From the Universe to the focal plane

Data acquisition challenges of galaxy surveys

Understanding the LSS

The observed Universe

Cosmology

e.g. see lecture by Elisabeth Krause, Cora Uhlemann

This lecture

This lecture

Why as a theorist should you be interested in challenges of data acquisition?

Why as a theorist should you be interested in challenges of data acquisition?

$$w(z) = w_0 + w_a \frac{z}{1+z}$$

$$w(z) = 0.95 \pm 0.05$$
 is not interesting $w(z) = 0.95 \pm 0.01$ is interesting

• We measure cosmological parameters from the shear power in tomographic redshift slices. With stage-IV Dark Energy surveys (e.g Euclid): accuracy of $\sigma(w_0) = 0.01$ and $\sigma(w_a) = 0.1$

- We measure cosmological parameters from the shear power in tomographic redshift slices. With stage-IV Dark Energy surveys (e.g Euclid): accuracy of $\sigma(w_0) = 0.01$ and $\sigma(w_a) = 0.1$
- The error on w scales roughly as $\frac{\Delta w}{w} \approx 10 \frac{\Delta \gamma}{\gamma}$.

- We measure cosmological parameters from the shear power in tomographic redshift slices. With stage-IV Dark Energy surveys (e.g Euclid): accuracy of $\sigma(w_0) = 0.01$ and $\sigma(w_a) = 0.1$
- The error on w scales roughly as $\frac{\Delta w}{w} \approx 10 \frac{\Delta \gamma}{\gamma}$.
- In WL, we are interested in shear level of $\gamma \sim 0.01$.

- We measure cosmological parameters from the shear power in tomographic redshift slices. With stage-IV Dark Energy surveys (e.g Euclid): accuracy of $\sigma(w_0) = 0.01$ and $\sigma(w_a) = 0.1$
- The error on w scales roughly as $\frac{\Delta w}{w} \approx 10 \frac{\Delta \gamma}{\gamma}$.
- In WL, we are interested in shear level of $\gamma \sim 0.01$.
- This means that we have to measure shear to an accuracy and precision of $\sim 10^{-5}$. This is tiny!!!

- We measure cosmological parameters from the shear power in tomographic redshift slices. With stage-IV Dark Energy surveys (e.g Euclid): accuracy of $\sigma(w_0) = 0.01$ and $\sigma(w_a) = 0.1$
- The error on w scales roughly as $\frac{\Delta w}{w} \approx 10 \frac{\Delta \gamma}{\gamma}$.
- In WL, we are interested in shear level of $\gamma \sim 0.01$.
- This means that we have to measure shear to an accuracy and precision of $\sim 10^{-5}$. This is tiny!!!
- Statistical precision set by $\frac{\Delta \gamma}{\gamma} \approx \frac{\sigma_e}{\gamma \sqrt{N}}$ where $\sigma_e \approx 0.3$ is the shape noise. So we need $N=10^9$ galaxies. Huge survey!

- We measure cosmological parameters from the shear power in tomographic redshift slices. With stage-IV Dark Energy surveys (e.g Euclid): accuracy of $\sigma(w_0) = 0.01$ and $\sigma(w_a) = 0.1$
- The error on w scales roughly as $\frac{\Delta w}{w} \approx 10 \frac{\Delta \gamma}{\gamma}$.
- In WL, we are interested in shear level of $\gamma \sim 0.01$.
- This means that we have to measure shear to an accuracy and precision of $\sim 10^{-5}$. This is tiny!!!
- Statistical precision set by $\frac{\Delta\gamma}{\gamma} \approx \frac{\sigma_e}{\gamma\sqrt{N}}$ where $\sigma_e \approx 0.3$ is the shape noise. So we need $N=10^9$ galaxies. Huge survey!
- Error budget will be dominated by systematics: we want to control with high precision optics and electronics and data processing.

23/07/2025

What is hard

Several effects are **interrelated** (CTI/NL/BFE); Significant **time evolution** of some effects (ice); Some **unexpected** events (proton shower, etc.)

