Summary of Lecture 4

Summary of Lecture 4

1 spin-two map \Leftrightarrow 2 scalar maps (E = gradient field, B = rotation field), but:

scalar modes \rightarrow gradients \rightarrow B-mode vanish

Temperature spectrum:
$$C_{\ell}^{TT} = \langle a_{lm}^T a_{lm}^{T^*} \rangle = \frac{2}{\pi} \int dk \, k^2 [\Theta_{\ell}(\eta_0, k)]^2 \, P_{\mathscr{R}}(k)$$

with transfer function $\Theta_l(\eta_0, k) = \int_{\eta_{\text{ini}}}^{\eta_0} d\eta \left\{ g \left(\Theta_0 + \psi \right) \, j_l(k(\eta_0 - \eta)) + g \, k^{-1} \theta_{\text{b}} \, j_l'(k(\eta_0 - \eta)) + e^{-\tau} \left(\phi' + \psi' \right) j_l(k(\eta_0 - \eta)) \right\}$

For polarisation:

Kosowsky 1996; Seljak & Zaldarriaga astro-ph/9609170; Hu & White astro-ph/9702170

Temperature spectrum:
$$C_{\ell}^{TT} = \langle a_{lm}^T a_{lm}^{T*} \rangle = \frac{2}{\pi} \int dk \, k^2 [\Theta_{\ell}(\eta_0, k)]^2 P_{\mathscr{R}}(k)$$

with transfer function $\Theta_l(\eta_0, k) = \int_{\eta_{ini}}^{\eta_0} d\eta \left\{ g \left(\Theta_0 + \psi \right) j_l(k(\eta_0 - \eta)) + g \, k^{-1} \theta_{\rm b} \, j_l'(k(\eta_0 - \eta)) + e^{-\tau} \left(\phi' + \psi' \right) j_l(k(\eta_0 - \eta)) \right\}$

For polarisation:

Kosowsky 1996; Seljak & Zaldarriaga astro-ph/9609170; Hu & White astro-ph/9702170

E-mode polarisation spectrum:
$$C_{\ell}^{EE} = \langle a_{lm}^E a_{lm}^{E^*} \rangle = \frac{2}{\pi} \int dk \, k^2 [\Delta_{\ell}^E(\eta_0, k)]^2 P_{\mathcal{R}}(k)$$

with transfer function $\Delta_l^E(\eta_0, k) = \int_{\eta_{\text{ini}}}^{\eta_0} d\eta \ g \left\{\Theta_2 + \dots\right\} (\dots) j_l(k(\eta_0 - \eta))$

Temperature spectrum:
$$C_{\ell}^{TT} = \langle a_{lm}^T a_{lm}^{T^*} \rangle = \frac{2}{\pi} \int dk \, k^2 [\Theta_{\ell}(\eta_0, k)]^2 \, P_{\mathscr{R}}(k)$$

with transfer function $\Theta_l(\eta_0, k) = \int_{\eta_{\text{ini}}}^{\eta_0} d\eta \left\{ g \left(\Theta_0 + \psi \right) \, j_l(k(\eta_0 - \eta)) + g \, k^{-1} \theta_{\text{b}} \, j_l'(k(\eta_0 - \eta)) + e^{-\tau} \left(\phi' + \psi' \right) j_l(k(\eta_0 - \eta)) \right\} + \dots$

For polarisation:

Kosowsky 1996; Seljak & Zaldarriaga astro-ph/9609170; Hu & White astro-ph/9702170

E-mode polarisation spectrum:
$$C_{\ell}^{EE} = \langle a_{lm}^E a_{lm}^{E^*} \rangle = \frac{2}{\pi} \int dk \, k^2 [\Delta_{\ell}^E(\eta_0, k)]^2 P_{\mathcal{R}}(k)$$

with transfer function
$$\Delta_l^E(\eta_0, k) = \int_{\eta_{\text{ini}}}^{\eta_0} d\eta \ g \left\{\Theta_2 + \dots\right\} (\dots) j_l(k(\eta_0 - \eta))$$

Corrections to temperature spectrum taking into account polarisation anisotropies

notebooks/cltt_terms.ipynb + loglog + 'temperature_contributions':'pol'

