#### **Summary of Lecture 1**

Degrees of freedom

Equation of motion

Gravitational potential  $\psi(\eta, \vec{x})$ 

Scale factor distortion  $\phi(\eta, \vec{x})$ 

CDM density/velocity  $\delta_{\rm c}(\eta,\vec{x})$  ,  $\theta_{\rm c}(\eta,\vec{x})$ 

Baryon density/velocity  $\delta_{\rm b}(\eta,\vec{x})$  ,  $\theta_{\rm b}(\eta,\vec{x})$ 

Photons  $f_{\gamma}(\eta, \vec{x}, p, \hat{n})$ 

[ Neutrinos  $f_{\nu}(\eta, \vec{x}, p, \hat{n})$  ]

Einstein 00:  $\phi, \psi \leftrightarrow \delta$ 

Einstein ij:  $(\phi - \psi) \longrightarrow \sigma$ 

continuity  $\delta_{\mathrm{c}}'$  + Euler  $\theta_{\mathrm{c}}'$ 

Continuity  $\delta_{\rm b}'$  + Euler  $\theta_{\rm b}'$  (incl. Thomson)

Boltzmann 
$$\frac{d}{d\eta}f_{\gamma}=$$
 Thomson [Boltzmann  $\frac{d}{d\eta}f_{\nu}=0$ ]





#### **Summary of Lecture 1**

Degrees of freedom

Equation of motion

Gravitational potential  $\psi(\eta, \vec{x})$ 

Scale factor distortion  $\phi(\eta, \vec{x})$ 

CDM density/velocity  $\delta_{\rm c}(\eta,\vec{x})$  ,  $\theta_{\rm c}(\eta,\vec{x})$ 

Baryon density/velocity  $\delta_{\rm b}(\eta,\vec{x})$ ,  $\theta_{\rm b}(\eta,\vec{x})$ 

Photons  $f_{\gamma}(\eta, \vec{x}, p, \hat{n})$   $\Theta(\eta, \vec{x}, \hat{n})$ 

Einstein 00:  $\phi, \psi \leftrightarrow \delta$ 

Einstein ij:  $(\phi - \psi) \longrightarrow \sigma$ 

continuity  $\delta_{\mathrm{c}}'$  + Euler  $\theta_{\mathrm{c}}'$ 

Continuity  $\delta_{\rm b}'$  + Euler  $\theta_{\rm b}'$  (incl. Thomson)

Boltzmann  $\frac{d}{d\eta} = \text{Thomson}$ 

$$\Theta' + \hat{n} \cdot \overrightarrow{\nabla} \Theta - \phi' + \hat{n} \cdot \overrightarrow{\nabla} \psi = -\Gamma_{\gamma} \Big( \hat{n} \cdot (\vec{v}_{\gamma} - \vec{v}_{b}) + \text{higher multipoles} \Big)$$

$$\delta_{\gamma}' + \frac{4}{3}\theta_{\gamma} - 4\phi' = 0$$

Degrees of 
$$\theta_{\gamma}' + k^2 \left( -\frac{1}{4} \delta_{\gamma} + \sigma_{\gamma} \right) - k^2 \psi = \tau' (\theta_{\gamma} - \theta_{\rm b})$$

Gravitational pote 
$$\Theta_l' - \frac{kl}{2l+1}\Theta_{l-1} + \frac{k(l+1)}{2l+1}\Theta_{l+1} = \tau'\Theta_l \quad \forall l \geq 2$$

Scale factor disto.....