- Possible biases comes from many sources, so each need to be controlled to even higher precisions.
- At small scale, baryonic physics impact shear measurement, so we want to measure shear at scale larger than a few arcmin. We must pay attention to detection effects that could cause systematics coherent distortion at these scales
- If there are systematic residuals impacting shear measurements, we will misinterpret the result and wrongly estimate the cosmological parameters
- Engineers cannot do everything by themselves: they need input from researchers to understand what to precisely monitor and how the residuals of their correction impact shear estimation.

From photons to galaxy catalogues: a complex chain

Example of

Euclid science ground segment

Science Ground Segment

SGS

ESS: Survey planning

SCS: Instrument commanding

HMS: Scientific health monitoring

IOT: Instrument Operations Team

NIR: NISP photometry image processing

MER: Euclid and External data merging

SPE: Spectroscopic redshift and spectral

PHZ: Photometric redshift measurements

SIR: NISP spectroscopy image processing

QLA: Quick look analysis

LE1: Level 1 processing

VIS: VIS image processing

EXT: External data ingestion

SHE: Shear and weak lensing

LE3: Level3 scientific processing

SIM: Image simulations

properties

measurements

Operations Ground Segment

From photons to galaxy catalogues

- A very complex chain
- A huge group of persons that must work together: technicians, software engineers, research engineers, astronomers
- In any case, very inter-disciplinary work:
 - Cosmology
 - Astrophysics: space weather, astronomical foreground, etc.
 - Detector physics

It's fascinating and fun!

- Optics: filters, dichroic, grism, ray tracing
- Engineering
- Software / pipelines / algorithms
- Requirement flow-down / interfaces / management / communication

Outline

Introduction

1. Designing a galaxy survey: basic considerations on telescopes

Telescopes in comparison, on-ground or in space, fov/resolution/sensitivity, imaging versus spectroscopy

2. Overview of existing and upcoming galaxy large-surveys

Overview of DE surveys, Spectroscopic surveys. Zoom on DESI and follow-up, Photometric surveys. Zoom on Euclid

3. From distant galaxies to the detector: the case of VIS on Euclid

Astronomical foreground, being in space, data acquisition chain, zoom on BFE and CTI

4. Euclid: the adventure of a space telescope

Some surprises that can happen when you launch at L2

Conclusion

1. Designing a survey

Some basic considerations on telescopes

Telescopes in comparison

• Each telescope has its own "specialty" on which depends mirror size + focal plane area + detector sensitivity + strategy of sky scanning

Telescopes in comparison

• Each telescope has its own "specialty" on which depends mirror size + focal plane area + detector sensitivity + strategy of sky scanning

HST Launch: 1990

JWSTLaunch: 25 /12/2021

Euclid
Launch: 1/07/2023

First light: 06/2025

copyright: MPG/Phildius

On-ground or in space?

- Each telescope has its own "specialty" on which depends mirror size + focal plane area + detector sensitivity + strategy of sky scanning
- Data from ground-based telescopes are affected by atmosphere which filters certain wavelengths + "low" seeing quality

On-ground or in space?

- Each telescope has its own "specialty" on which depends mirror size + focal plane area + detector sensitivity + strategy of sky scanning
- Data from ground-based telescopes are affected by atmosphere which filters certain wavelengths + "low" seeing quality
- On-ground telescopes can host larger mirror and larger camera than space telescopes

HST Launch: 1990

<mark>JWST</mark> Launch: 25 /12/2021

Euclid
Launch: 1/07/2023

First light: 06/2025

On-ground or in space?

- Each telescope has its own "specialty" on which depends mirror size + focal plane area + detector sensitivity + strategy of sky scanning
- Data from ground-based telescopes are affected by atmosphere which filters certain wavelengths + "low" seeing quality
- On-ground telescopes can host larger mirror and larger camera than space telescope

1. Desiging a survey: basic considerations on telescopes

Field of view / resolution / Sensitivity

- Sensitivity depends on:
 - mirror size
 - o sensitivity of the detector
- Spatial resolution depends on:
 - Atmospheric turbulence
 - o mirror size size and wavelength. Rayleigh Criterion: $R \sim 1.22 \frac{\lambda}{D}$
- Field of view depends on
 - detector size

1% de la surface de la pleine lune Hubble

0.7% de la surface de la pleine lune JWST

https://www.mpg.de/24878805/telescopes-in-comparison?c=2249

In space: low-orbit or L2?

