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space [2.33]. It is no longer a true line-of-sight integral, since the quantities are now
expressed in Fourier space. Rather, it uses the possibility to write the Fourier mode !k
of a current multipole Θl(η0,!k) as an integral over time of the same mode !k of other
perturbations, evaluated between photon decoupling and today. By writing the formal
solution of equation [2.33] in integral form and performing Legendre transformations,
we obtain the following expression for the photon transfer function:

Θl(η0,k) =

ˆ η0

ηini

dη ST (η,k) jl(k(η0 − η)) [2.90]

ST (η,k) ≡ g (Θ0 + ψ)︸ ︷︷ ︸
SW

+
(
g k−2θb

)′
︸ ︷︷ ︸

Doppler

+ e−τ (φ′ + ψ′)︸ ︷︷ ︸
ISW

[2.91]

where jl(x) is the spherical Bessel function and ST (η,k) is called the temperature
source function. The formal similarity between this result and the true line-of-sight
integral [2.48] is obvious. Three contributions are again identified. They play the
same role as in section 2.4.2: the intrinsic anisotropy corrected by the SW effect,
the Doppler contribution and the integrated Sachs–Wolfe (ISW) effect. This similarity
is such that equation [2.90] is also called – somewhat abusively – the line-of-sight
integral in Fourier space. This integral can be expressed in other forms by integrations
by parts. All terms that depend on the visibility function g(η) and its derivatives are
zero today and negligible at ηini. Consequently, their integration by part does not
generate edge terms. For example, we also have:

Θl(η0,k) =

ˆ η0

ηini

dη {g (Θ0 + ψ) jl(k(η0 − η))

+ g k−1θb j′l(k(η0 − η))

+ e−τ (φ′ + ψ′) jl(k(η0 − η))
}

[2.92]

Because of equation [2.90], we see that in order to compute the transfer functions
Θl(η0,k) up to an arbitrarily large l, we only need to know the evolution of the
four transfer functions Θ0(η,k), θb(η,k), φ(η,k) and ψ(η,k). Thus, we do not need
a precise solution of the Boltzmann hierarchy of differential equations up to l =
lmax, but only up to l = 2 (because the Einstein equation, necessary to obtain φ
and ψ, involves temperature multipoles up to l = 2). For this, a truncation around
ltrunc. ∼ O(10) is sufficient. The number of equations is thus considerably reduced
compared to the brute force method. This better approach is used by all codes since
CMBFAST (Seljak and Zaldarriaga 1996), such as CAMB (Lewis et al. 2000) or
CLASS (Blas et al. 2011; Lesgourgues 2011). In addition to its numerical efficiency,
it gives a much better analytical intuition of the shape of the final result and of the
dependency of the spectrum on cosmological parameters.
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2.4.1.6. Boltzmann hierarchy

Equation [2.37] can be expanded into multipoles, using the orthogonality property
of Legendre polynomials. After inserting expression [2.35] into the terms Θ and Θ′,
replacing cosα = P1(cosα) and 1 = P0(cosα) and, finally, using the relations [2.36],
we obtain a differential equation for each coefficient of the Legendre expansion:

δ′γ +
4

3
θγ − 4φ′ = 0 [2.38]

θ′γ + k2
(
−1

4
δγ + σγ

)
− k2ψ = τ ′(θγ − θb) [2.39]

Θ′
l −

kl

2l + 1
Θl−1 +

k(l + 1)

2l + 1
Θl+1 = τ ′Θl ∀l ≥ 2 [2.40]

These equations form the Boltzmann hierarchy. The first two equations are
perfectly consistent with the general stress-energy tensor conservation equations
[2.23] and [2.24] with, in addition, the Thomson scattering term. When τ ′ is very
large compared to a′/a, the last equation forces Θl to vanish for l ≥ 2; when τ ′

decreases, this equation shows how couplings between neighboring multipoles allow
for a transfer of perturbation amplitude from l = 0 and l = 1 (namely from δγ and
θγ) to higher order multipoles.

Physically, this corresponds to the fictitious experience of an observer in the
universe. As long as the photons are strongly coupled, the observer perceives
temperature anisotropies only as a dipole corresponding to their velocity relative to
the photon-electron fluid. Then, as time passes and the mean free path increases, the
observer sees photons originating from gradually more distant regions or, more
precisely, from last scattering spheres of increasing radius. These photons show to
the observer an image of these spheres, with inhomogeneities seen under a smaller
and smaller angle, corresponding to a larger and larger multipole moment l.

Equations [2.38]–[2.40] play a central role in the numerical computation of the
CMB spectrum by so-called Einstein–Boltzmann codes: CMBFAST (Seljak and
Zaldarriaga 1996), CAMB (Lewis et al. 2000) or CLASS (Lesgourgues 2011; Blas
et al. 2011). Nevertheless, they will hardly be involved in the qualitative reasoning of
this chapter.

