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Few practical concepts on experimental CMB.

Secondary anisotropies

Deep dive on CMB lensing…

Quadratic estimators…

Cross-correlation with large-scale 
structure

Delensing: synergies between LSS,  
CMB and primordial universe.

Thermal and kinetic Sunyaev Zeldovich

Integrated Sachs-Wolfe and CIB if time

Outline (optimistic)
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The Universe as we know it
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Open questions in cosmology as of 2025

• What is dark matter? Do massive neutrinos contribute?

• What is the nature of dark energy? Is General Relativity correct?

• Which mechanism drove primordial inflation?
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Fig. 24.— Recent measurements of the CMB temperature anisotropy and polarization. The two models, the thin nearly overlapping
grey lines, are from Planck (dashed line) and from ACT plus WMAP (A20, solid line). The primordial BB signal with r = 0.1 is also
shown with the dot-dashed line. For Planck we show the 2018 results (Planck Collab. V et al. 2019). For SPT we show Henning et al.
(2018) for 150 GHz TT ` < 2000, TE and EE, and Sayre et al. (2019) for BB. For ` > 2000 we show the SPT spectrum from George
et al. (2015) which has been corrected for point source emission. It is visually indistinguishable from the more precise but uncorrected
spectrum in Reichardt et al. (2020). For Polarbear/Simons Array we show EE from Adachi et al. (2020) and BB from pipeline A in
POLARBEAR Collaboration et al. (2017). For BICEP2/Keck we use Ade et al. (2018). All error bars are one sigma and points with no
lower bound in TT and EE have been dropped at high `. There is much more to each data set than is plotted here, for example additional
frequencies. For ACT we also show preliminary EE results that were not used in the analysis: for ` = [103, 150.5, 200.5, 250.5, 300.5],
DEE

` = [1.14± 0.32, 1.40± 0.22, 0.70± 0.14, 2.02± 0.20, 9.74± 0.39] (µK)2.
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Fig. 24.— Recent measurements of the CMB temperature anisotropy and polarization. The two models, the thin nearly overlapping
grey lines, are from Planck (dashed line) and from ACT plus WMAP (A20, solid line). The primordial BB signal with r = 0.1 is also
shown with the dot-dashed line. For Planck we show the 2018 results (Planck Collab. V et al. 2019). For SPT we show Henning et al.
(2018) for 150 GHz TT ` < 2000, TE and EE, and Sayre et al. (2019) for BB. For ` > 2000 we show the SPT spectrum from George
et al. (2015) which has been corrected for point source emission. It is visually indistinguishable from the more precise but uncorrected
spectrum in Reichardt et al. (2020). For Polarbear/Simons Array we show EE from Adachi et al. (2020) and BB from pipeline A in
POLARBEAR Collaboration et al. (2017). For BICEP2/Keck we use Ade et al. (2018). All error bars are one sigma and points with no
lower bound in TT and EE have been dropped at high `. There is much more to each data set than is plotted here, for example additional
frequencies. For ACT we also show preliminary EE results that were not used in the analysis: for ` = [103, 150.5, 200.5, 250.5, 300.5],
DEE

` = [1.14± 0.32, 1.40± 0.22, 0.70± 0.14, 2.02± 0.20, 9.74± 0.39] (µK)2.

Cosmological probes: CMB
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• Also improvements on  and others from new polarization measurements. ∑ mν

Josquin Errard 
 on the behalf of the Simons Observatory collaboration  

53rd Rencontres de Moriond 
La Thuile, Italy, 22 March 2018
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Is CMB “the” CMB?
• CMB is a snapshot of the universe at z ~1100.... plus lots of other things!

• Imprint of astrophysical emissions (galactic / extragalactic…)

• Late time physics (e.g. Integrated Sachs-Wolfe effect, weak lensing)

7

10 G. E. Addison et al.

Figure 4. Comparison of power spectra of primary and secondary CMB temperature anisotropies and foregrounds at 150 GHz. The
data points are the latest SPT (Reichardt et al. 2011; R12) and ACT (Das et al. 2011) measurements; we simply overplot the various
power spectrum components here rather than performing a fit to these data. The CIB clustering power was reproduced from the
model of Xia et al. (2011; X12), as described in Section 3.1. The tSZ power spectrum was obtained from the model described in
Efstathiou & Migliaccio (2012; EM12), fixed to have ℓ(ℓ+ 1)CtSZ

