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CMB polarisation

Temperature spectrum:     

with transfer function 

For polarisation: 
Kosowsky 1996; Seljak & Zaldarriaga astro-ph/9609170; Hu & White astro-ph/9702170 

E-mode polarisation spectrum:  

with transfer function  

… no Doppler … no Sachs-Wolfe … no ISW …
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132 The Young Universe

space [2.33]. It is no longer a true line-of-sight integral, since the quantities are now
expressed in Fourier space. Rather, it uses the possibility to write the Fourier mode !k
of a current multipole Θl(η0,!k) as an integral over time of the same mode !k of other
perturbations, evaluated between photon decoupling and today. By writing the formal
solution of equation [2.33] in integral form and performing Legendre transformations,
we obtain the following expression for the photon transfer function:

Θl(η0,k) =

ˆ η0

ηini

dη ST (η,k) jl(k(η0 − η)) [2.90]

ST (η,k) ≡ g (Θ0 + ψ)︸ ︷︷ ︸
SW

+
(
g k−2θb

)′
︸ ︷︷ ︸

Doppler

+ e−τ (φ′ + ψ′)︸ ︷︷ ︸
ISW

[2.91]

where jl(x) is the spherical Bessel function and ST (η,k) is called the temperature
source function. The formal similarity between this result and the true line-of-sight
integral [2.48] is obvious. Three contributions are again identified. They play the
same role as in section 2.4.2: the intrinsic anisotropy corrected by the SW effect,
the Doppler contribution and the integrated Sachs–Wolfe (ISW) effect. This similarity
is such that equation [2.90] is also called – somewhat abusively – the line-of-sight
integral in Fourier space. This integral can be expressed in other forms by integrations
by parts. All terms that depend on the visibility function g(η) and its derivatives are
zero today and negligible at ηini. Consequently, their integration by part does not
generate edge terms. For example, we also have:

Θl(η0,k) =

ˆ η0

ηini

dη {g (Θ0 + ψ) jl(k(η0 − η))

+ g k−1θb j′l(k(η0 − η))

+ e−τ (φ′ + ψ′) jl(k(η0 − η))
}

[2.92]

Because of equation [2.90], we see that in order to compute the transfer functions
Θl(η0,k) up to an arbitrarily large l, we only need to know the evolution of the
four transfer functions Θ0(η,k), θb(η,k), φ(η,k) and ψ(η,k). Thus, we do not need
a precise solution of the Boltzmann hierarchy of differential equations up to l =
lmax, but only up to l = 2 (because the Einstein equation, necessary to obtain φ
and ψ, involves temperature multipoles up to l = 2). For this, a truncation around
ltrunc. ∼ O(10) is sufficient. The number of equations is thus considerably reduced
compared to the brute force method. This better approach is used by all codes since
CMBFAST (Seljak and Zaldarriaga 1996), such as CAMB (Lewis et al. 2000) or
CLASS (Blas et al. 2011; Lesgourgues 2011). In addition to its numerical efficiency,
it gives a much better analytical intuition of the shape of the final result and of the
dependency of the spectrum on cosmological parameters.
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space [2.33]. It is no longer a true line-of-sight integral, since the quantities are now
expressed in Fourier space. Rather, it uses the possibility to write the Fourier mode !k
of a current multipole Θl(η0,!k) as an integral over time of the same mode !k of other
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where jl(x) is the spherical Bessel function and ST (η,k) is called the temperature
source function. The formal similarity between this result and the true line-of-sight
integral [2.48] is obvious. Three contributions are again identified. They play the
same role as in section 2.4.2: the intrinsic anisotropy corrected by the SW effect,
the Doppler contribution and the integrated Sachs–Wolfe (ISW) effect. This similarity
is such that equation [2.90] is also called – somewhat abusively – the line-of-sight
integral in Fourier space. This integral can be expressed in other forms by integrations
by parts. All terms that depend on the visibility function g(η) and its derivatives are
zero today and negligible at ηini. Consequently, their integration by part does not
generate edge terms. For example, we also have:

Θl(η0,k) =

ˆ η0

ηini

dη {g (Θ0 + ψ) jl(k(η0 − η))

+ g k−1θb j′l(k(η0 − η))

+ e−τ (φ′ + ψ′) jl(k(η0 − η))
}

[2.92]

Because of equation [2.90], we see that in order to compute the transfer functions
Θl(η0,k) up to an arbitrarily large l, we only need to know the evolution of the
four transfer functions Θ0(η,k), θb(η,k), φ(η,k) and ψ(η,k). Thus, we do not need
a precise solution of the Boltzmann hierarchy of differential equations up to l =
lmax, but only up to l = 2 (because the Einstein equation, necessary to obtain φ
and ψ, involves temperature multipoles up to l = 2). For this, a truncation around
ltrunc. ∼ O(10) is sufficient. The number of equations is thus considerably reduced
compared to the brute force method. This better approach is used by all codes since
CMBFAST (Seljak and Zaldarriaga 1996), such as CAMB (Lewis et al. 2000) or
CLASS (Blas et al. 2011; Lesgourgues 2011). In addition to its numerical efficiency,
it gives a much better analytical intuition of the shape of the final result and of the
dependency of the spectrum on cosmological parameters.
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of a current multipole Θl(η0,!k) as an integral over time of the same mode !k of other
perturbations, evaluated between photon decoupling and today. By writing the formal
solution of equation [2.33] in integral form and performing Legendre transformations,
we obtain the following expression for the photon transfer function:
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where jl(x) is the spherical Bessel function and ST (η,k) is called the temperature
source function. The formal similarity between this result and the true line-of-sight
integral [2.48] is obvious. Three contributions are again identified. They play the
same role as in section 2.4.2: the intrinsic anisotropy corrected by the SW effect,
the Doppler contribution and the integrated Sachs–Wolfe (ISW) effect. This similarity
is such that equation [2.90] is also called – somewhat abusively – the line-of-sight
integral in Fourier space. This integral can be expressed in other forms by integrations
by parts. All terms that depend on the visibility function g(η) and its derivatives are
zero today and negligible at ηini. Consequently, their integration by part does not
generate edge terms. For example, we also have:

Θl(η0,k) =
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dη {g (Θ0 + ψ) jl(k(η0 − η))

+ g k−1θb j′l(k(η0 − η))
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}

[2.92]

Because of equation [2.90], we see that in order to compute the transfer functions
Θl(η0,k) up to an arbitrarily large l, we only need to know the evolution of the
four transfer functions Θ0(η,k), θb(η,k), φ(η,k) and ψ(η,k). Thus, we do not need
a precise solution of the Boltzmann hierarchy of differential equations up to l =
lmax, but only up to l = 2 (because the Einstein equation, necessary to obtain φ
and ψ, involves temperature multipoles up to l = 2). For this, a truncation around
ltrunc. ∼ O(10) is sufficient. The number of equations is thus considerably reduced
compared to the brute force method. This better approach is used by all codes since
CMBFAST (Seljak and Zaldarriaga 1996), such as CAMB (Lewis et al. 2000) or
CLASS (Blas et al. 2011; Lesgourgues 2011). In addition to its numerical efficiency,
it gives a much better analytical intuition of the shape of the final result and of the
dependency of the spectrum on cosmological parameters.

E
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CMB polarisation

Corrections to temperature spectrum taking into account polarisation anisotropies

notebooks/cltt_terms.ipynb + loglog + ‘temperature_contributions’:’pol’
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where jl(x) is the spherical Bessel function and ST (η,k) is called the temperature
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Because of equation [2.90], we see that in order to compute the transfer functions
Θl(η0,k) up to an arbitrarily large l, we only need to know the evolution of the
four transfer functions Θ0(η,k), θb(η,k), φ(η,k) and ψ(η,k). Thus, we do not need
a precise solution of the Boltzmann hierarchy of differential equations up to l =
lmax, but only up to l = 2 (because the Einstein equation, necessary to obtain φ
and ψ, involves temperature multipoles up to l = 2). For this, a truncation around
ltrunc. ∼ O(10) is sufficient. The number of equations is thus considerably reduced
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CLASS (Blas et al. 2011; Lesgourgues 2011). In addition to its numerical efficiency,
it gives a much better analytical intuition of the shape of the final result and of the
dependency of the spectrum on cosmological parameters.