2.4.2. Temperature anisotropy in a given direction

The map of anisotropies visible today (η = η0) from our position in the universe
()x = )o with an appropriate choice of origin), looking in a n̂ direction, corresponds to
the function:
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• two reasons for smoothing when going from k-space to l-space: 
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Because of equation [2.90], we see that in order to compute the transfer functions
Θl(η0,k) up to an arbitrarily large l, we only need to know the evolution of the
four transfer functions Θ0(η,k), θb(η,k), φ(η,k) and ψ(η,k). Thus, we do not need
a precise solution of the Boltzmann hierarchy of differential equations up to l =
lmax, but only up to l = 2 (because the Einstein equation, necessary to obtain φ
and ψ, involves temperature multipoles up to l = 2). For this, a truncation around
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Using the definition of the primordial spectrum and of transfer functions, as well
as equations [2.75] and [2.81], we can derive a simpler expression for this variance22:

〈alma∗l′m′〉 = δKll′δ
K
mm′

[
1

2π2

ˆ
dk

k
Θ2

l (η0,k)PR(k)

]
[2.85]

The quantity in square brackets plays a fundamental role for three reasons:

– it contains all the statistical information about the CMB temperature map, since
it represents the variance of Gaussian random quantities;

– it can be deduced from the observations, since the multipoles alm can be
measured (the multipole will then be denoted aobslm );

– it can be deduced from a theoretical model, since the transfer functions Θl(η0,k)
and the primordial spectrum PR(k) can be computed.

This quantity is therefore the appropriate one for testing cosmological models
against observations of CMB temperature anisotropies. It is called the temperature
anisotropy spectrum Cl:

Cl ≡ 〈|alm|2〉 = 1

2π2

ˆ
dk

k
Θ2

l (η0,k)PR(k) [2.86]

2.5.3.3. Cosmic variance

Let us reconsider the meaning of the symbol 〈...〉 in equation [2.86]. In
cosmological perturbation theory, each alm is considered to be a stochastic number,
and the average is taken over all realizations of the theory, that is, over the CMB
maps of all possible universes corresponding to a given cosmological model.
However, we observe only one map of the CMB, in other words, only one realization
of the theory. As such, we cannot know exactly the average theoretical value Cl. At
best, we can estimate it from each observed realization |aobslm |2. Fortunately, all alm
with fixed l and m comprised in the interval −l ≤ m ≤ l follow the same probability
distribution, namely a Gaussian of variance Cl. Therefore, we have the opportunity to

22. In this calculation, the fact that 〈alma∗
l′m′〉 is zero for l #= l′ or m #= m′ comes from the

orthogonality relation. However, more fundamentally, it is a consequence of the assumption of
statistical homogeneity of the universe, as in the case of Fourier space where the correlation
functions are zero for !k #= !k′. On the other hand, statistical isotropy implies that the term
between square brackets depends only on l and not on m: statistical properties can depend on
the angular scale θ considered, thus on l = 2π/θ, but not on the configuration and orientation
of the axes, thus not on m.
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2.6.1.2. Angle projection

The previous computation involves a spherical Bessel function evaluated in
jl(k(η0 − η)). Mathematically, this function appears in the computation of the
line-of-sight integral when a Legendre transformation of the plane wave e−i!k·!x is
performed. More intuitively, it plays the role of a projection coefficient from Fourier
space to multipole space l. In multipole space, each l corresponds to a configuration
on a sphere such that the angle between a maximum and an adjacent minimum is
given by θ = l/π. Let us try to answer the following question: can a Fourier mode $k
of a given perturbation A(η,$k) contribute to the multipole l of the transfer function
Θl(η0,k)?

To address this, one must bear in mind the diagram on the left of Figure 2.4. If the
mode propagates at time η, the observer perceives a cross-sectional view of this mode
along a sphere whose radius is given by the angular distance da until time η:

da = a(t)

ˆ t0

t

dt

a
= a8′(η)

ˆ η0

η
dη = a(η) (η0 − η) [2.93]

The contribution of this Fourier mode to the multipole l is non-zero if the observer
perceives differences between the values of the perturbation at two points on the sphere
separated by an angle θ = l/π. The perceived contribution is the difference averaged
over all pairs of points separated by θ. The strongest contribution to this average
always comes from pairs of points on the sphere defining a segment parallel to the
wave vector, such as the vertically aligned pairs of points on the left of Figure 2.4(a).

A
B

k

C

F

E

D

θ

a) b)

Figure 2.4. a) Contribution of a Fourier mode A(η,"k) with fixed "k and variable η
to a multipole Θl(η0,k) for a fixed l = π/θ. b) Spherical Bessel function j10(x). For a

color version of this figure, see www.iste.co.uk/taillet/universe.zip



CMB physics - J. Lesgourgues79

2from transfer 
to  :Cℓ

η d
ec

η d
ec

ηdecη0

Θ0(ηdec, k) + ψ(ηdec, k)
independent of  would  

give constant
k

l(l + 1)Cl =



CMB physics - J. Lesgourgues80

ISW contribution

early ISW

late ISW

�(⌧, ~x, n̂) = 4
�T

T̄
(⌧, ~x, n̂)

�l(⌧,~k) = 4⇥l(⌧,~k)

R(⌧(ini),~k)

h�(⌧(ini),~k)

�l(⌧, k) = 4⇥l(⌧, k)

8
<

:

⇥0 = 1
4�� = 1

3�b
3k⇥1 = ✓� = ✓b
⇥l�2 = 0

(1)

⇥00
0 +

R0

1 +R
⇥0

0 + k2c2s⇥0 = �k2

3
 +

R0

1 +R
�0 + �00

c2s =
1

3(1 +R)
, R ⌘ 4⇢̄b

3⇢̄�
/ a

⇥equi.
0 = � 1

3c2s
 = �(1 +R) .