ℓ /2π|ℓ=3000 = 4 µK2 (see Section 3.2), and the tSZ×CIB power, which
is negative at 150 GHz, was calculated by combining the X12 and EM12 models, as described in Sections 2 and 3. We show the kSZ
power calculated in Sehgal et al. (2010). Radio and CIB point source shot noise levels were taken from R12 and X12 respectively (the
ACT data points have been corrected to account for the difference in radio source shot noise levels due to more sources being masked
by SPT). The primary lensed CMB power was calculated assuming a standard ΛCDM cosmology consistent with WMAP constraints
(Komatsu et al. 2011).

bulk electron motion in galaxy clusters and the intergalactic medium but assumes instantaneous reionization; including the
effect of patchy reionization would increase this signal. Since the tSZ×CIB power is negative for the principal CMB channels

of ACT, SPT and Planck, we would expect uncertainty in the tSZ×CIB power to degrade constraints on the upper limit of

the kSZ.

In principle, the tSZ×CIB and kSZ components could be separated on the basis of their frequency dependence, however,

we find that the frequency dependence is actually very similar across much of the frequency range probed by ACT and SPT.

Figure 5 shows the frequency dependence of the tSZ, clustered CIB, tSZ×CIB and kSZ power. The tSZ and clustered CIB
power are – individually – easily distinguishable from a blackbody, however the tSZ×CIB closely resembles a blackbody

(horizontal line) for ν < 200 GHz. This will further worsen kSZ constraints, and indeed R12 find that the kSZ upper limit

is increased by more than a factor of two when the tSZ×CIB correlation is allowed, despite using data from all three SPT
channels.

To assist in the analysis of small-scale CMB data, we have made the tSZ×CIB curve from Figure 4 available to download1.

1 http://www.physics.ox.ac.uk/users/AddisonG/

Addison et al. 2012

• ICM 
(g)astrophysics, 
cosmology (SZ)

• Star formation, 
cosmology (CIB)

• Extragalactic 
astronomy, 
Galaxy evolution
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CMB analysis chain
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Fig. 24.— Recent measurements of the CMB temperature anisotropy and polarization. The two models, the thin nearly overlapping
grey lines, are from Planck (dashed line) and from ACT plus WMAP (A20, solid line). The primordial BB signal with r = 0.1 is also
shown with the dot-dashed line. For Planck we show the 2018 results (Planck Collab. V et al. 2019). For SPT we show Henning et al.
(2018) for 150 GHz TT ` < 2000, TE and EE, and Sayre et al. (2019) for BB. For ` > 2000 we show the SPT spectrum from George
et al. (2015) which has been corrected for point source emission. It is visually indistinguishable from the more precise but uncorrected
spectrum in Reichardt et al. (2020). For Polarbear/Simons Array we show EE from Adachi et al. (2020) and BB from pipeline A in
POLARBEAR Collaboration et al. (2017). For BICEP2/Keck we use Ade et al. (2018). All error bars are one sigma and points with no
lower bound in TT and EE have been dropped at high `. There is much more to each data set than is plotted here, for example additional
frequencies. For ACT we also show preliminary EE results that were not used in the analysis: for ` = [103, 150.5, 200.5, 250.5, 300.5],
DEE

` = [1.14± 0.32, 1.40± 0.22, 0.70± 0.14, 2.02± 0.20, 9.74± 0.39] (µK)2.
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Figure 2: CMB data analysis pipeline.

where sp is the temporally constant (but spatially varying) CMB signal and nt is the temporal
detector noise. The matrix Atp is the pointing matrix which gives the weight of each pixel p in
time sample t. This matrix is typically very sparse with normally only one nonzero entry for a total
power temperature observation, two nonzero entries for a differencing temperature observation and
three nonzeros for a total power polarization observation; the nonzero values in the rows correspond
to the pixels being observed, at the time denoted by the row, and the columns, that typically have
many nonzero entries, correspond to all the times a given pixel has been observed. The Gaussian
noise likelihood function can be maximized over all possible sky signals to yield the map-making
equations

N
�1
pp0 = A

T
tpN

�1
tt0 At0p0 , (7)

zp = A
T
tpN

�1
tt0 dt0 , (8)

dp = Npp0zp0 . (9)