E
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CMB polarisation
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CMB polarisation

reionization

recombination

Δl(η0, k) = ∫
η0

ηini

dη g {Θ2 + . . . } ( . . . ) jl(k(η0 − η))
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CMB polarisation

reionization recombination
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CMB polarisation

Cross spectrum:     

with transfer function 

and                               
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space [2.33]. It is no longer a true line-of-sight integral, since the quantities are now
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of a current multipole Θl(η0,!k) as an integral over time of the same mode !k of other
perturbations, evaluated between photon decoupling and today. By writing the formal
solution of equation [2.33] in integral form and performing Legendre transformations,
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where jl(x) is the spherical Bessel function and ST (η,k) is called the temperature
source function. The formal similarity between this result and the true line-of-sight
integral [2.48] is obvious. Three contributions are again identified. They play the
same role as in section 2.4.2: the intrinsic anisotropy corrected by the SW effect,
the Doppler contribution and the integrated Sachs–Wolfe (ISW) effect. This similarity
is such that equation [2.90] is also called – somewhat abusively – the line-of-sight
integral in Fourier space. This integral can be expressed in other forms by integrations
by parts. All terms that depend on the visibility function g(η) and its derivatives are
zero today and negligible at ηini. Consequently, their integration by part does not
generate edge terms. For example, we also have:
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}
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Because of equation [2.90], we see that in order to compute the transfer functions
Θl(η0,k) up to an arbitrarily large l, we only need to know the evolution of the
four transfer functions Θ0(η,k), θb(η,k), φ(η,k) and ψ(η,k). Thus, we do not need
a precise solution of the Boltzmann hierarchy of differential equations up to l =
lmax, but only up to l = 2 (because the Einstein equation, necessary to obtain φ
and ψ, involves temperature multipoles up to l = 2). For this, a truncation around
ltrunc. ∼ O(10) is sufficient. The number of equations is thus considerably reduced
compared to the brute force method. This better approach is used by all codes since
CMBFAST (Seljak and Zaldarriaga 1996), such as CAMB (Lewis et al. 2000) or
CLASS (Blas et al. 2011; Lesgourgues 2011). In addition to its numerical efficiency,
it gives a much better analytical intuition of the shape of the final result and of the
dependency of the spectrum on cosmological parameters.

+…
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CMB polarisation
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Bardeen scalars 
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Tensor modes
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Tensor modes

Scalar Boltzmann: 
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Tensor modes

Scalar Boltzmann: 
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Tensor modes
GW  
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Observational constraints on ΛCDM + r
2

FIG. 1. Marginalized joint 68% and 95% CL regions in the nt = �r/8 model for ns and r0.002 from Planck in combination
with BK18 and BK15 data compared to the theoretical predictions of selected inflationary models with the uncertainty in the
number of e-folds N⇤ in the range (50, 60).

The recent release of BICEP-Keck Array data (BK18)
[7] in combination with Planck 2018 data has set a 95%
CL upper limit on the tensor-to-scalar ratio r < 0.035 in
the case of a scale-invariant primordial spectrum of grav-
itational waves. When the tensor tilt nt satisfies the so-
called consistency condition, i.e., nt = �r/8, motivated
by Bunch-Davies initial conditions for tensor modes dur-
ing slow-roll inflation driven by a single real scalar field
with a standard kinetic term (denoted in the following
by SSSRI), the limit is unchanged. This limit leads to
the 95% CL upper bound on the scale of inflation

V⇤ =
3⇡2

As

2
rM

4
Pl < (1.4⇥1016 GeV)4 (95% CL), (4)

or on the Hubble parameter during inflation

H⇤
MPl

< 2.0 ⇥ 10�5 (95% CL). (5)

The improvements with BK18 compared to BK15,
when combined with Planck 2018 data [9], in terms of
tighter constraints to slow-roll inflationary models can
be seen in the (ns, r0.002) plane in Fig. 1.