⇥0 = A(1 +R)�1/4 cos

✓
k

Z
cs(⌧)d⌧

◆
� (1 +R) 

�k2� = 4⇡Ga2 �⇢r / a2⇢r �r ⇠ a2�4+0 ⇠ a�2

�k2� = 4⇡Ga2 �⇢m / a2⇢m �m ⇠ a2�3+1 ⇠ constant

⇥l(⌧0, k) =

Z ⌧0

⌧ini

d⌧ {g (⇥0 +  )| {z }
TSW

+
�
g k�2✓b

�0
| {z }

Doppler

+ e�(�0 +  0)| {z }
ISW

} jl(k(⌧0 � ⌧))

�(⌧, k)

1

�(⌧, ~x, n̂) = 4
�T

T̄
(⌧, ~x, n̂)

�l(⌧,~k) = 4⇥l(⌧,~k)

R(⌧(ini),~k)

h�(⌧(ini),~k)

�l(⌧, k) = 4⇥l(⌧, k)

8
<

:

⇥0 = 1
4�� = 1

3�b
3k⇥1 = ✓� = ✓b
⇥l�2 = 0

(1)

⇥00
0 +

R0

1 +R
⇥0

0 + k2c2s⇥0 = �k2

3
 +

R0

1 +R
�0 + �00

c2s =
1

3(1 +R)
, R ⌘ 4⇢̄b

3⇢̄�
/ a

⇥equi.
0 = � 1

3c2s
 = �(1 +R) .

⇥0 = A(1 +R)�1/4 cos

✓
k

Z
cs(⌧)d⌧

◆
� (1 +R) 

�k2� = 4⇡Ga2 �⇢r / a2⇢r �r ⇠ a2�4+0 ⇠ a�2

�k2� = 4⇡Ga2 �⇢m / a2⇢m �m ⇠ a2�3+1 ⇠ constant

⇥l(⌧0, k) =

Z ⌧0

⌧ini

d⌧ {g (⇥0 +  )| {z }
TSW

+
�
g k�2✓b

�0
| {z }

Doppler

+ e�(�0 +  0)| {z }
ISW

} jl(k(⌧0 � ⌧))

�(⌧, k)

1



CMB physics - J. Lesgourgues81

2from transfer 
to  :Cℓ

ηdec

η d
ec

η d
ec

η0



CMB physics - J. Lesgourgues82

2from transfer 
to  :Cℓ

ηdec

η d
ec

η d
ec

η0



CMB physics - J. Lesgourgues83

2from transfer 
to  :Cℓ

ηdec

η d
ec

η d
ec

η0



CMB physics - J. Lesgourgues84

ICTP SAIFR, 23-26.07.2017

CDM parameter effects
on temperature spectrum
Λ



CMB physics - J. Lesgourgues85

Why can we measure 6 ΛCDM parameters 
independently with CMB?

⇥l(⌧0, k) =

Z
⌧0

⌧ini

d⌧ {g (⇥0 +  ) +
�
g k

�2
✓b

�0
+ ISW} jl(k(⌧0 � ⌧))

⇥l(⌧0, k) = {(⇥0 +  )rec + (...✓0b)rec + (...✓b + ISW)rec} jl(k(⌧0 � ⌧rec))

Cl ⇠ (...)
n
(⇥0 +  )2(⌧rec,k=l/(⌧0�⌧rec))

+Doppler + ISW
o2

PR(k)

✓ =
⇡

l
=

�/2

da(zdec)
=

⇡/k

⌧0 � ⌧rec

=) l = k(⌧0 � ⌧rec)

{!b,!m,⌦⇤, ⌧reio, As, ns}

C
XY

l
= 4⇡

Z
dk k

2�X

l
(k)�Y

l
(k)PR(k) PR(k) = As(k⇤)

✓
k

k⇤

◆ns�1

✓s =
ds(zrec)

da(zrec)
=

R
z1
zrec

dz cs(z)
H(z)R

zrec

0
dz

H(z)

✓
H(z)

H0

◆2

= ⌦r(1 + z)4 + ⌦m(1 + z)3 + ⌦⇤

H(z)2 = (H0/h)
2


!r(1 + z)4 + !m


(1 + z)3 +

⌦⇤

1� ⌦⇤

��

2

ωX = ΩXh2

• Flat FLRW ( ),  

• Cosmological constant ( ),  
• Plain decoupled / stable / cold dark matter, 
• Neutrino mass neglected or fixed to minimal value,  

• , 
• Power-law primordial spectrum… 
Possible basis:

Ωk = 0
w = − 1

Neff = 3.044

parameter of CMB, not of LSS



CMB physics - J. Lesgourgues86

⇥l(⌧0, k) =

Z ⌧0

⌧ini

d⌧ {g (⇥0 +  ) +
�
g k�2✓b

�0
+ ISW} jl(k(⌧0 � ⌧))

⇥l(⌧0, k) = {(⇥0 +  )rec + (...✓0b)rec + (...✓b + ISW)rec} jl(k(⌧0 � ⌧rec))

Cl ⇠ (...)
n
(⇥0 +  )2(⌧rec,k=l/(⌧0�⌧rec))

+Doppler + ISW
o2

PR(k)

✓ =
⇡

l
=

�/2

da(zdec)
=

⇡/k

⌧0 � ⌧rec

=) l = k(⌧0 � ⌧rec)