In space: low-orbit or L2?

• Low-orbit: e.g. HST (< 600km)

BUT

- Maintenance is possible!
- Target occultation by the Earth for varying duration during each 96minute orbit, depending on target's angle from the spacecraft's orbital plane
- Geocoronal emission, Earth shine, zodiacal light
- Orbital thermo-cycling / shadow passage every 90 min
- L2: e.g. JWST, Euclid, Gaia, Planck, ...etc
 - Lower background
 - More thermally stable
 - Better visibility all the time.
- **BUT** O No possible maintenance
 - More sensitive to space weather (not protected by earth magnetic field)

Credit: NASA's Scientific Visualization Studio

Earth magnetic field

2. Existing and upcoming galaxy large-surveys for DE

- A. Spectroscopic redshift surveys
- B. Weak lensing surveys

1. Desiging a survey: basic considerations on telescopes

Imaging

Weak lensing

- Photometric surveys:
 - galaxy angular positions
 - o shapes
 - o redshift distributions in tomographic bins
- > shear power in tomographic redshift slices
- Sources of noise:
 - Not enough statistics
 - Redshift distribution incorrectly known
 - Systematics in shape measurements
- Strategy to improve measurements:
 - Larger sky coverage, deeper images
 - Multi-wavelength photometry + good knowledge of galaxy spectra diversity
 - High resolution photometry (in space), NIR, good control of the wavefront error

Imaging versus spectroscopy

Weak lensing

clustering

- Photometric surveys:
 - galaxy angular positions
 - o shapes
 - o redshift distributions in tomographic bins
- > shear power in tomographic redshift slices
- Sources of noise:
 - Not enough statistics
 - Redshift distribution incorrectly known
 - Systematics in shape measurements
- Strategy to improve measurements:
 - Larger sky coverage, deeper images
 - Multi-wavelength photometry + good knowledge of galaxy spectra diversity
 - High resolution photometry (in space), NIR, good control of the wavefront error

- Spectroscopic surveys:
 - galaxy angular positions
 - accurate redshifts. In general target selections from imaging surveys (not for grism)
- Compress galaxy positions into power spectrum
- Sources of noise:
 - Not enough statistics
 - redshift errors
 - Finite number of tracers / sampling bias
- Strategy to improve measurements:
 - Larger sky coverage, fainter flux limit (less catastrophic failures, higher sampling)
 - Larger wavelength coverage (reduce sampling bias, higher redshift)
 - Higher spectral resolution (better quality redshift, less catastrophic failures) $R = \frac{\lambda}{\Delta \lambda}$

Additional considerations on spectroscopy

Multi-object spectrograph

e.g: BOSS, DESI

- Need imaging survey for target selection
- Large-flexibility in imaging strategy

Slitless spectroscopy

e.g: NISP (Euclid), WFI (Roman)

- No target selection ~ dispersed imaging
- Intricate mixing of spatial and spectral information

Performances: Number of fibers (and configuration time), Wavelength resolution (+FoV, sensitivity, wavelength range)

Performances: **Spatial resolution, Wavelength resolution** (+FoV, sensitivity, wavelength range)

Classification of the Dark Energy Task Force

Albrecht+2006: Report of the Dark Energy Task Force

Performance of a survey quantified in terms of gain in the DE figure of merit (i.e reducing the area of the 95% confidence limit in the $w_0 - w_a$ plane)

2dF, SDSS

Stage II: observational status in 2010

BOSS / SDSS-III *

Stage III: experiment started in the 2010s

eBOSS / DES / HSC / KIDS-1000 *

Stage IV: experiments started in the 2020s

DESI/ DESI-II / Euclid / LSST / Roman *

Stage V?