This results in the sky maps for the different frequencies, where each frequency map is the
weighted average of all the maps of the different channels at that frequency. One of the advantages

6

CMB analysis chain: a radical compression
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 More than 
1010x 

compression

Your favorite science here! 
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Planck Collaboration: The Planck mission
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Fig. 25. Measured angular power spectra of Planck, WMAP9, ACT, and SPT. The model plotted is Planck’s best-fit model including Planck
temperature, WMAP polarization, ACT, and SPT (the model is labelled [Planck+WP+HighL] in Planck Collaboration XVI (2013)). Error bars
include cosmic variance. The horizontal axis is ⇥0.8.

than that measured using traditional techniques, though in agree-
ment with that determined by other CMB experiments (e.g.,
most notably from the recent WMAP9 analysis where Hinshaw
et al. 2012c find H0 = (69.7 ± 2.4) km s�1 Mpc�1 consis-
tent with the Planck value to within ⇥ 1�). Freedman et al.
(2012), as part of the Carnegie Hubble Program, use Spitzer
Space Telescope mid-infrared observations to recalibrate sec-
ondary distance methods used in the HST Key Project. These
authors find H0 = (74.3±1.5±2.1) km s�1 Mpc�1 where the first
error is statistical and the second systematic. A parallel e⇥ort by
Riess et al. (2011) used the Hubble Space Telescope observa-
tions of Cepheid variables in the host galaxies of eight SNe Ia to
calibrate the supernova magnitude-redshift relation. Their ‘best
estimate’ of the Hubble constant, from fitting the calibrated SNe
magnitude-redshift relation is, H0 = (73.8 ± 2.4) km s�1 Mpc�1

where the error is 1� and includes known sources of systematic
errors. At face value, these measurements are discrepant with the
current Planck estimate at about the 2.5� level. This discrep-
ancy is discussed further in Planck Collaboration XVI (2013).

Extending the Hubble diagram to higher redshifts we note
that the best-fit�CDM model provides strong predictions for the
distance scale. This prediction can be compared to the measure-
ments provided by studies of Type Ia SNe and baryon acoustic
oscillations (BAO). Driven in large part by our preference for
a higher matter density we find mild tension with the (relative)
distance scale inferred from compilations of SNe (Conley et al.
2011; Suzuki et al. 2012). In contrast our results are in excellent

agreement with the BAO distance scale compiled in Anderson
et al. (2012).

The Planck data, in combination with polarization measured
by WMAP, high-⇥ anisotropies from ACT and SPT and other,
lower redshift data sets, provides strong constraints on devia-
tions from the minimal model. The low redshift measurements
provided by the BAO allow us to break some degeneracies still
present in the Planck data and significantly tighten constraints on
cosmological parameters in these model extensions. The ACT
and SPT data help to fix our foreground model at high ⇥. The
combination of these experiments provides our best constraints
on the standard 6-parameter model; values of some key parame-
ters in this model are summarized in Table 9.

From an analysis of an extensive grid of models, we find no
strong evidence to favour any extension to the base �CDM cos-
mology, either from the CMB temperature power spectrum alone
or in combination with Planck lensing power spectrum and other
astrophysical datasets. For the wide range of extensions which
we have considered, the posteriors for extra parameters gener-
ally overlap the fiducial model within 1�. The measured values
of the �CDM parameters are relatively robust to the inclusion
of di⇥erent parameters, though a few do broaden significantly if
additional degeneracies are introduced. When the Planck likeli-
hood does provide marginal evidence for extensions to the base
�CDM model, this comes predominantly from a deficit of power
(compared to the base model) in the data at ⇥ < 30.

The primordial power spectrum is well described by a
power-law over three decades in wave number, with no evidence

35
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Mapmaking: the most challenging inverse problem
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Map-making

dt = Ipt + cos(2't)Qpt + sin(2't)Upt + nt

Samples of the TOD
recorded at time t

Pixelized maps
of the Stokes 
parameters

Sky pixel observedOrientation of the 
detector projected 

on the sky

Noise contribution

The complete time stream

d = As+ n

A = Pointing matrix

s = sky signal

n = noise with covariance N

Generalised 
Least
Squared  
estimator

ŝ = (A>WA)�1A>Wd

Minimize the “chi-square”

W can be any symmetric positive definite matrix.  
 