Temperature spectrum:
$$C_{\ell}^{TT} = \langle a_{lm}^T a_{lm}^{T^*} \rangle = \frac{2}{\pi} \int dk \, k^2 [\Theta_{\ell}(\eta_0, k)]^2 \, P_{\mathscr{R}}(k)$$

with transfer function $\Theta_l(\eta_0, k) = \int_{\eta_{\text{ini}}}^{\eta_0} d\eta \left\{ g \left(\Theta_0 + \psi \right) \, j_l(k(\eta_0 - \eta)) + g \, k^{-1} \theta_{\text{b}} \, j_l'(k(\eta_0 - \eta)) + e^{-\tau} \left(\phi' + \psi' \right) j_l(k(\eta_0 - \eta)) \right\} + \dots$

For polarisation:

Kosowsky 1996; Seljak & Zaldarriaga astro-ph/9609170; Hu & White astro-ph/9702170

E-mode polarisation spectrum:
$$C_{\ell}^{EE} = \langle a_{lm}^E a_{lm}^{E^*} \rangle = \frac{2}{\pi} \int dk \, k^2 [\Delta_{\ell}^E(\eta_0, k)]^2 P_{\mathcal{R}}(k)$$

with transfer function
$$\Delta_l^E(\eta_0, k) = \int_{\eta_{\text{ini}}}^{\eta_0} d\eta \ g \left\{\Theta_2 + \dots\right\} (\dots) j_l(k(\eta_0 - \eta))$$

... no Doppler ... no Sachs-Wolfe ... no ISW ...

Cross spectrum:
$$C_{\ell}^{TE} = \left\langle \frac{a_{lm}^{T} a_{lm}^{E^*} + a_{lm}^{E} a_{lm}^{T^*}}{2} \right\rangle = \frac{2}{\pi} \int dk \, k^2 \, \Theta_{\ell}(\eta_0, k) \, \Delta_{\ell}^{E}(\eta_0, k) \, P_{\mathscr{R}}(k)$$

with transfer function $\Theta_l(\eta_0, k) = \int_{\eta_{ini}}^{\eta_0} d\eta \left\{ g \left(\Theta_0 + \psi \right) \, j_l(k(\eta_0 - \eta)) + g \, k^{-1} \theta_{\rm b} \, j_l'(k(\eta_0 - \eta)) + e^{-\tau} (\phi' + \psi') \, j_l(k(\eta_0 - \eta)) \right\} + \dots$

and
$$\Delta_l^E(\eta_0, k) = \int_{\eta_{\text{ini}}}^{\eta_0} d\eta \ g \{\Theta_2 + \dots\} (\dots) j_l(k(\eta_0 - \eta))$$

$$g_{\mu\nu} = a^2(\eta_{\mu\nu} + h_{\mu\nu})$$

Bardeen scalars (spin-0)

Bardeen tensors (spin-2)

($^{\prime}-2\psi$	0	0	0	
$h_{\mu\nu} =$	0	-2ϕ	0	0	
	0	0	-2ϕ	0	
	0	0	0	-2ϕ	
(Newtonian gauge)					

 $h_{\mu\nu} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & h_1 & h_2 & 0 \\ 0 & h_2 & -h_1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

(for GWs along x³)

Boltzmann with scalars: $\Theta' + \hat{n} \cdot \vec{\nabla} \Theta = \hat{n} \cdot \vec{\nabla} \psi - \phi' + [\text{Thomson}]$ grav. Dop. dilation

Boltzmann with tensors:

$$\Theta' + \hat{n} \cdot \vec{\nabla} \Theta = -\frac{1}{2} h'_{ij} \hat{n}^i \hat{n}^j + [\text{Thomson}]$$

no GW, isotropic

Scalar Boltzmann: $\Theta' + \hat{n} \cdot \vec{\nabla} \Theta = \hat{n} \cdot \vec{\nabla} \psi - \phi' + [\text{Thomson}]$

Tensor Boltzmann: $\Theta' + \hat{n} \cdot \vec{\nabla}\Theta = -\frac{1}{2}h'_{ij}\hat{n}^i\hat{n}^j$ +[Thomson]

Scalar Boltzmann: $\Theta' + \hat{n} \cdot \vec{\nabla} \Theta = \hat{n} \cdot \vec{\nabla} \psi - \phi' + [\text{Thomson}]$

Tensor Boltzmann: $\Theta' + \hat{n} \cdot \vec{\nabla}\Theta = -\frac{1}{2}h'_{ij}\hat{n}^i\hat{n}^j$ +[Thomson]

General expansion: $\Theta(\eta, \vec{x}, \hat{n}) \longrightarrow \Theta(\eta, \vec{k}, \hat{n}) = \sum_{lm} \Theta_{lm}(\eta, \vec{k}) Y_{lm}(\hat{n})$