Baryon density/velocit  $\Theta_{\ell}(\eta, \vec{k})$   $\Theta_b(\eta, \vec{x})$  Continuity  $\delta_b'$  + Euler  $\theta_b'$  (incl. Thomson)

CDM density/velocity  $\delta_{\rm c}(\eta,\vec{x})$  ,  $\theta_{\rm c}(\eta,\vec{x})$  continuity  $\delta_{\rm c}'$  + Euler  $\theta_{\rm c}'$ 

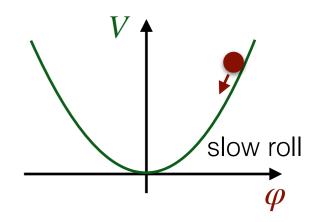
Photons  $f_{\gamma}(\eta, \vec{x}, p, \hat{n})$  Boltzmann  $\frac{d}{d\eta} f_{\gamma} =$  Thomson  $\Theta(\eta, \vec{x}, \hat{n})$ 

$$\Theta' + \hat{n} \cdot \overrightarrow{\nabla} \Theta - \phi' + \hat{n} \cdot \overrightarrow{\nabla} \psi = -\Gamma_{\gamma} \Big( \hat{n} \cdot (\vec{v}_{\gamma} - \vec{v}_{b}) + \text{higher multipoles} \Big)$$

# Stochastic theory of cosmological perturbations



#### **Initial conditions**



Canonical single-field inflation guarantees:

- A. stochastic perturbations with independent Fourier modes
- B. gaussian statistics for each Fourier mode / each d.o.f.
  - ⇒ described by variance(wavenumber) = power spectrum
- C. for each Fourier mode, all d.o.f. related to each other (fully correlated) on super-Hubble scales: "adiabatic initial conditions"

e.g. during RD: 
$$-2\psi = -2\phi = \delta_{\gamma} = \delta_{\nu} = \frac{4}{3}\delta_{b} = \frac{4}{3}\delta_{c} = \text{constant}$$
 Einstein eq.

(Comes from 
$$A(\eta, \vec{x}) = \bar{A}(\eta + \delta \eta(\vec{x})) = \bar{A}(\eta) + \bar{A}'(\eta) \, \delta \eta(\vec{x})$$
)

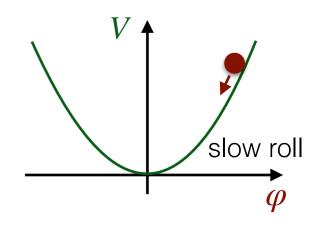
perturbation  $\delta A(\eta, \vec{x})$ 

in adiabatic case





# Primordial power spectrum



Canonical single-field inflation guarantees:

- A. stochastic perturbations with independent Fourier modes
- B. gaussian statistics for each Fourier mode / each d.o.f.
  - ⇒ described by variance(wavenumber) = power spectrum
- C. for each Fourier mode, all d.o.f. related to each other (fully correlated) on super-Hubble scales: "adiabatic initial conditions"
  - $\Rightarrow$  need power spectrum for single degree of freedom, e.g. curvature perturbation  $\mathcal{R}\equiv\phi-\frac{a'}{a}\frac{v_{\mathrm{tot.}}}{a^2}$  in Newt. Gauge
  - $\Rightarrow$  Primordial spectrum:  $\langle \mathcal{R}(\eta_i, \vec{k}) \mathcal{R}^*(\eta_i, \vec{k}') \rangle = \delta_D(\vec{k}' \vec{k}) \ P_{\mathcal{R}}(k)$
- D. Power law, nearly scale-invariant spectrum:  $P_{\mathcal{R}}(k) = \frac{2\pi^2}{k^3} A_s \left(\frac{k}{k_*}\right)^{n_s-1}$





#### **Transfer functions**

For each Fourier mode  $\vec{k}$ :