Minimum variance when W = N-1

➡Noise characterization important

(d�As)>W(d�As)

14

ŝ = Np ⇥Np
Np ⇥Nt

�1. . Np ⇥Nt.Nt ⇥Nt
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Mapmaking: the most challenging inverse problem

• Unbiased GLS solution 

• Challenging, advanced algebraic techniques mandatory
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the value of the chopping frequency changes for each chunk. For each these
where the frequency is fixed, the gain g of the detector is fitted as if the
incoming radiation on the focal plane was modulated as an incoming elec-
tromagnetic wave

d(t) = A cos(⇥ct) +B sin(⇥ct) g�ce
i�ct (9.4)

where ⇥c is the chopper frequency value for that specific subscan and we
fixed the phase information to zero. Despite the square wave is defined
as an infinite Fourier series of cosine and sines, the first term of the series
model the effect sufficiently well for our purpose. The gain of the detectors
is then computed as g�c = A 2 + B 2 for each value of ⇥c. Once we
have determined the gain amplitude we can solve for the time constants
noting that a bolometer records a modulation of the incoming power as an
RC circuit.

C
dT(t)

dt
= GT(t) + P(t) (9.5)

where G is the heat capacity of the bolometer and G its thermal conductivity.
If we solve this differential equation in the Fourier domain we can determine
the transfer function of the circuit as

T̂(⇥) =
(P̂(⇥)/G)

1+ i⇥�

g�
1+ i⇥�

(9.6)

where we assumed the incoming power recorded by the instrument to be
eq. 9.4. Since the POLARBeaR detectors do not measure the phase infor-
mation we only can measure the absolute value of the quantity in eq.9.6,
we can fit for the time constants as a function of frequency one we have
an estimate of the g quantity as a function of frequency, which we derived
in the real domain a first step of the analysis. We report in fig. 9.14 and
example of the results of the gain and time constant fitting procedure. We
note that the majority of the time constant is comparable to the sampling
frequency of the experiment. A frequency of 190Hz corresponds, in fact,
to a period of 5.2ms and therefore the effects of the time constant can be
safely neglected in the high-level step of the analysis. The result of the gains
fitting done directly on non-calibrated timestreams has therefore the units
of the timestream itself as recorded from the detectors. For this reason the
gain fitted from the stimulator must be absolute-calibrated on a source with
known brightness temperature as the stimulator brightness temperature per
se is not sufficiently stable. The gain fitted from the stimulator is one of the
sources of the data cuts in an observation as channels having already too
high or too low values for this quantity are discarded as they are too noisy
or they are not working correctly. In fig. 9.14 we show also a cumulative dis-
tribution over the first year of observation of the channels which managed
to perform a stimulator fit and for which it was possible to have an absolute
calibration. We can see that for the most part of the observation achieved a
yield of roughly 80%.

✏.�.� Mapmaking
Since CMB scanning experiments acquire data as series of time ordered

measurements (TOD), it is necessary to reconstruct the sky signal, a 2-d
object, from this one dimensional sequence. This operation is known as
mapmaking and consist of the inversion of the linear problem

d = A s + n. (9.7)
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nal using a maximum likelihood method. The maximum likelihood esti-
mate of the sky signal given the noise covariance matrix N nTn is then
(Tegmark, 1997)

ŝ = (ATN 1A) 1ATN 1d. (9.9)

For modern CMB experiments observing the sky with thousands of de-
tectors and at high resolution, the dimension of the problem prevent any
brute force resolution of this system. POLARBeaR , for example, has
Npixels 105 and Nt 1012 and the solution of the system is extremely
challenging. The implementation of this optimal minimum variance esti-
mate ŝ for a data set of this size must resort to the use of massively parallel
Preconditioned Conjugate Gradient (PCG) methods (Cantalupo et al., 2010;
Sudarsan et al., 2011; Grigori, Stompor, and Szydlarski, 2012). The estima-
tion of the noise correlation matrix is essential to reconstructing the maps.
In the case of ground-based experiments we usually expect a correlated 1/f
power spectrum for the noise

n(f) = �det

⇤
1+

�
f

fknee

⇥�⌅
(9.10)

as shown in fig. 9.10, with a fknee of the order of few Hz. The 1/f power is
mainly generated by physical conditions of the atmosphere (e.g., stability of
the PWV along the line of sight, wind speed etc) which induces, moreover,
an additional spatial correlation across the focal plane (Lay and Halverson,
2000; Church, 1995a). In the context of the POLARBeaR mapmaking activi-
ties I was involved in the development of the two pipelines developed for
this purpose: the first implemented an unbiased suboptimal mapmaking
and another one a filtered biased mapmaking as a part of the MASTER
power spectrum estimation method (Hivon et al., 2002). An example of the
outputs of these two pipeline are shown in fig. 9.15 and 9.12. As the data
size of the experiment is very important, the numerical efficiency of the
mapmaking method has to be carefully kept under control. The second
approach is the fastest one and consist in computing the sky signal as