Spec-5: https://spec-s5.org/Besuner+25, Schlegel+22, WST

*non-exhaustive list

Overview of past spectroscopic surveys,

Giovanelli&Haynes+91
Sandage 1975
Rood 1988

CfA2 and SSRS2 redshift surveys, Chincarini, G., & Guzzo, L., 1998

Spectroscopic surveys: overview

Spectroscopic surveys: overview

Credit: <u>David J. Schlegel</u> (Berkeley Lab using data from DESI)

Spectroscopic surveys: stage IV

Spectroscopic surveys: DESI(-II)

- OKitt Peak observatory (Arizona). 4m telescope
- \circ 5000 fibres, FoV 8 deg^2
- 700 "effective hours" per year = dark, clear time with good (1.1 arcsec) seeing

- **DESI (2021-2026)** 14000 deg^2 (360-980 nm)
 - hundreds of millions of redshifts (~8000 gal/ deg^2)
 - Selection using flux /color cuts to deliver galaxy samples at a optimized density given observation constraints
 - \circ BGS 13.5 million galaxies 0.05 < z < 0.4
 - \circ LRGS 8 million galaxies 0.4 < z < 1.1
 - o ELG [OII 372] nm 16 millions 0.6 < z < 1.6
 - \circ QSO+ Lyman-alpha 3 millions 0.8 < z < 3.5
- DESI-II (2029-2035) $> 10000 deg^2$
 - probe 2 < z < 4.5 Universe with LAEs (Lyman Alpha Emitters) and LBGs (Lyman Break Galaxies)
 - higher-density z < 1 galaxy sample

Spectroscopic surveys: stage-V DE experiments

- Aim:
 - Extend redshift coverage
 - Extend galaxy density
- Technical improvements:
 - Extend primary mirror size
 - More fibers positioners => 15 faster than DESI
 - Extend wavelength coverage
- Need: imaging survey for target selection (e.g. LSST) esp. dropouts LBG at z>2

Photometric surveys: overview of stage-III DE experiments

Photometric surveys: overview

	Survey	res	Area	Bands	depth	density
		arcsec	deg ²	nm		gal/arcmin ²
Stage-II	SDSS-III		10000	ugriz	r ~ 23.5	2
	2000 –					
Stage-III	HSC-SSP [3]	0.58	1400	grizy	$r \sim 26.1 (5\sigma)$	20
	2014 -					
	DES [4]	0.96	5000	grizY	$r \sim 24.3 \; (10\sigma)$	6
	2013 – 2019					
	KiDS	0.7	1350	$ugri(+ZYJHK_s)$	$r \sim 25 (5\sigma)$	6
Stage-IV	Euclid	0.16	14000	VIS+YJH	$I_{\rm E} \sim 24.5 \ (10\sigma)$	30
	2023-2030					
	LSST	0.7	18000	ugrizY	$r \sim 27.5 (5\sigma)$	30
	2025 – 2035					
	Roman	0.2	2000	YJH	$Y \sim 26.5$	50
	2026 – 2032					

Galaxy WL: choice of filter passbands

A broad red band is preferred to **limit clumpiness** and maximise the number of sources

But angular resolution decreases with

Galaxy WL: choice of filter passbands

A broad red band is preferred to **limit clumpiness** and maximise the number of sources

But angular resolution decreases with

Galaxy WL: choice of filter passbands

A broad red band is preferred to **limit clumpiness** and maximise the number of sources But angular resolution decreases with

A major step forward with Euclid

A major step forward with Euclid

Euclid collaboration Mellier+25

V. Rubin: Ivezic et al. 2019

Euclid: Laureijs et al. 2011

Euclid, V. Rubin, Roman observatories in Manual Akeson et al. 2019 comparison

Overview of Euclid

Euclid collaboration: Mellier et al. 2024

Scan 14000 deg^2 in 6 years Need on-ground complementary data for redshift computation

DR1 release (1900 deg^2 : oct. 2026) Q1 release (63 deg^2 : march 2025) proposal launch 2012 2023

2007

https://www.cosmos.esa.int/web/euclid/euclid-q1-data-release

Euclid Quick data release 1 Scan 14000 deg² in 6 years Purchased on-ground complementary data for redshift computation 2 and 2 and

Euclid collaboration: Mellier et al. 2024

DR1 release (1900 deg^2 : oct. 2026)

2007

2012

2023

2. Overview of existing and upcoming galaxy large-

Overview of Euclid: 2 instruments

The NISP will measure redshifts of 25 millions of galaxies, up to z=1.8 over $14000 deg^2$ with a grism

Technical characteristics:

- •60 millions of pixel
- •field of view 57 deg²
- •16 detectors, 0.3" / pixel
- •3 photometric bands
- 2 spectroscopic bands
- •Spectral resolution: R~480

Depths:

24.5 AB mag (5 opint source) and 2e-16 erg/s/cm2 (line flux)

VIS will measure the precise shapes of > 2 billions of galaxies, and over 14000 deg^2 using photometry (40 000 exposures).