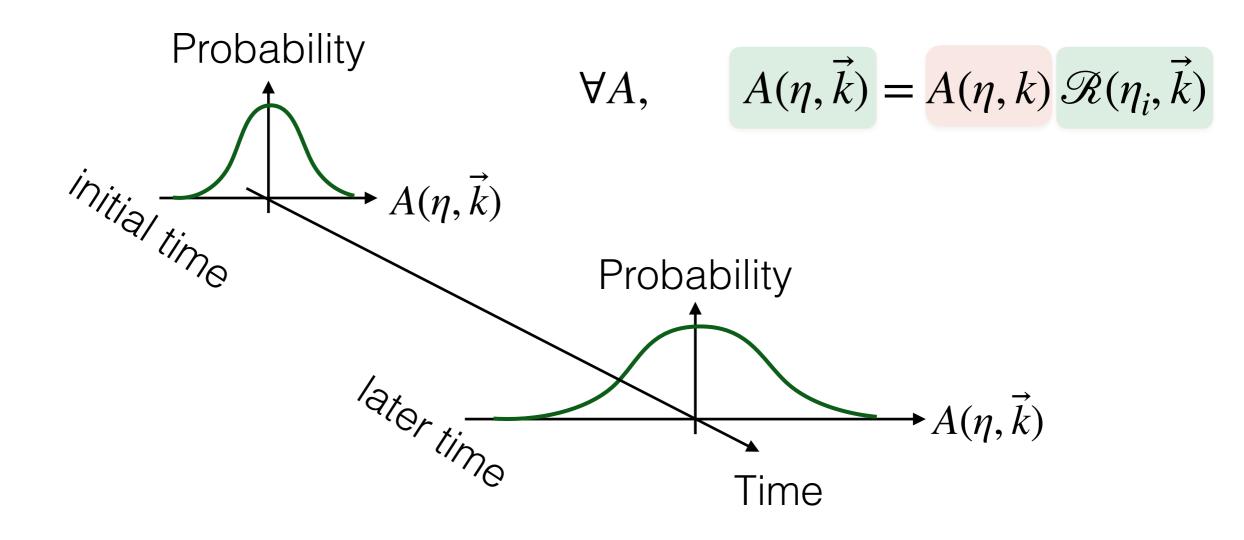
- all perturbations → system of linear coupled differential equations
- adiabatic ICs  $\rightarrow$  single constant of integration  $\mathcal{R}(\eta_{\mathrm{ini}}, \dot{k})$
- $\forall A \in \{\phi, \psi, \delta_X, \theta_X, \Theta_\ell, \dots\}$   $A(\eta, \vec{k}) = T_A(\eta, k) \, \mathcal{R}(\eta_i, \vec{k})$  stochastic Fourier mode

Deterministic solution of e.o.m. normalised to  $\mathcal{R}=1$ 

= transfer function of A

Isotropic background  $\Rightarrow$  depends only on k $\Rightarrow$  denoted later as A(t,k)

## Linear transport of probability



Linearity of solutions ⇒ probability shape always preserved (standard model: Gaussian)

⇒ variance evolves like square of transfer function





#### Power spectrum

Adiabatic initial conditions

⇒ for <u>any</u> perturbation at <u>any</u> time:

$$\langle A(\eta,\vec{k})A^*(\eta,\vec{k}')\rangle = A(\eta,k)A^*(\eta,k') \left\langle \mathcal{R}(\eta_i,\vec{k})\,\mathcal{R}^*(\eta_i,\vec{k}')\right\rangle$$

$$= |A(\eta,k)|^2 P_{\mathcal{R}}(k) \qquad \delta_D(\vec{k}-\vec{k}')$$
transfer function of  $A$ 

power spectrum  $P_A(\eta, k)$  of A at  $\eta$ 

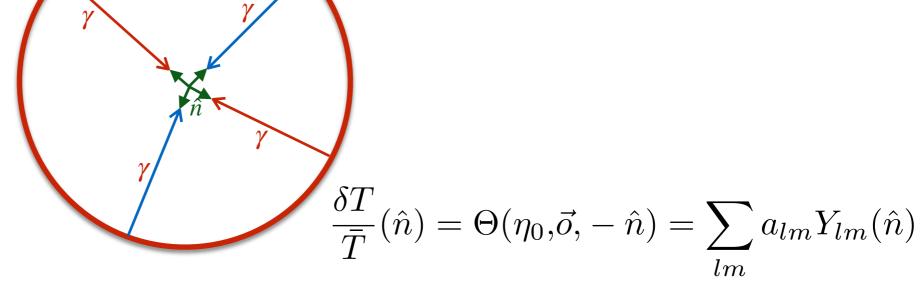
primordial curvature spectrum

Spectrum of temperature anisotropies



## Temperature multipoles

 $g(\eta)$  very peaked at  $\eta_{\mathrm{dec}}$   $\downarrow$  last scattering sphere