ŝbiased = (ATN 1A) 1ATN 1Fd. (9.11)

where F is a filtering operator whose role is to pre-whiten the timestream
and reduce correlation due to atmosphere. For each CES an independent
map of the sky is produced which are then coadded in a noise weighted
fashion to form daily and season maps. The noise of the timestream is
computed from the timestream power spectra in frequency domain after
the filtering. For the weighting purposes the noise is then considered as
white and uncorrelated after the filtering so that the N matrix is considered
diagonal and computations simplifies significantly. Though the maps are
less noisy, thanks to the filtering effect, the estimate is biased because the
filter reduces the power of the signal we want to estimate together with the
noise. The unbiased method aims at compensating the effect of the filtering
restoring the power subtracted from the signal. The estimate of the sky
signal is computed solving iteratively the following equation

(ATN 1FA)ŝunbiased = ATN 1Fd. (9.12)

The maps are computed in this case as daily maps and the noise estimation
is done as in the biased mapmaking pipeline. The method allows to recover
the large scale power avoiding to bias the result on the map level but is
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Map-making challenges
We saw earlier that:

• Noise is correlated
➡ The optimal W is not diagonal

• Data are not just CMB and noise:  
Ty models the contaminating signals (known templates with unknown amplitude)
➡ The GLS solution becomes 

                                        is a filtering operator:
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nal using a maximum likelihood method. The maximum likelihood esti-
mate of the sky signal given the noise covariance matrix N nTn is then
(Tegmark, 1997)

ŝ = (ATN 1A) 1ATN 1d. (9.9)

For modern CMB experiments observing the sky with thousands of de-
tectors and at high resolution, the dimension of the problem prevent any
brute force resolution of this system. POLARBeaR , for example, has
Npixels 105 and Nt 1012 and the solution of the system is extremely
challenging. The implementation of this optimal minimum variance esti-
mate ŝ for a data set of this size must resort to the use of massively parallel
Preconditioned Conjugate Gradient (PCG) methods (Cantalupo et al., 2010;
Sudarsan et al., 2011; Grigori, Stompor, and Szydlarski, 2012). The estima-
tion of the noise correlation matrix is essential to reconstructing the maps.
In the case of ground-based experiments we usually expect a correlated 1/f
power spectrum for the noise

n(f) = �det

⇤
1+

�
f

fknee

⇥�⌅
(9.10)

as shown in fig. 9.10, with a fknee of the order of few Hz. The 1/f power is
mainly generated by physical conditions of the atmosphere (e.g., stability of
the PWV along the line of sight, wind speed etc) which induces, moreover,
an additional spatial correlation across the focal plane (Lay and Halverson,
2000; Church, 1995a). In the context of the POLARBeaR mapmaking activi-
ties I was involved in the development of the two pipelines developed for
this purpose: the first implemented an unbiased suboptimal mapmaking
and another one a filtered biased mapmaking as a part of the MASTER
power spectrum estimation method (Hivon et al., 2002). An example of the
outputs of these two pipeline are shown in fig. 9.15 and 9.12. As the data
size of the experiment is very important, the numerical efficiency of the
mapmaking method has to be carefully kept under control. The second
approach is the fastest one and consist in computing the sky signal as

ŝbiased = (ATN 1A) 1ATN 1Fd. (9.11)

where F is a filtering operator whose role is to pre-whiten the timestream
and reduce correlation due to atmosphere. For each CES an independent
map of the sky is produced which are then coadded in a noise weighted
fashion to form daily and season maps. The noise of the timestream is
computed from the timestream power spectra in frequency domain after
the filtering. For the weighting purposes the noise is then considered as
white and uncorrelated after the filtering so that the N matrix is considered
diagonal and computations simplifies significantly. Though the maps are
less noisy, thanks to the filtering effect, the estimate is biased because the
filter reduces the power of the signal we want to estimate together with the
noise. The unbiased method aims at compensating the effect of the filtering
restoring the power subtracted from the signal. The estimate of the sky
signal is computed solving iteratively the following equation

(ATN 1FA)ŝunbiased = ATN 1Fd. (9.12)

The maps are computed in this case as daily maps and the noise estimation
is done as in the biased mapmaking pipeline. The method allows to recover
the large scale power avoiding to bias the result on the map level but is
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• How to disentangle CMB and 
foregrounds?