CXY
l = 4⇡

Z
dk k2�X

l (k)�Y
l (k)PR(k) PR(k) = As(k⇤)

✓
k

k⇤

◆ns�1

2

⇥l(⌧0, k) =

Z
⌧0

⌧ini

d⌧ {g (⇥0 +  ) +
�
g k

�2
✓b

�0
+ ISW} jl(k(⌧0 � ⌧))

⇥l(⌧0, k) = {(⇥0 +  )rec + (...✓0b)rec + (...✓b + ISW)rec} jl(k(⌧0 � ⌧rec))

Cl ⇠ (...)
n
(⇥0 +  )2(⌧rec,k=l/(⌧0�⌧rec))

+Doppler + ISW
o2

PR(k)

✓ =
⇡

l
=

�/2

da(zdec)
=

⇡/k

⌧0 � ⌧rec

=) l = k(⌧0 � ⌧rec)

{!b,!m,⌦⇤, ⌧reio, As, ns}

C
XY

l
= 4⇡

Z
dk k

2�X

l
(k)�Y

l
(k)PR(k) PR(k) = As(k⇤)

✓
k

k⇤

◆ns�1

✓s =
ds(zrec)

da(zrec)
=

R
z1
zrec

dz cs(z)
H(z)R

zrec

0
dz

H(z)

✓
H(z)

H0

◆2

= ⌦r(1 + z)4 + ⌦m(1 + z)3 + ⌦⇤

H(z)2 = (H0/h)
2


!r(1 + z)4 + !m


(1 + z)3 +

⌦⇤

1� ⌦⇤

��

2

ωX = ΩXh2



CMB physics - J. Lesgourgues87

⇥l(⌧0, k) =

Z
⌧0

⌧ini

d⌧ {g (⇥0 +  ) +
�
g k

�2
✓b

�0
+ ISW} jl(k(⌧0 � ⌧))

⇥l(⌧0, k) = {(⇥0 +  )rec + (...✓0b)rec + (...✓b + ISW)rec} jl(k(⌧0 � ⌧rec))

Cl ⇠ (...)
n
(⇥0 +  )2(⌧rec,k=l/(⌧0�⌧rec))

+Doppler + ISW
o2

PR(k)

✓ =
⇡

l
=

�/2

da(zdec)
=

⇡/k

⌧0 � ⌧rec

=) l = k(⌧0 � ⌧rec)

{!b,!m,⌦⇤, ⌧reio, As, ns}

C
XY

l
= 4⇡

Z
dk k

2�X

l
(k)�Y

l
(k)PR(k) PR(k) = As(k⇤)

✓
k

k⇤

◆ns�1

✓s =
ds(zrec)

da(zrec)
=

R
z1
zrec

dz cs(z)
H(z)R

zrec

0
dz

H(z)

✓
H(z)

H0

◆2

= ⌦r(1 + z)4 + ⌦m(1 + z)3 + ⌦⇤

H(z)2 = (H0/h)
2


!r(1 + z)4 + !m


(1 + z)3 +

⌦⇤

1� ⌦⇤

��

2

⇥l(⌧0, k) =

Z ⌧0

⌧ini

d⌧ {g (⇥0 +  ) +
�
g k�2✓b

�0
+ ISW} jl(k(⌧0 � ⌧))

⇥l(⌧0, k) = {(⇥0 +  )rec + (...✓0b)rec + (...✓b + ISW)rec} jl(k(⌧0 � ⌧rec))

Cl ⇠ (...)
n
(⇥0 +  )2(⌧rec,k=l/(⌧0�⌧rec))

+Doppler + ISW
o2

PR(k)

✓ =
⇡

l
=

�/2

da(zdec)
=

⇡/k

⌧0 � ⌧rec

=) l = k(⌧0 � ⌧rec)

CXY
l = 4⇡

Z
dk k2�X

l (k)�Y
l (k)PR(k) PR(k) = As(k⇤)

✓
k

k⇤

◆ns�1

2



CMB physics - J. Lesgourgues88

⇥l(⌧0, k) =

Z
⌧0

⌧ini

d⌧ {g (⇥0 +  ) +
�
g k

�2
✓b

�0
+ ISW} jl(k(⌧0 � ⌧))

⇥l(⌧0, k) = {(⇥0 +  )rec + (...✓0b)rec + (...✓b + ISW)rec} jl(k(⌧0 � ⌧rec))

Cl ⇠ (...)
n
(⇥0 +  )2(⌧rec,k=l/(⌧0�⌧rec))

+Doppler + ISW
o2

PR(k)

✓ =
⇡

l
=

�/2

da(zdec)
=

⇡/k

⌧0 � ⌧rec

=) l = k(⌧0 � ⌧rec)

{!b,!m,⌦⇤, ⌧reio, As, ns}

C
XY

l
= 4⇡

Z
dk k

2�X

l
(k)�Y

l
(k)PR(k) PR(k) = As(k⇤)

✓
k

k⇤

◆ns�1

✓s =
ds(zrec)

da(zrec)
=

R
z1
zrec

dz cs(z)
H(z)R

zrec

0
dz

H(z)

✓
H(z)