The availability of an accurate and precise B-mode
polarization likelihood has also made it possible to de-
rive data driven constraints when the theoretical prior
nt = �r/8 is relaxed [9, 10]. This more conservative
and phenomenological approach is justified since devia-
tions from nt = �r/8 are predicted in well-motivated
theoretical inflationary models. These deviations occur,

for example, with a non-standard kinetic term for a sin-
gle scalar field [11] or with a more general Lagrangian
[12], with an initial vacuum state which is not Bunch-
Davies [13], when more than one scalar field is present
[14–16] or these are coupled also through the kinetic
terms [17, 18], and in Gauge-flation when a non-Abelian
gauge field in a particular isotropic configuration drives
the accelerated stage [19]. The relation nt = �r/8 is also
violated when gravitational waves are not only amplified
by the expansion from quantum fluctuations, but also
sourced by spectator fields [20–22] present during infla-
tion, an e↵ect which also leads to significant primordial
non-Gaussianity. More radical departures from a nearly
scale-invariant power spectrum are predicted in alterna-
tives to inflation [23–25].

In this paper we use the two-scale analysis for tensor
perturbations [9, 10, 26] in order to present the updated
BK18 conservative constraints and the perspectives for
future CMB polarization measurements when the theo-
retical prior nt = �r/8 is relaxed. After a review of
the two-scale analysis for tensors in Sec. II, we present
the Planck 2018 + BK18 results in Sec. III with a com-
parison to those derived with BK15 in [9]. In Sec. IV,
we forecast the capability of future B-mode polarization
measurements to constrain a power-law spectrum of grav-
itational waves, by taking as a representative example the
specifications of the LiteBIRD mission [27]. We asses the
dependence on the scales chosen and test how much the
constraints would degrade if the low-multipole B-mode
data were missing. In Sec. V, we draw conclusions.

Paoletti et al. 2208.10482
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FIG. 1. Marginalized joint 68% and 95% CL regions in the nt = �r/8 model for ns and r0.002 from Planck in combination
with BK18 and BK15 data compared to the theoretical predictions of selected inflationary models with the uncertainty in the
number of e-folds N⇤ in the range (50, 60).

The recent release of BICEP-Keck Array data (BK18)
[7] in combination with Planck 2018 data has set a 95%
CL upper limit on the tensor-to-scalar ratio r < 0.035 in
the case of a scale-invariant primordial spectrum of grav-
itational waves. When the tensor tilt nt satisfies the so-
called consistency condition, i.e., nt = �r/8, motivated
by Bunch-Davies initial conditions for tensor modes dur-
ing slow-roll inflation driven by a single real scalar field
with a standard kinetic term (denoted in the following
by SSSRI), the limit is unchanged. This limit leads to
the 95% CL upper bound on the scale of inflation
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Pl < (1.4⇥1016 GeV)4 (95% CL), (4)

or on the Hubble parameter during inflation

H⇤
MPl

< 2.0 ⇥ 10�5 (95% CL). (5)

The improvements with BK18 compared to BK15,
when combined with Planck 2018 data [9], in terms of
tighter constraints to slow-roll inflationary models can
be seen in the (ns, r0.002) plane in Fig. 1.