Observational constraints on ΛCDM + r

Energy scale of inflation
$$V_*$$
 $V_* = \frac{3\pi^2 A_s}{2} r M_{\rm Pl}^4 < (1.4 \times 10^{16} \, {\rm GeV})^4$ (95% CL)

Particle Physics

Observational constraints on ΛCDM + r

Observational constraints on ΛCDM + r

Redshifting along geodesics:

$$\frac{d\ln(a\,p)}{d\eta} = \phi' - \hat{n} \cdot \vec{\nabla}\psi$$

Gravity preserves blackbody, but what about late interactions?

• Compton scattering (CS):

 $\gamma + e^- \longrightarrow \gamma + e^-$ (number conserving)

 $\frac{\partial f}{\partial t} = \dot{\tau} \frac{T_e}{m_e} \frac{1}{x^2} \frac{\partial}{\partial x} \left(x^4 \left[\frac{\partial f}{\partial x} + \frac{T_z}{T_e} f(1+f) \right] \right)$

Kompaneet equation

(solution: BE with arbitrary μ)

• double Compton scattering (DC):

 $\gamma + e^- \longrightarrow \gamma + \gamma + e^-$ (non-number conserving)

• Bremsstrahlung (BR):

 $e^- \longrightarrow e^- + \gamma$ (non-number conserving)

• $z > 3 \times 10^6$: CS, DC, BR efficient: BE with $\mu = 0$ = blackbody energy injection-> no distortion

• $z > 4 \times 10^4$: only CS: BE with arbitrary mu, Kompaneet can only impose

$$f(p; T, \mu = 0) \to f(p; T', \mu) \simeq f_{BE}(p; T, 0) \left\{ 1 + \mu \left[0.4561 - \frac{T}{p} \right] \right\}$$

energy injection-> μ -distortion

• $z > 10^3$: CS not efficient: Kompaneet at next-to-leading order in H/Γ can only impose

$$f(p; T, \mu = 0) \to f_{BE}(p; T, 0) \left\{ 1 + y \left[\frac{p}{T} \frac{e^{p/T} + 1}{e^{p/T} - 1} - 4 \right] \right\}$$

energy injection-> y-distortion

• $z \sim 10^3$:

additional residuals

- Even later: CMB photons decoupled anyway
- Reionization: CS again, possible *y*-distortions (Sunyaev-Zel'dovitch 1970)

Source of distortions in standard cosmology

- Adabatic cooling of electrons and photons:
 - UR particles in equilibrium with themselves: $T \propto a^{-1}$
 - NR particles in equilibrium with themselves: $T \propto a^{-2}$
 - Efficient CS: $T_e = T_b = T_\gamma \propto a^{-1}$
 - Inefficient CS: $T_e = T_b < T_{\gamma}$

 \rightarrow energy extracted from photon, $\mu = -3 \times 10^{-9}$, $y = -5 \times 10^{-10}$

- Dissipation of acoustic waves:
 - Diffusion damping → superposition of BB with different temperature,

 \rightarrow reprocessed as $\mu = 2 \times 10^{-8}$, $y = 4 \times 10^{-9}$

- Transfer of energy from small-scale anisotropies to spectral distortions
- Accurately computed by CLASS
- Probe of $P_{\mathscr{R}}(k)$ on very small scales
- Emission/absorption lines during H and He recombination: y-distorsions + small residuals
- <u>Sunyaev-Zel'dovitch effect</u> from hot electrons during reionization $\rightarrow y \sim 10^{-6}$
- 138 CMB physics J. Lesgourgues

Lucca, Schöneberg, Hooper, JL, Chluba 1910.04619

Source of distortions in non-minimal cosmology

• Extra power in small-scale $P_{\mathcal{R}}(k)$

J. Chluba et al., BAAS 51, 184 (2019), 1903.04218

Exclusion plots on peaks producing PBH

Pritchard, Byrnes, JL, Sharma 2505.08442

Source of distortions in non-minimal cosmology

• DM annihilation or decay: products end up heating electrons

Lucca, Schöneberg, Hooper, JL, Chluba 1910.04619

- <u>PBH accretion or evaporation</u>
- Other exotic energy injection mechanisms in dark sector
- also produces change in recombination, and thus CMB anisotropies...
- \rightarrow anisotropy/distortion synergy \rightarrow distorsion module in CLASS, ExoCLASS branch