Technical characteristics

- •600 million pixels
- •0.1"/pixel
- •530–920 nm wavelength range defined by coated
- •field of view: 0.55 deg
- •exposure times 10min:
- 400000 detected galaxies, with the 50000 most brightest will be used for shape measurements

Veak lensing

3. From distant galaxies to the detector

The example of VIS on Euclid

- High accuracy on galaxy shapes
 - · ... Requires a clean galaxy catalogue (no artefacts)

- Reasonable measurement of galaxy fluxes
- Redshift distribution in tomographic slices

What is a galaxy?

What are galaxies in the images?

Stars – Point Spread Function

Credit: S. Bridle

What is an object? Sky background extraction

What is an object? Sky background extraction

 Background contains mostly zodiacal light and straylight from stars and solar system bodies + cirrus clouds

What is an object? Sky background extraction

- Background contains mostly zodiacal light and straylight from stars and solar system bodies + cirrus clouds
- Large-scale coherence of the background. If not correctly accounted for, it can add-up systematics to galaxy fluxes / shape measurements
- But what are object edges? Sometimes it is hard to tell!

Akhlagi+15: NoiseChisel

- High accuracy on galaxy shapes
 - · ... Requires a clean galaxy catalogue (no artefacts)
 - ... Requires a robust tool to estimate shapes (in Euclid: LensMC, <u>Euclid Collaboration</u>: <u>G. Congedo</u>+24)
 - · ... Requires an accurate calibration of the PSF

- Reasonable measurement of galaxy fluxes
- Redshift distribution in tomographic slices

- High accuracy on galaxy shapes
 - · ... Requires a clean galaxy catalogue (no artefacts)

· ... Requires a robust tool to estimate shapes (in Euclid: LensMC, <u>Euclid Collaboration</u>: <u>G.</u>

Congedo+24)

• ... Requires an accurate calibration of the PSF

- Reasonable measurement of galaxy fluxes
- Redshift distribution in tomographic slices

- High accuracy on galaxy shapes
 - ... Requires a clean galaxy catalogue (no artefacts)
 - ... Requires a robust tool to estimate shapes (in Euclid: LensMC, <u>Euclid Collaboration</u>: <u>G. Congedo</u>+24)
 - ... Requires an accurate calibration of the PSF
 - Requires to clean for all the effects impacting the pixels

- Reasonable measurement of galaxy fluxes
- Redshift distribution in tomographic slices

A look at Euclid first images

A look at Euclid first images

Space weather

mai 2024, Pugny-Chatenod

Being in space means ... being sensitive to space weather

Impact on VIS images

Several kind of cosmics with different morphologies

- Electrons
- Protons
 - Long-term damage (CTI)
- Energetic Xray from solar flares
 - Comes from incomplete shielding of X-Ray (see left)
 - No long-term damage
 - <3% loss of images</p>

Credit: ESA/Euclid consortium / NASA

Impact on VIS images

Several kind of cosmics with different morphologies

- Electrons
- Protons
 - Long-term damage (CTI)
- Energetic Xray from solar flares
 - Comes from incomplete shielding of X-Ray (see left)
 - No long-term damage
 - 0 <3% loss of images</p>

How to mask cosmics?

- Cosmic rays do not go through the optical system
 - > not affected by PSF
 - > Can be identified from the sharpness of their edge
- Still hard to correctly mask cosmics in the core of stars

Overview of a data acquisition chain: VIS on

300 000 galaxies 50 000 directly useable for shape measurement

Overview of a data acquisition chain: VIS on Euclid

Overview of a data acquisition chain: VIS on Euclid

Photons Overview of a data acquisition chains **A** pixel instrument Photons to signal conversion Focal

Overview of a data acquisition c Charge collection IØ2 high, IØ1 and IØ3 low (2) Charge transfer (charge coupling) IØ2 and IØ3 high, IØ1 low instrument Charge transfer (charge coupling) $\,$ IØ3 high, IØ1 and IØ2 low Photons to signal conversion ×009 Focal Optical chain 23/07/2025

How to quantify the impact of electronics / optics at the pixel level?