H0

◆2

= ⌦r(1 + z)4 + ⌦m(1 + z)3 + ⌦⇤

H(z)2 = (H0/h)
2


!r(1 + z)4 + !m


(1 + z)3 +

⌦⇤

1� ⌦⇤

��

2



CMB physics - J. Lesgourgues89

⇥l(⌧0, k) =

Z
⌧0

⌧ini

d⌧ {g (⇥0 +  ) +
�
g k

�2
✓b

�0
+ ISW} jl(k(⌧0 � ⌧))

⇥l(⌧0, k) = {(⇥0 +  )rec + (...✓0b)rec + (...✓b + ISW)rec} jl(k(⌧0 � ⌧rec))

Cl ⇠ (...)
n
(⇥0 +  )2(⌧rec,k=l/(⌧0�⌧rec))

+Doppler + ISW
o2

PR(k)

✓ =
⇡

l
=

�/2

da(zdec)
=

⇡/k

⌧0 � ⌧rec

=) l = k(⌧0 � ⌧rec)

{!b,!m,⌦⇤, ⌧reio, As, ns}

C
XY

l
= 4⇡

Z
dk k

2�X

l
(k)�Y

l
(k)PR(k) PR(k) = As(k⇤)

✓
k

k⇤

◆ns�1

✓s =
ds(zrec)

da(zrec)
=

R
z1
zrec

dz cs(z)
H(z)R

zrec

0
dz

H(z)

✓
H(z)

H0

◆2

= ⌦r(1 + z)4 + ⌦m(1 + z)3 + ⌦⇤

H(z)2 = (H0/h)
2


!r(1 + z)4 + !m


(1 + z)3 +

⌦⇤

1� ⌦⇤

��

2

Angular scale of 
the peaks

π
ls

= ds(ηdec)
da(ηdec) Angular scale of 

damping enveloppe
π
ld

= λd(ηdec)
da(ηdec)

zero-point of 
oscillations 
−(1 + R) ψ



CMB physics - J. Lesgourgues90

⇥l(⌧0, k) =

Z
⌧0

⌧ini

d⌧ {g (⇥0 +  ) +
�
g k

�2
✓b

�0
+ ISW} jl(k(⌧0 � ⌧))

⇥l(⌧0, k) = {(⇥0 +  )rec + (...✓0b)rec + (...✓b + ISW)rec} jl(k(⌧0 � ⌧rec))

Cl ⇠ (...)
n
(⇥0 +  )2(⌧rec,k=l/(⌧0�⌧rec))

+Doppler + ISW
o2

PR(k)

✓ =
⇡

l
=

�/2

da(zdec)
=

⇡/k

⌧0 � ⌧rec

=) l = k(⌧0 � ⌧rec)

{!b,!m,⌦⇤, ⌧reio, As, ns}

C
XY

l
= 4⇡

Z
dk k

2�X

l
(k)�Y

l
(k)PR(k) PR(k) = As(k⇤)

✓
k

k⇤

◆ns�1

✓s =
ds(zrec)

da(zrec)
=

R
z1
zrec

dz cs(z)
H(z)R

zrec

0
dz

H(z)

✓
H(z)

H0

◆2

= ⌦r(1 + z)4 + ⌦m(1 + z)3 + ⌦⇤

H(z)2 = (H0/h)
2


!r(1 + z)4 + !m


(1 + z)3 +

⌦⇤

1� ⌦⇤

��

2

Angular scale of 
the peaks

π
ls

= ds(ηdec)
da(ηdec) Angular scale of 

damping enveloppe
π
ld

= λd(ηdec)
da(ηdec)

zero-point of 
oscillations 
−(1 + R) ψ



CMB physics - J. Lesgourgues91

⇥l(⌧0, k) =

Z
⌧0

⌧ini

d⌧ {g (⇥0 +  ) +
�
g k

�2
✓b

�0
+ ISW} jl(k(⌧0 � ⌧))

⇥l(⌧0, k) = {(⇥0 +  )rec + (...✓0b)rec + (...✓b + ISW)rec} jl(k(⌧0 � ⌧rec))

Cl ⇠ (...)
n
(⇥0 +  )2(⌧rec,k=l/(⌧0�⌧rec))

+Doppler + ISW
o2

PR(k)

✓ =
⇡

l
=

�/2

da(zdec)
=

⇡/k

⌧0 � ⌧rec

=) l = k(⌧0 � ⌧rec)

{!b,!m,⌦⇤, ⌧reio, As, ns}

C
XY

l
= 4⇡

Z
dk k

2�X

l
(k)�Y

l
(k)PR(k) PR(k) = As(k⇤)

✓
k

k⇤

◆ns�1

✓s =
ds(zrec)

da(zrec)
=

R
z1
zrec

dz cs(z)
H(z)R

zrec

0
dz

H(z)

✓
H(z)

H0

◆2

= ⌦r(1 + z)4 + ⌦m(1 + z)3 + ⌦⇤

H(z)2 = (H0/h)
2


!r(1 + z)4 + !m


(1 + z)3 +

⌦⇤

1� ⌦⇤

��

2



CMB physics - J. Lesgourgues92

⇥l(⌧0, k) =

Z
⌧0

⌧ini

d⌧ {g (⇥0 +  ) +
�
g k

�2
✓b

�0
+ ISW} jl(k(⌧0 � ⌧))

⇥l(⌧0, k) = {(⇥0 +  )rec + (...✓0b)rec + (...✓b + ISW)rec} jl(k(⌧0 � ⌧rec))