inversion + Fourier + Legendre 
$$\Rightarrow a_{lm} = (-i)^l \int \frac{d^3\vec{k}}{2\pi^2} Y_{lm}(\hat{k}) \Theta_l(\eta_0, \vec{k})$$

stochastic, Gaussian ← stochastic, Gaussian



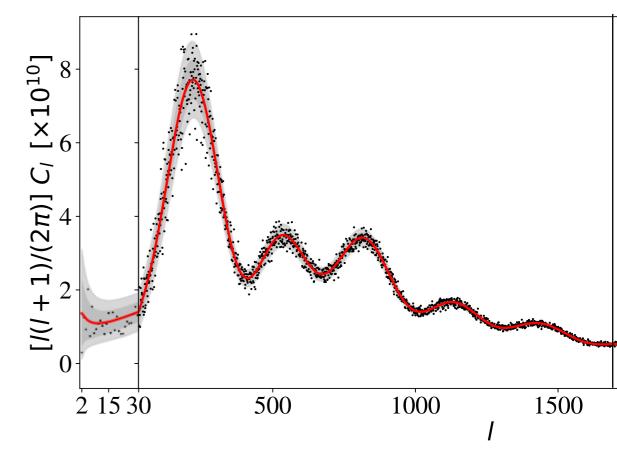
## Temperature power spectrum

Defined as: 
$$C_l = \langle a_{lm} a_{lm}^* \rangle = \frac{2}{\pi} \int dk \, k^2 \Theta_l^2(\eta_0, k) \, P_{\mathcal{R}}(k)$$
 photon primordial transfer spectrum function

theory \(\to\) observations

Estimator: 
$$\hat{C}_l(a_{lm}) \equiv \frac{1}{2l+1} \sum_{-l \leq m \leq l} |a_{lm}|^2$$
  $\sum_{l=1}^{c_l = 1} |a_{lm}|^2$  Cosmic variance:  $\langle (\hat{C}_l - C_l)^2 \rangle = \frac{2}{2l+1} C_l^2$ 

Cosmic variance: 
$$\langle (\hat{C}_l - C_l)^2 
angle = rac{2}{2l+1}C_l^2$$







Physics of temperature anisotropies



# "Line-of-sight" integral in Fourier space

Boltzmann hierarchy ⇒ formal solution Zaldarriaga & Harari <u>astro-ph/9504085</u>:

$$\Theta_l(\eta_0, \overset{(\rightarrow)}{k}) = \int_{\eta_{\rm ini}}^{\eta_0} d\eta \left\{ g\left(\Theta_0 + \psi\right) j_l(k(\eta_0 - \eta)) \right. \\ + g \, \overset{(\rightarrow)}{k^{-1}} \theta_{\rm b} \, j_l'(k(\eta_0 - \eta)) \\ + e^{-\tau} \left(\phi' + \psi'\right) j_l(k(\eta_0 - \eta)) \right\} \\ \text{transfer function with } k$$

structure: 
$$\int d\eta \ f(\eta) \ A(\eta,\vec{k}) \ j_{\ell}(k(\eta_0-\eta))$$