The availability of an accurate and precise B-mode
polarization likelihood has also made it possible to de-
rive data driven constraints when the theoretical prior
nt = �r/8 is relaxed [9, 10]. This more conservative
and phenomenological approach is justified since devia-
tions from nt = �r/8 are predicted in well-motivated
theoretical inflationary models. These deviations occur,

for example, with a non-standard kinetic term for a sin-
gle scalar field [11] or with a more general Lagrangian
[12], with an initial vacuum state which is not Bunch-
Davies [13], when more than one scalar field is present
[14–16] or these are coupled also through the kinetic
terms [17, 18], and in Gauge-flation when a non-Abelian
gauge field in a particular isotropic configuration drives
the accelerated stage [19]. The relation nt = �r/8 is also
violated when gravitational waves are not only amplified
by the expansion from quantum fluctuations, but also
sourced by spectator fields [20–22] present during infla-
tion, an e↵ect which also leads to significant primordial
non-Gaussianity. More radical departures from a nearly
scale-invariant power spectrum are predicted in alterna-
tives to inflation [23–25].

In this paper we use the two-scale analysis for tensor
perturbations [9, 10, 26] in order to present the updated
BK18 conservative constraints and the perspectives for
future CMB polarization measurements when the theo-
retical prior nt = �r/8 is relaxed. After a review of
the two-scale analysis for tensors in Sec. II, we present
the Planck 2018 + BK18 results in Sec. III with a com-
parison to those derived with BK15 in [9]. In Sec. IV,
we forecast the capability of future B-mode polarization
measurements to constrain a power-law spectrum of grav-
itational waves, by taking as a representative example the
specifications of the LiteBIRD mission [27]. We asses the
dependence on the scales chosen and test how much the
constraints would degrade if the low-multipole B-mode
data were missing. In Sec. V, we draw conclusions.
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Fig. 12.— Joint two-dimensional marginalized contours (68% and 95%) for infla-
tionary parameters, (r, ns) (left panel) and (r, dns/d ln k) (right panel), for Model

M11 in Table 3, with parameters defined at k = 0.002 Mpc−1. (Upper) WMAP
only. (Middle) WMAP+SDSS. (Bottom) WMAP+CBI+VSA. Note that ns > 1

is favored because r and ns are defined at k = 0.002 Mpc−1. At k = 0.05 Mpc−1

ns < 1 is favored. The data do not require a running spectral index, dns/d ln k, at

more than the 95% confidence level.

Figure 13 shows that both the power law ΛCDM model and the running spectral index
model fit the CMB data. At present, the small scale data do not yet clearly distinguish the

two models.

A large absolute value of running would be problematic for most inflationary mod-

els, so further testing of this suggestive trend is important for our understanding of early

3-year (2006)
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Figure 13 shows that both the power law ΛCDM model and the running spectral index
model fit the CMB data. At present, the small scale data do not yet clearly distinguish the

two models.

A large absolute value of running would be problematic for most inflationary mod-

els, so further testing of this suggestive trend is important for our understanding of early
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FIG. 1. Marginalized joint 68% and 95% CL regions in the nt = �r/8 model for ns and r0.002 from Planck in combination
with BK18 and BK15 data compared to the theoretical predictions of selected inflationary models with the uncertainty in the
number of e-folds N⇤ in the range (50, 60).

The recent release of BICEP-Keck Array data (BK18)
[7] in combination with Planck 2018 data has set a 95%
CL upper limit on the tensor-to-scalar ratio r < 0.035 in
the case of a scale-invariant primordial spectrum of grav-
itational waves. When the tensor tilt nt satisfies the so-
called consistency condition, i.e., nt = �r/8, motivated
by Bunch-Davies initial conditions for tensor modes dur-
ing slow-roll inflation driven by a single real scalar field
with a standard kinetic term (denoted in the following
by SSSRI), the limit is unchanged. This limit leads to
the 95% CL upper bound on the scale of inflation

V⇤ =
3⇡2

As

2
rM

4
Pl < (1.4⇥1016 GeV)4 (95% CL), (4)

or on the Hubble parameter during inflation

H⇤
MPl

< 2.0 ⇥ 10�5 (95% CL). (5)

The improvements with BK18 compared to BK15,
when combined with Planck 2018 data [9], in terms of
tighter constraints to slow-roll inflationary models can
be seen in the (ns, r0.002) plane in Fig. 1.