Cl ⇠ (...)
n
(⇥0 +  )2(⌧rec,k=l/(⌧0�⌧rec))

+Doppler + ISW
o2

PR(k)

✓ =
⇡

l
=

�/2

da(zdec)
=

⇡/k

⌧0 � ⌧rec

=) l = k(⌧0 � ⌧rec)

{!b,!m,⌦⇤, ⌧reio, As, ns}

C
XY

l
= 4⇡

Z
dk k

2�X

l
(k)�Y

l
(k)PR(k) PR(k) = As(k⇤)

✓
k

k⇤

◆ns�1

✓s =
ds(zrec)

da(zrec)
=

R
z1
zrec

dz cs(z)
H(z)R

zrec

0
dz

H(z)

✓
H(z)

H0

◆2

= ⌦r(1 + z)4 + ⌦m(1 + z)3 + ⌦⇤

H(z)2 = (H0/h)
2


!r(1 + z)4 + !m


(1 + z)3 +

⌦⇤

1� ⌦⇤

��

2

Angular scale of 
the peaks

π
ls

= ds(ηdec)
da(ηdec) Angular scale of 

damping enveloppe
π
ld

= λd(ηdec)
da(ηdec)

redshift of R/M equality  : 
 range of scales affected 

by gravitational boost 
  early ISW

zeq
⇒

⇒



CMB physics - J. Lesgourgues93

⇥l(⌧0, k) =

Z
⌧0

⌧ini

d⌧ {g (⇥0 +  ) +
�
g k

�2
✓b

�0
+ ISW} jl(k(⌧0 � ⌧))

⇥l(⌧0, k) = {(⇥0 +  )rec + (...✓0b)rec + (...✓b + ISW)rec} jl(k(⌧0 � ⌧rec))

Cl ⇠ (...)
n
(⇥0 +  )2(⌧rec,k=l/(⌧0�⌧rec))

+Doppler + ISW
o2

PR(k)

✓ =
⇡

l
=

�/2

da(zdec)
=

⇡/k

⌧0 � ⌧rec

=) l = k(⌧0 � ⌧rec)

{!b,!m,⌦⇤, ⌧reio, As, ns}

C
XY

l
= 4⇡

Z
dk k

2�X

l
(k)�Y

l
(k)PR(k) PR(k) = As(k⇤)

✓
k

k⇤

◆ns�1

✓s =
ds(zrec)

da(zrec)
=

R
z1
zrec

dz cs(z)
H(z)R

zrec

0
dz

H(z)

✓
H(z)

H0

◆2

= ⌦r(1 + z)4 + ⌦m(1 + z)3 + ⌦⇤

H(z)2 = (H0/h)
2


!r(1 + z)4 + !m


(1 + z)3 +

⌦⇤

1� ⌦⇤

��

2

Angular scale of 
the peaks

π
ls

= ds(ηdec)
da(ηdec) Angular scale of 

damping enveloppe
π
ld

= λd(ηdec)
da(ηdec)

redshift of R/M equality  : 
 range of scales affected 

by gravitational boost 
  early ISW

zeq
⇒

⇒



CMB physics - J. Lesgourgues94

⇥l(⌧0, k) =

Z
⌧0

⌧ini

d⌧ {g (⇥0 +  ) +
�
g k

�2
✓b

�0
+ ISW} jl(k(⌧0 � ⌧))

⇥l(⌧0, k) = {(⇥0 +  )rec + (...✓0b)rec + (...✓b + ISW)rec} jl(k(⌧0 � ⌧rec))

Cl ⇠ (...)
n
(⇥0 +  )2(⌧rec,k=l/(⌧0�⌧rec))

+Doppler + ISW
o2

PR(k)

✓ =
⇡

l
=

�/2

da(zdec)
=

⇡/k

⌧0 � ⌧rec

=) l = k(⌧0 � ⌧rec)

{!b,!m,⌦⇤, ⌧reio, As, ns}

C
XY

l
= 4⇡

Z
dk k

2�X

l
(k)�Y

l
(k)PR(k) PR(k) = As(k⇤)

✓
k

k⇤

◆ns�1

✓s =
ds(zrec)

da(zrec)
=

R
z1
zrec

dz cs(z)
H(z)R

zrec

0
dz

H(z)

✓
H(z)

H0

◆2

= ⌦r(1 + z)4 + ⌦m(1 + z)3 + ⌦⇤

H(z)2 = (H0/h)
2


!r(1 + z)4 + !m


(1 + z)3 +

⌦⇤

1� ⌦⇤

��

2



CMB physics - J. Lesgourgues95

⇥l(⌧0, k) =

Z
⌧0

⌧ini

d⌧ {g (⇥0 +  ) +
�
g k

�2
✓b

�0
+ ISW} jl(k(⌧0 � ⌧))

⇥l(⌧0, k) = {(⇥0 +  )rec + (...✓0b)rec + (...✓b + ISW)rec} jl(k(⌧0 � ⌧rec))

Cl ⇠ (...)
n
(⇥0 +  )2(⌧rec,k=l/(⌧0�⌧rec))

+Doppler + ISW
o2

PR(k)

✓ =
⇡

l
=

�/2

da(zdec)
=

⇡/k

⌧0 � ⌧rec

=) l = k(⌧0 � ⌧rec)

