of the scale of the BAOs without
actually fitting the full shape of Py (z,k) to the data. Overall, this technique
relies on the following steps:

e take a huge galaxy map of galaxies with billions of objects,
e divide it in shells containing all objects with a redshift z; —e < z < z; +,

e using a smoothing process, build a 2D density map in each shell, d,, (1),
where 7 is a unit vector standing for two angles on a sphere,

e compute the 2-point correlation function £(0) = (dm,i(%)dm,:(R')) such
that cos =7 - 7/,

Given that the matter power spectrum indicates an excess of power on the
comoving wavelength kgao = 1/75(1qec), the 2-point correlation function £(6)
should feature an excess for the angle 0, ; under which we see this comoving
scale, namely,

o ds(zi) _ a(2i) 7s(Mdec)
" da(z) a(z;) ra(zi)

(6.24)
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Figure 6.6: We can measure the angle under which we see the sound horizon at
many different redshifts using the BAO technique in complement to the CMB
spectrum measurement.
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) €5

where 74(2;) = f:o iy = [ % is the comoving angular diameter dis-
tance. Finally, we remember that r4(ngec) = Ond“ ¢s(7) dij can be theoretically
predicted for each given value of the parameters {wy,wn,), and that these pa-
rameters can be inferred from the CMB spectrum or other techniques (e.g. wy,
can be inferred from BBN and primordial elements). Thus, each time that we
measure an angle 0, ; we can infer the comoving angular diameter distance to
the shell,

Ta(zi) _ Ts (ndec)|CMB ) (625)

95,i|galaxy map in shell ¢

By placing the measurements in a diagram of r, versus z;, we build a Hubble
diagram, like when we plot the luminosity distance of supernovae versus redshift.

In summary, on the one hand, using cepheids and supernovae as standard
candles, we can reconstruct the function dr(z) at all redshifts where we see
such candles. On the other hand, using the sound horizon (inferred from the
CMB spectra or another technique) as a standard ruler, we can reconstruct the
function r,(z) at all redshifts where we see BAOs, plus the redshift zqe. of the
CMB (see figure 6.6).

This technique has been widely used. Constraints from BAOs are crucial
to determine parameters like e.g. the curvature scale {2, because it removes
parameter degeneracies from the measurement of the CMB spectrum only. So
far, the constraints on cosmological parameter inferred from BAOs have always
been very consistent with those inferred from the CMB spectra.

6.2 Observing the matter power spectrum

Mainly two big categories of observations:

e Galaxy redshift surveys. Measures the redshift and two angles for each
galaxy. Reconstruction of a smoothed map. Its power spectrum in each
redshift bin is the galaxy power spectrum Py (k, z). It can be related to the
matter power spectrum Py, (k,t) after modelling three non-trivial effects:
non-linear clustering on the smallest scales (with coupling between differ-
ent Fourier modes); light-to-mass biais (independent of k on linear scales,
k-dependent on non-linear scales); redshift-space distorsions (related to
peculiar velocities, which are correlated with density fluctuations).

e Weak lensing surveys. Also called “ cosmic shear survey”. Search
for coherent shearing of galaxy shapes (transforming circular images into
elliptical images). Allows to reconstruct the sum of the two metric fluctu-
ations, ¢+, projected along each line of sight. One can use tomography:
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measure the shearing of galaxies in each z-bin, reconstruct a few 2D maps
of ¢(n,z) + ¥(n, z) probing different redhsift ranges, use of the Poisson
equation to infer 2D maps of the total matter fluctuation diot, ~ 0, in
these ranges, and finally infer the matter power spectrum Py, (k,t). One
still needs to model non-linear clustering on the smallest scales. There is
no issue with bias and redshift-space distorsions for these surveys. How-
ever, another effect needs to be modelled: intrinsic alignments (from tidal
forces).

All in all, these techniques allow to measure Py, (k,t) and thus all the param-
eters of the standard cosmological model excepted 7,00 However, theoretical
predictions are not as easy and accurate as in the CMB case due to the effects
mentioned above:

non-linear clustering,

for galaxy redshift surveys: light-to-mass bias,

for galaxy redshift surveys: redshift space distorsions,
for weak lensing surveys: intrinsic alignment of galaxies,

other effects on very small scale: astrophysical sources like supernovae
explosions can alter the clustering of matter on such scales through the
effect of winds, shock waves, etc. (generic name: “baryonic feedback”).

N-body simulations allow to estimate all these effects, but they are slow and
not always very accurate. On mildly non-linear scales, the first four effects can
be modelled analytically. This is part of a vast theoretical framework called the
“Theory of Large Scale Structure”.



152 CHAPTER 6. LARGE SCALE STRUCTURE OF THE UNIVERSE



Chapter 7

Summary and conclusions

Until 2015: amazing (and even unexpected) level of consensus on the standard
cosmological model, thanks to consistent fits to CMB, BAO, supernovae, BBN
and light element abundances, weak lensing surveys.

Still some deep questions on the nature of DM and DE. For DM: too many
models, no direct detection. For DE: a pure A appears as fine-tuned; alternative
with dynamical DE are usually also fine-tuned and “ad hoc”, with a lack of
opportunities to test models independently from cosmological observations.

Since 2015, problems seem to accumulate, although it could be the case that
everything is solved in the future with a better modelling of systematics:

e nearby calibrated standard candles (distance ladder) measure Hy directly
and independently from the value inferred indirectly from fits to CMB or
BAOs. increasing tension since 10 years (Hubble tension), now approach-
ing 7o.

e weak lensing survey are giving a power spectrum amplitude a bit lower
than that inferred indirectly from fits to the CMB, but this seems to be
going away with the most recent data.

e BAO start to prefer a different “late expansion history” compared to CMB,
maybe even with dynamical DE, but this is only a 3¢ tension.

e there are even a few other minor tensions between some data sets and the
standard model.

In the future, these tensions may disappear and the standard cosmological model
may get even better confirmed. If this is not the case, we may need to find a
slightly different standard model with additional physical ingredients. But all
the simplest ones have been investigated and do not provide better fits compared
to the standard model. This applies to models with:

e spatial curvature;
e a large GW background from inflation;
e a neutrino mass summed over the three species (the three mass eigen-

states) significantly greater than the minimum value compatible with lab-
oratory bounds (> m, > 0.06 eV);
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e dark matter that is not fully cold (because of some large velocity disper-
sion), fully stable (thus, decaying) or fully decoupled (thus, feebly inter-
acting);

e additional relics from a dark sector, contributing to the budget of rela-
tivistic species (increasing Neg) or acting as an additional component of
DM with slightly different properties;

e non-minimal inflation (with several fields, non-adiabatic initial conditions,
a non-power-law primordial power spectrum...);

e large-scale magnetic fields of primordial origin;

e deviations from the Friedmann assumption of homogeneity on very large
scales.

Finally, models of dynamical dark energy or with departures from Einstein’s
gravity theory on very large scales are currently mildly favoured due to the
recent BAO data, but this may still go away in the near future; and it seems
that these models do not help in solving the Hubble tension.
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