The availability of an accurate and precise B-mode
polarization likelihood has also made it possible to de-
rive data driven constraints when the theoretical prior
nt = �r/8 is relaxed [9, 10]. This more conservative
and phenomenological approach is justified since devia-
tions from nt = �r/8 are predicted in well-motivated
theoretical inflationary models. These deviations occur,

for example, with a non-standard kinetic term for a sin-
gle scalar field [11] or with a more general Lagrangian
[12], with an initial vacuum state which is not Bunch-
Davies [13], when more than one scalar field is present
[14–16] or these are coupled also through the kinetic
terms [17, 18], and in Gauge-flation when a non-Abelian
gauge field in a particular isotropic configuration drives
the accelerated stage [19]. The relation nt = �r/8 is also
violated when gravitational waves are not only amplified
by the expansion from quantum fluctuations, but also
sourced by spectator fields [20–22] present during infla-
tion, an e↵ect which also leads to significant primordial
non-Gaussianity. More radical departures from a nearly
scale-invariant power spectrum are predicted in alterna-
tives to inflation [23–25].

In this paper we use the two-scale analysis for tensor
perturbations [9, 10, 26] in order to present the updated
BK18 conservative constraints and the perspectives for
future CMB polarization measurements when the theo-
retical prior nt = �r/8 is relaxed. After a review of
the two-scale analysis for tensors in Sec. II, we present
the Planck 2018 + BK18 results in Sec. III with a com-
parison to those derived with BK15 in [9]. In Sec. IV,
we forecast the capability of future B-mode polarization
measurements to constrain a power-law spectrum of grav-
itational waves, by taking as a representative example the
specifications of the LiteBIRD mission [27]. We asses the
dependence on the scales chosen and test how much the
constraints would degrade if the low-multipole B-mode
data were missing. In Sec. V, we draw conclusions.

3-year (2006)

Planck + BICEP + Keck 2021
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CMB spectral distortions
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Elastic and inelastic scattering,  
 

Momentum exchange 
 

Thermal/kinetic equilibrium 
Bose-Einstein / Fermi-Dirac 

 

 
for massless particles 

Γ > H
↓

↓

f(p) = 1
e(E−μ)/T − 1

↓

f(p) = 1
e(p−μ)/T − 1

Inelastic scattering,  
 

Chemical equilibrium 
 

 
For particle without conserved numbers: 

Number-changing reactions 
 

Γ > H
↓

Σμi |left = Σμi |right

↓

↓
μ = 0

Photons:    = blackbody/Planck spectrumf(p) = 1
ep/T − 1

Blackbody radiation in early Universe
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Blackbody radiation in early Universe

e-

! e-

Cosmological Microwave Background 109

light-like geodesic. At first order, one merely has to consider unperturbed geodesics
of the flat Friedmann metric, that is, straight lines13 in three-dimensional space.

2.4.1.1. Geodesics equation

The geodesic equation shows that the norm of the individual momentum p of a
photon evolves along its path as:

d ln(a p)

dη
= φ′ − n̂ · #∇ψ [2.27]

where n̂ = #p/p is a vector of norm one pointing in the direction of propagation of the
photon. Equation [2.27] first indicates that in the absence of metric fluctuations, the
momentum would simply be redshifted as p ∝ a−1, due to the expansion stretching
the photon wavelength and reducing its energy. Metric fluctuations modulate this
average evolution. The dilation effect associated with φ′ represents a local fluctuation
of the expansion rate, and thereby of the stretching effect. The gravitational Doppler
effect associated with n̂ · #∇ψ represents the energy gains and losses recorded by
photons falling into or leaving a gravitational potential well.