- We take calibration exposures
- It is a significant amount of telescope time!

VIS	
4 $I_{\rm E}$ -band nominal exposures	566 s each
$2 I_{\rm E}$ -band short exposures	95 s each
Bias	2 per day
Dark	4 per day
Flat	6 per day
Trap pumping	6 per day
Charge injection	8 per day
NISP	
4 red-grism spectro exposures	574 s each
4 $Y_{\rm E}$ -band exposures	112 s each
4 $J_{\rm E}$ -band exposures	112 s each
$4 H_{\rm E}$ -band exposures	112 s each
1 Dark	112 s

23/07/2025

What happens when illuminating the FPA with the calibration lamp?

https://www.ias.u-psud.fr/fr/activites-techniques/serviceoptique/euclid

This is a calibration exposure

What happens when illuminating the FPA with the calibration lamp?

Flat-fields are crucial for calibration:

- PRNU (small-scale variations, wavelength dependent)
- Dark pixels (from master flats)
- Gain (from variance in pairs of flat-fields)
- . Non-linearity (as a complementary dataset)
- . CTI
- . Bright-fatter (correlation in pairs of flat-fields)

This is a calibration exposure

The response of a given pixel to illumination is independent of the content of the neighboring pixels.

The response of a given pixel to illumination is dependent of the content of the neighboring pixels.

The response of a given pixel to illumination is dependent of the content of the neighboring pixels.

CAUSE:

Coulomb forces induced by stored charges in a pixel deflect forthcoming charges

- → "Sharing of charge" between pixels (but total charges are conserved)
- → Change of "sharing of charge" between neighboring pixels as charge build up in the pixels
- → The details of this "sharing of charge" depends on manufacturing details of the CCD

The response of a given pixel to illumination is dependent of the content of the neighboring pixels.

CAUSE:

Coulomb forces induced by stored charges in a pixel deflect forthcoming charges

- "Sharing of charge" between pixels (but total charges are conserved)
- → Change of "sharing of charge" between neighboring pixels as charge build up in the pixels
- → The details of this "sharing of charge" depends on manufacturing details of the CCD

CONSEQUENCE:

Star PSF broaden with increasing flux!

PROBLEM for WL:

Bright stars are usually used to estimate the PSF, while faint galaxies used for WL are impacted by faint/smaller PSF.

Overcorrecting for the PSF might lead to shear overestimation.

Brighter-Fatter effect: diagnostic and correction

The response of a given pixel to illumination is independent of the content of the neighboring pixels.

Coulton+2018

- Neigboring pixels are correlated
- Statistics of pixels is not poissonian anymore

(a) Correlations in a 15 second exposure

(b) Correlations in a 60 second exposure

Brighter-Fatter effect: diagnostic and correction

The response of a given pixel to illumination is hopendent of the content of the neighboring pixels.

Neigboring pixels are correlated

23/07/2025

Statistics of pixels is not poissonian anymore

- Correction: The BFE kernel (deflection field) is the solution of the Poisson equation with the pixel covariance as the source term
- The image is convolved with the kernel to compute a deflection potential
- The algorithm calculates the required pixel-to-pixel flux transfers from the gradient of this potential

Brighter-Fatter effect: diagnostic and correction

The response of a given pixel to illumination is independent of the content of the neighboring pixels.

Neigboring pixels are correlated

(a) Correlations in a 15 second exposure

23/07/2025

Statistics of pixels is not poissonian anymore

(b) Correlations in a 60 second exposure

-●- Poisson

Deterioration due to radiation damage: charge-transfer inefficiency Credit: ESA/Euclid consortium / NASA

23/07/2025

Deterioration due to radiation damage: chargetransfer inefficiency

Deterioration due to radiation damage:

Charge-transfer inefficiency calibration

2 daily calibration data sets to identify traps Charge Injection (trailing of known patterns of charge), Trap Pumping (shuffling charge over defects)

- Model describe the capture & release of electrons. Well understood from solid state physics / lab.
- Parameters describing trap properties on each CCD:
 - Exponential release time constant of each trap.
 - Density ρt of each trap species.
 - \circ The volume fill parameter β .

