Summary of Lecture 3

$$C_l = \langle a_{lm} a_{lm}^* \rangle = \frac{2}{\pi} \int dk \, k^2 \Theta_l^2(\eta_0, k) \, P_{\mathcal{R}}(k)$$
photon primordial transfer spectrum

Boltzmann hierarchy

$$\delta'_{\gamma} + \frac{4}{3}\theta_{\gamma} - 4\phi' = 0$$

$$\theta'_{\gamma} + k^{2}\left(-\frac{1}{4}\delta_{\gamma} + \sigma_{\gamma}\right) - k^{2}\psi = \tau'(\theta_{\gamma} - \theta_{b})$$

$$\Theta'_{l} - \frac{kl}{2l+1}\Theta_{l-1} + \frac{k(l+1)}{2l+1}\Theta_{l+1} = \tau'\Theta_{l} \quad \forall l \geq 2$$

⇒ line-of-sight integral in Fourier space

function

$$\Theta_{l}(\eta_{0},k) = \int_{\eta_{\text{ini}}}^{\eta_{0}} d\eta \left\{ g \left(\Theta_{0} + \psi \right) j_{l}(k(\eta_{0} - \eta)) + g k^{-1} \theta_{b} j'_{l}(k(\eta_{0} - \eta)) + e^{-\tau} (\phi' + \psi') j_{l}(k(\eta_{0} - \eta)) \right\}$$

Summary of Lecture 3

$$\Theta_{l}(\eta_{0},k) = \int_{\eta_{\mathrm{ini}}}^{\eta_{0}} d\eta \left(\underbrace{g\left(\Theta_{0} + \psi\right)}_{\mathrm{SW}} + \underbrace{\left(g\,k^{-2}\theta_{\mathrm{b}}\right)'}_{\mathrm{Doppler}} + \underbrace{e^{-\tau}\left(\phi' + \psi'\right)}_{\mathrm{ISW}} \right) j_{l}(k(\eta_{0} - \eta))$$

$$\text{VSics - Lescourages}$$

k [h/Mpc] 10^{-2} 10^{-3} 10^{-1} 1.0 Hubble cross. sound hor. cross. Transfer($\eta_{
m dec}$, k) -1.00.4 Transfer(η_{dec} , k)² 5.0 c.0 c.0 0.0

 $- \Theta_0 + \psi$

from transfer to C_{ℓ} :

 $\Theta_0(\eta_{\rm dec},k) + \psi(\eta_{\rm dec},k)$ independent of k would give $l(l+1)C_l = {\rm constant}$

Projection effects

two reasons for smoothing when going from k-space to l-space:

$$\Theta_l(\eta_0, k) = \int_{\eta_{\text{ini}}}^{\eta_0} d\eta \left(g \left(\Theta_0 + \psi \right) + \dots \right) j_l(k(\eta_0 - \eta))$$

$$C_l \equiv \langle |a_{lm}|^2 \rangle = \frac{1}{2\pi^2} \int \frac{dk}{k} \Theta_l^2(\eta_0, k) \mathcal{P}_{\mathcal{R}}(k)$$

-> contribution of wide range of *times* and *wavenumber* to single C_l

1.0 Hubble cross. sound hor. cross Transfer(η_{dec}, k) 0.0 0.7 0.7 0.7 0.7 0.9 -1.00.4 Transfer(η_{dec} , k)² 0.0 0.0 0.1 9.0 $\ell(\ell+1)C_l^{TT}/2\pi~[\times 10^{10}]$ 10^{-3} 10^{-2} 10^{-1}

 $\ell/(\eta_0$ - $\eta_{\rm dec})$ [h/Mpc]

k [h/Mpc] 10⁻²

 10^{-1}

Ψ

 Θ_0

 θ_b

 $\Theta_0 + \psi$

 $-(1+R)\psi$

 $\Theta_0 + \psi$

T + SW

 10^{-3}

from transfer to $C_{\mathcal{C}}$:

 $\Theta_0(\eta_{\rm dec},k) + \psi(\eta_{\rm dec},k)$ independent of k would give $l(l+1)C_l=$ constant

ISW contribution

∧CDM parameter effects on temperature spectrum

Why can we measure 6 ΛCDM parameters independently with CMB?

- Flat FLRW ($\Omega_k = 0$),
- Cosmological constant (w = -1),
- Plain decoupled / stable / cold dark matter,
- Neutrino mass neglected or fixed to minimal value,
- $N_{\rm eff} = 3.044$,
- Power-law primordial spectrum...

Possible basis:
$$\{\omega_b,\omega_m,\Omega_\Lambda,\tau_{\rm reio},A_s,n_s\}$$

$$\omega_{\!\scriptscriptstyle X}=\Omega_{\!\scriptscriptstyle X}\!h^2$$
 parameter of CMB, not of LSS

$$C_l^{XY} = 4\pi \int dk \ k^2 \Delta_l^X(k) \Delta_l^Y(k) \mathcal{P}_{\mathcal{R}}(k) \qquad \mathcal{P}_{\mathcal{R}}(k) = A_s(k_*) \left(\frac{k}{k_*}\right)^{n_s - 1}$$

$$\{\omega_b, \omega_m, \Omega_\Lambda, \tau_{\mathrm{reio}}, A_s, n_s\}$$

$$C_l^{XY} = 4\pi \int dk \ k^2 \Delta_l^X(k) \Delta_l^Y(k) \mathcal{P}_{\mathcal{R}}(k) \qquad \mathcal{P}_{\mathcal{R}}(k) = A_s(k_*) \left(\frac{k}{k_*}\right)^{n_s - 1}$$

$\{\omega_b, \omega_m, \Omega_\Lambda, \tau_{\rm reio}, A_s, n_s\}$

$\{\omega_b, \omega_m, \Omega_\Lambda, \tau_{\rm reio}, A_s, n_s\}$

8 physical governing C₁'s shape

- C1: angular scale of the peaks, θ_s
- C2: gravity/pressure at rec., R_{rec}
- C3: interval between z_{eq} and z_{dec}
- C4: angular scale of damping, θ_d
- C5: global amplitude
- C6: global tilt
- C7: plateau tilting by late ISW
- C8: reionisation steplike suppression

but all tight to 6 parameters in ΛCDM

Extended cosmologies? ... more parameters ... but also more effects ...

1 spin-two map \Leftrightarrow 2 scalar maps (E = gradient field, B = rotation field), but: scalar modes \rightarrow gradients \rightarrow B-mode vanish