{!b,!m,⌦⇤, ⌧reio, As, ns}

C
XY

l
= 4⇡

Z
dk k

2�X

l
(k)�Y

l
(k)PR(k) PR(k) = As(k⇤)

✓
k

k⇤

◆ns�1

✓s =
ds(zrec)

da(zrec)
=

R
z1
zrec

dz cs(z)
H(z)R

zrec

0
dz

H(z)

✓
H(z)

H0

◆2

= ⌦r(1 + z)4 + ⌦m(1 + z)3 + ⌦⇤

H(z)2 = (H0/h)
2


!r(1 + z)4 + !m


(1 + z)3 +

⌦⇤

1� ⌦⇤

��

2

Angular scale of 
the peaks

π
ls

= ds(ηdec)
da(ηdec)

redshift of M/  equality  : 
  late ISW

Λ zeq
⇒

Angular scale of 
damping enveloppe

π
ld

= λd(ηdec)
da(ηdec)



CMB physics - J. Lesgourgues96

⇥l(⌧0, k) =

Z
⌧0

⌧ini

d⌧ {g (⇥0 +  ) +
�
g k

�2
✓b

�0
+ ISW} jl(k(⌧0 � ⌧))

⇥l(⌧0, k) = {(⇥0 +  )rec + (...✓0b)rec + (...✓b + ISW)rec} jl(k(⌧0 � ⌧rec))

Cl ⇠ (...)
n
(⇥0 +  )2(⌧rec,k=l/(⌧0�⌧rec))

+Doppler + ISW
o2

PR(k)

✓ =
⇡

l
=

�/2

da(zdec)
=

⇡/k

⌧0 � ⌧rec

=) l = k(⌧0 � ⌧rec)

{!b,!m,⌦⇤, ⌧reio, As, ns}

C
XY

l
= 4⇡

Z
dk k

2�X

l
(k)�Y

l
(k)PR(k) PR(k) = As(k⇤)

✓
k

k⇤

◆ns�1

✓s =
ds(zrec)

da(zrec)
=

R
z1
zrec

dz cs(z)
H(z)R

zrec

0
dz

H(z)

✓
H(z)

H0

◆2

= ⌦r(1 + z)4 + ⌦m(1 + z)3 + ⌦⇤

H(z)2 = (H0/h)
2


!r(1 + z)4 + !m


(1 + z)3 +

⌦⇤

1� ⌦⇤

��

2



CMB physics - J. Lesgourgues97

⇥l(⌧0, k) =

Z
⌧0

⌧ini

d⌧ {g (⇥0 +  ) +
�
g k

�2
✓b

�0
+ ISW} jl(k(⌧0 � ⌧))

⇥l(⌧0, k) = {(⇥0 +  )rec + (...✓0b)rec + (...✓b + ISW)rec} jl(k(⌧0 � ⌧rec))

Cl ⇠ (...)
n
(⇥0 +  )2(⌧rec,k=l/(⌧0�⌧rec))

+Doppler + ISW
o2

PR(k)

✓ =
⇡

l
=

�/2

da(zdec)
=

⇡/k

⌧0 � ⌧rec

=) l = k(⌧0 � ⌧rec)

{!b,!m,⌦⇤, ⌧reio, As, ns}

C
XY

l
= 4⇡

Z
dk k

2�X

l
(k)�Y

l
(k)PR(k) PR(k) = As(k⇤)

✓
k

k⇤

◆ns�1

✓s =
ds(zrec)

da(zrec)
=

R
z1
zrec

dz cs(z)
H(z)R

zrec

0
dz

H(z)

✓
H(z)

H0

◆2

= ⌦r(1 + z)4 + ⌦m(1 + z)3 + ⌦⇤

H(z)2 = (H0/h)
2


!r(1 + z)4 + !m


(1 + z)3 +

⌦⇤

1� ⌦⇤

��

2

Visibility function 
 

 
g(η) ≃ δ(η − ηdec)

↓
g(η) ≃ e−τreio δ(η − ηdec) + (1 − e−τreio) δ(η − ηreio)
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Le fond diffus cosmologique 179

FIGURE 2.9 : Effet sur le spectre Cl des anisotropies de température du CMB de la
variation d’un des paramètres du modèle ⇤CDM dans la base [2.157], tous les autres
paramètres étant fixés. Le spectre noir est le spectre de référence. L’intensité croissante
de rouge correspond à des valeurs croissantes du paramètre libre. Obtenu avec CLASS
(class-code.net).

– une augmentation de !b augmente l’amplitude du premier et du troisième pic, et
abaisse celle du deuxième et du quatrième pic (C2). De plus, elle décale les pics (C1)
et leur enveloppe (C4) vers les grands multipôles (vers la droite).