92

flagmaps

(hot pix., cold pix., saturated pix, crosstalks, ghosts, cosmic rays)

An example of processing pipeline

4. Euclid: the adventures of a space telescope

1er Juillet 2023,

Cap Canaveral, Floride

23/07/2025

Turning-on VIS

Credit: M. Schirmer

1400

1200

لة 1000

- 800

600

- 400

Turning-on VIS

Credit: M. Schirmer

Credit: ESA

Turning-on VIS

Credit: ESA

Turning-on VIS

Straylight depends on the telescope attitude with respect to the $sun_{AA=0}$

Need to design again the entire survey to account for the new AA constraint: impact on survey area

Fine guidance sensor (FGS) tracking anomaly

Fine guidance sensor (FGS) tracking anomaly correction

Credit: ESA / Euclid Consortium / NASA / K. Kuijken

Fine guidance sensor (FGS) tracking anomaly correction

Credit: ESA / Euclid Consortium / NASA / K. Kuijken

The importance of monitoring

Ice!

- Material outgassing in a vacuum leads to molecular contamination
- a well-known problem in spaceflight
- too much ice means that calibration requirements cannot be met anymore
- Euclid must be thermally decontaminated
 Schirmer+2023

MLI layers. Credit: John Rossie / AerospaceEd.org, CC BY-SA 3.0

The importance of monitoring: ice contaminations is contaminated in the contamination of the

23/07/2025

The importance of monitoring: ice decontamination

ESA / Euclid Consortium

The importance of monitoring: ice decontamination

March 2024: first de-icing contamination

June 2024: second de-icing contamination

5. Additional considerations and conclusion

With great statistical power comes big data

Challenges of data downlink, storage, processing and release

• Euclid:

- 9Gb for one VIS frame and associated products (weight map, background map, etc).
- One single run of MER processing more than 500GB in ~10+hours.
- Several 10PB over the full surveys
- Vera Rubin Observatory: https://rubinobservatory.org/for-scientists/rubin-101/key-numbers
 - Each image is 8Gb. 1000 per night + 450 calibration exposures
 - 20 TB per night. 60 PB over 10 years. Several hundreds PB after processing
 - Prompt processing is required to raise alerts (in case of transients): ~10millions per night

The need for complementary observations

Lower Priority to Higher Priority

Complementary Data

- necessary for core Euclid cosmology measurements
- examples:
 - multiband optical imaging (wide field and deep/calibration fields)
 - spectroscopy for photometric redshift (photo-z) calibration
 - stellar spectroscopy for PSF modelling
 - HST imaging for galaxy shape calibration

Enhancing Data

- enhance Euclid cosmology measurements, but not required
- examples: infrared imaging of deep + calibration fields

Ancillary Data

- enables broad legacy science

Tertiary Data

enables specific legacy science

Complementary Observations Group: J.C. Cuillandre (wide survey), D. Stern (deep survey & spectroscopy) and K. Kuijken (end-2-end)

Aim: coordinate, prioritize, and track efforts to obtain complementary observations for Euclid

The importance of synergies between surveys

The importance of synergies between surveys

The importance of synergies between surveys: deblending

Conclusion

Data acquisition challenges:

• Meeting the aimed precision for cosmology requires drastic calibrations and pixel-level corrections

Other challenges that I didn't talk much about

- Complementary probes and synergies are pivotal to make a survey give its best
- How to get from the images to galaxy catalogues (source extraction, profile fitting, photometric redshifts)
- The amount of data poses new challenges in terms of storage and processing
- Interpretation of the lensing signal is not immune to astrophysical processes (intrinsic alignments, etc.)

Your take home message:

- Understanding data acquisition is pivotal to control systematics
- It drives you closer to the physical reality of the experiment, and it is actually fun!
- NB: many other probes and telescopes not discussed today: PSF, WST, CSST, MUST, Lyman-alpha forest, radio, etc.