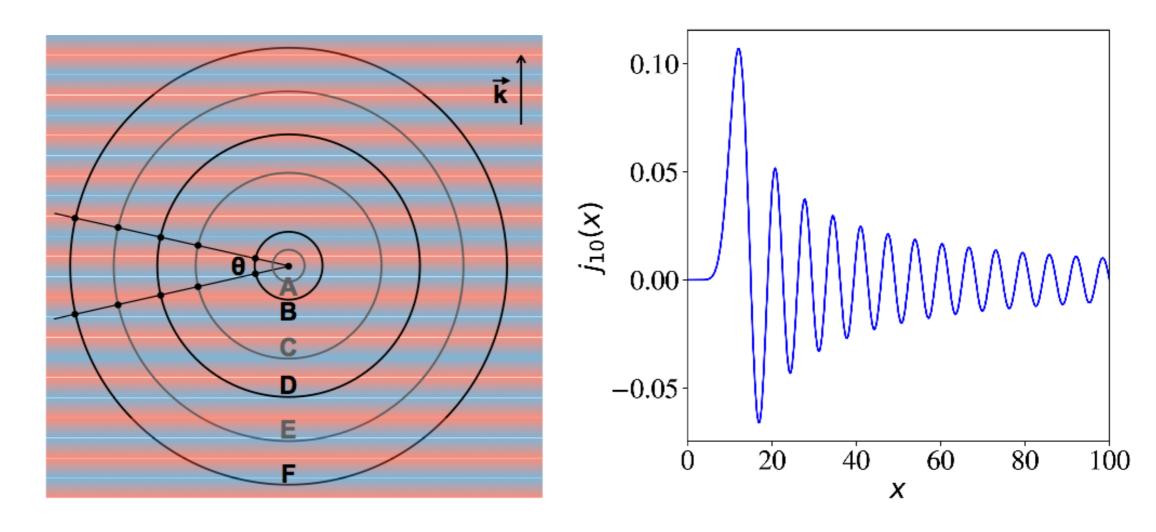
"Physical effects relevant at times described by  $f(\eta)$  imprint CMB photon anisotropies described in Fourier space by  $A(\eta, \vec{k})$ , that project to multipole space according to  $j_{\ell}(k(\eta_0 - \eta))$ "





## **Angular projection of Fourier modes**

Role of  $j_{\ell}(k(\eta_0 - \eta))$ ?



Main contribution: 
$$\theta = \frac{\pi}{l} = \frac{\lambda/2}{d_{\rm a}} = \frac{a(\eta) \pi/k}{a(\eta) (\eta_0 - \eta)} \quad \Leftrightarrow \quad l = k(\eta_0 - \eta)$$

Other contributions: harmonics





#### Sachs-Wolfe term

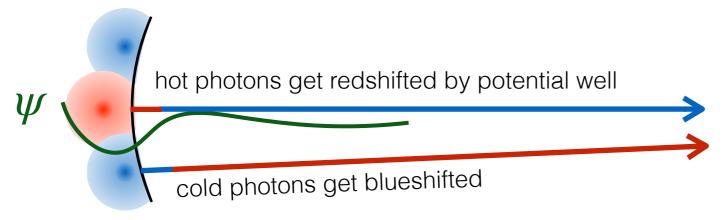
$$\Theta_{l}(\eta_{0}, \vec{k}) = \int_{\eta_{\text{ini}}}^{\eta_{0}} d\eta \left\{ g \left( \Theta_{0} + \psi \right) j_{l}(k(\eta_{0} - \eta)) + g k^{-1} \theta_{\text{b}} j'_{l}(k(\eta_{0} - \eta)) + e^{-\tau} (\phi' + \psi') j_{l}(k(\eta_{0} - \eta)) \right\}$$

Neglecting reionization:  $g(\eta)$  very peaked at  $\eta_{\rm dec}$ 

⇒ effect takes place only on last scattering sphere

$$\Rightarrow$$
 mode  $k$  project to  $\ell = k(\eta_0 - \eta_{\rm dec})$ 

$$\Theta_0(\eta_{\rm dec}, \vec{k}) + \psi(\eta_{\rm dec}, \vec{k})$$
 = intrinsic fluctuation + gravitational Doppler shift



/ super-Hubble modes with adiabatic IC:  $\psi = -2\Theta_0$ , Sachs-Wolfe effect wins, negative picture of last scattering sphere!