Extended cosmologies? … more parameters … but also more effects …

8 physical governing Cl’s shape 

• C1: angular scale of the peaks, θs 
• C2: gravity/pressure at rec., Rrec 
• C3: interval between zeq and zdec 
• C4: angular scale of damping, θd 
• C5: global amplitude 
• C6: global tilt 
• C7: plateau tilting by late ISW 
• C8: reionisation steplike suppression 

but all tight to 6 parameters in ΛCDM
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CMB polarisation Planck Collaboration: The cosmological legacy of Planck

-201 309 µK
13.7 µK

Planck 2018
10ox10o, smoothed at 20’

(276.4, -29.8) Galactic

-67 311 µK
36.1 µK

Planck 2018
2.5ox2.5o, smoothed at 7’

(276.4, -29.8) Galactic

Fig. 7. Enlargement of part of the Planck 2018 CMB polar-
ization map. The coloured background shows the temperature
anisotropy field smoothed to the same scale as the polarization
field, enabling us to visualize the correlation between the two
fields. The top map shows a 10� ⇥ 10� patch centred on the south
ecliptic pole, smoothed with a 200 FWHM Gaussian (the data are
natively at 50 resolution). The bottom panel is a further expan-
sion of a 2.5�⇥ 2.5�region in the same direction.
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Fig. 8. Stacked Qr image around temperature hot spots selected
above the null threshold (⌫ = 0) in the SMICA sky map. The quan-
tity Qr (and its partner Ur, introduced in Kamionkowski et al.
1997) is a transformed version of the Stokes parameters Q and
U, where Qr measures the tangential-radial component of the
polarization relative to the centre and Ur measures the polar-
ization at ±45� relative to a radial vector. The left panel cor-
responds to the observed data, and the right panel shows the en-
semble average of CMB-only maps for the fiducial cosmology.
The axes are in degrees, and the image units are µK. The black
solid lines show the polarization directions for stacked Q and U,
with lengths proportional to the polarization amplitude P. From
Planck Collaboration XVI (2016).

constraints on many inflationary models (see Sect. 5 and
Planck Collaboration X 2018). Such models also imply that the
information content in the CMB comes from its statistical prop-
erties, rather than the precise locations of individual features, and
that those properties are statistically isotropic. Since a Gaussian
field can be entirely described by its mean and correlation func-
tion, and since the mean is zero by definition for the anisotropies,
essentially all of the cosmologically-relevant information in the
CMB anisotropies resides in their correlation functions or power
spectra. This allows a huge compression, with concomitant in-
crease in S/N: the 1.16 billion pixels in the 23 maps can be com-
pressed to 106 high-S/N multipoles. As we will see later, the
⇤CDM model allows even more dramatic compression: only six
numbers describe around 103 � worth of power spectrum detec-
tion.

2.6. CMB angular power spectra

2.6.1. CMB intensity and polarization spectra

The foreground-subtracted, frequency-averaged, cross-half-
mission TT , T E, and EE spectra are plotted in Fig. 9, together
with the Commander power spectrum at multipoles ` < 30. The
figure also shows the best-fit base-⇤CDM theoretical spectrum
fitted to the combined temperature, polarization, and lensing
data.

Figure 9 clearly illustrates that Planck has determined the
angular power spectrum of the primary temperature anisotropies
to high precision across all the physically relevant scales. In this
sense, Planck brings to an end an era in CMB studies that was
opened by the first detection of these anisotropies by COBE in
1992 (Smoot et al. 1992). At the same time, Planck has made
important measurements of the polarization power spectra and
maps of the e↵ects of gravitational lensing. Improvements in
these measurements will be the focus of the field in coming
years.

14
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CMB polarisation

1 spin-two map  2 scalar maps (E = gradient field, B = rotation field), but: 

scalar modes  gradients  B-mode vanish  

⇔
→ →
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CMB polarisation 11

BICEP2: E signal
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BICEP2: B signal
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FIG. 3. Left: BICEP2 apodized E-mode and B-mode maps filtered to 50 < ` < 120. Right: The equivalent maps for the first
of the lensed-⇤CDM+noise simulations. The color scale displays the E-mode scalar and B-mode pseudoscalar patterns while
the lines display the equivalent magnitude and orientation of linear polarization. Note that excess B mode is detected over
lensing+noise with high signal-to-noise ratio in the map (s/n > 2 per map mode at ` ⇡ 70). (Also note that the E-mode and
B-mode maps use di↵erent color and length scales.)

the observed value against the distribution of the simu-
lations.

We evaluate these statistics both for the full set of
nine band powers (as in C10 and B14), and also for the
lower five of these corresponding to the multipole range
of greatest interest (20 < ` < 200). Numerical values
are given in Table I and the distributions are plotted in
Fig. 4. Since we have 500 simulations the minimum ob-
servable nonzero value is 0.002. Most of the TT , TE, and
TB jackknifes pass, but following C10 and B14 we omit
them from formal consideration (and they are not in-
cluded in the table and figure). The signal-to-noise ratio
in TT is ⇠ 104 so tiny di↵erences in absolute calibration
between the data subsets can cause jackknife failure, and
the same is true to a lesser extent for TE and TB. Even
in EE the signal-to-noise is approaching ⇠ 103 (500 in
the ` ⇡ 110 bin) and in fact most of the low values in
the table are in EE. However, with a maximum signal-
to-noise ratio of <⇠ 10 in BB such calibration di↵erences
are not a concern. All the BB (and EB) jackknifes are
seen to pass, with the 112 numbers in Table I having one
greater than 0.99, one less than 0.01 and a distribution
consistent with uniform. Note that the four test statis-
tics for each spectrum and jackknife are correlated this
must be taken into account when assessing uniformity.

To form the jackknife spectra we di↵erence the maps
made from the two halves of the data split, divide by two,
and take the power spectrum. This holds the power spec-
trum amplitude of a contribution which is uncorrelated in
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FIG. 4. Distributions of the jackknife �2 and � PTE values
over the 14 tests and three spectra given in Table I. These
distributions are consistent with uniform.