2.4.1.2. Photon temperature

In the primordial universe, photons are in thermal and chemical equilibrium at
every point with, consequently, a Bose–Einstein distribution of zero chemical
potential, that is, a blackbody spectrum:

fγ(η,#x,#p) =
1

e
p

T (η,"x) − 1
[2.28]

where T (η,#x) is the local value of the photon temperature. This distribution is
isotropic, that is, independent of the direction n̂ of #p. In the instantaneous decoupling
approximation, this blackbody distribution freezes at the time of recombination.
Thereafter, T no longer has the thermodynamic interpretation of a temperature, but
continues to exist as a unique parameter of the blackbody distribution. For simplicity,
it will still be called “temperature”.

If the photons interact only gravitationally after decoupling, the blackbody
distribution cannot be altered. This is easily deduced from the geodesic equation
[2.27] which shows that, even in the presence of metric fluctuations, the relative

13. Genuine geodesics are slightly deflected by metric fluctuations, but this only plays a role
at second order in perturbations, relevant for the description of CMB gravitational lensing (see
section 2.7.2).

Redshifting along geodesics:

Gravity preserves blackbody, but what about late interactions?

!
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Blackbody radiation in early Universe

• Compton scattering (CS): 

 (number conserving)                           Kompaneet equation 

(solution: BE with arbitrary )   

• double Compton scattering (DC): 

 (non-number conserving) 

• Bremsstrahlung (BR): 

   (non-number conserving)

γ + e− ⟶ γ + e−

μ

γ + e− ⟶ γ + γ + e−

e− ⟶ e− + γ
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Blackbody radiation in early Universe

• :   CS, DC, BR efficient: BE with   = blackbody 
energy injection-> no distortion 

• :   only CS: BE with arbitrary mu, Kompaneet can only impose 

  

energy injection-> -distortion 
• :          CS not efficient: Kompaneet at next-to-leading order in  can only impose  

 

energy injection-> -distortion 
• :           additional residuals 

• Even later: CMB photons decoupled anyway  
• Reionization:   CS again, possible -distortions (Sunyaev-Zel’dovitch 1970)

z > 3 × 106 μ = 0

z > 4 × 104

f(p; T, μ = 0) → f(p; T′ , μ) ≃ fBE(p; T,0){1 + μ [0.4561 − T
p ]}

μ
z > 103 H/Γ

f(p; T, μ = 0) → fBE(p; T,0) 1 + y [ p
T

ep/T + 1
ep/T − 1 − 4]

y
z ∼ 103

y
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• Adabatic cooling of electrons and photons: 
• UR particles in equilibrium with themselves:  
• NR particles in equilibrium with themselves:  
• Efficient CS:  

• Inefficient CS:  

  energy extracted from photon,  

• Dissipation of acoustic waves:  
• Diffusion damping  superposition of BB with different temperature,  

 reprocessed as  
• Transfer of energy from small-scale anisotropies to spectral distortions 
• Accurately computed by CLASS 
• Probe of  on very small scales 

• Emission/absorption lines during H and He recombination: y-distorsions + small residuals 

• Sunyaev-Zel’dovitch effect from hot electrons during reionization   

T ∝ a−1

T ∝ a−2

Te = Tb = Tγ ∝ a−1

Te = Tb < Tγ

→ μ = − 3 × 10−9, y = − 5 × 10−10

→
→ μ = 2 × 10−8, y = 4 × 10−9

Pℛ(k)

→ y ∼ 10−6

Lucca, Schöneberg, Hooper, 
JL, Chluba 1910.04619
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Source of distortions in non-minimal cosmology

• Extra power in small-scale Pℛ(k)

Pritchard, Byrnes, JL, Sharma 2505.08442

Exclusion plots on peaks producing PBH

J. Chluba et al., BAAS 51, 184 (2019), 1903.04218
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Source of distortions in non-minimal cosmology

• DM annihilation or decay: products end up heating electrons 

• PBH accretion or evaporation 

• Other exotic energy injection mechanisms in dark sector 

• also produces change in recombination, and thus CMB anisotropies… 
 anisotropy/distortion synergy  distorsion module in CLASS, ExoCLASS branch 

 
→ →

Decaying DM PBH evaporation

Lucca, Schöneberg, Hooper, 
JL, Chluba 1910.04619