• Different emission laws, different 
scaling with frequency 

• Multifrequency observations  
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Disentangling dust from CMB

Planck Collaboration: The Planck mission

Planck Collaboration: Di�use foregrounds component separation

Fig. 16. Maximum posterior amplitude polarization maps derived from the Planck observations between 30 and 353 GHz. Left and
right columns show the Stokes Q and U parameters, and rows show, from top to bottom, CMB, synchrotron polarization at 30 GHz
and thermal dust polarization at 353 GHz. The CMB map has been highpass-filtered with a cosine-apodized filter between � = 20
and 40, and the Galactic plane has been replaced with a constrained Gaussian realization (Planck Collaboration A11 2014). The two
top rows employ linear color scales, and the bottom row employs the non-linear HDR color scale.

short frequency lever arm, and it is from algebraic considera-
tions expected to be the cleanest solution in terms of systematics.
However, it also su�ers from significantly higher statistical noise
compared to the other types. Type-2 attempts to improve on this
situation by fitting for all CO line maps simultaneously, using
the same algebra and implementation as Type-1, but addition-
ally using multi-frequency observations and imposing a simple
(spatially constant) frequency model for thermal dust. Finally,
in the 2013 release a Type-3 map also provided, which was a
Commander solution, as described above, but assuming a rigid
CO scaling between any two frequency maps, leaving only one

free CO amplitude parameter per pixel, and one free overall line
ratio per frequency map. This approach results in the highest
signal-to-noise ratio, e�ectively by compressing all information
into one map, but it is also relies directly on the accuracy of the
overall model to avoid foreground leakage into the CO map.

As described above, the Commander CO model has been
generalized in the current release, and is now in principle very
similar to Type-2, with the main di�erence being a di�erent ef-
fective signal model to account for other components. No new
Type-3 map is delivered in the 2014 data release, but this has
been superceded by the new Commander J=2�1 map, which

23

Fig. 15. Maximum posterior amplitude polarization maps derived from the Planck observations between 30 and 353 GHz
(Planck Collaboration X 2015). The left and right columns show the Stokes Q and U parameters, respectively. Rows show from top
to bottom CMB, synchrotron polarization at 30 GHz and thermal dust polarization at 353 GHz. The CMB map has been highpass-
filtered with a cosine-apodized filter between � = 20 and 40, and the Galactic plane (defined by the 17 % CPM83 mask) has been
replaced with a constrained Gaussian realization (Planck Collaboration IX 2015).
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Fig. 16. Brightness temperature rms as a function of frequency and astrophysical component for temperature (left) and polarization
(right). For temperature, each component is smoothed to an angular resolution of 1� FWHM, and the lower and upper edges of each
line are defined by masks covering 81 and 93 % of the sky, respectively. For polarization, the corresponding smoothing scale is 40⇥,
and the sky fractions are 73 and 93 %.

ered in the 2015 data release. Alternatively, another set of
CO maps has been produced as part of the full Commander
baseline multi-component model, which is described in
Planck Collaboration X (2015).

Type 1 and Type 2 maps are released with an associated stan-
dard deviation map, error map, and mask. The suite of tests de-
tailed in Planck Collaboration XIII (2014) has been repeated on
the new Type 1 and Type 2 maps, which have been found to per-
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Figures and captions from Planck 2015 results. I. Overview of products and scientific results, arXiv:1502.01582
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Fig. 16. Maximum posterior amplitude polarization maps derived from the Planck observations between 30 and 353 GHz. Left and
right columns show the Stokes Q and U parameters, and rows show, from top to bottom, CMB, synchrotron polarization at 30 GHz
and thermal dust polarization at 353 GHz. The CMB map has been highpass-filtered with a cosine-apodized filter between � = 20
and 40, and the Galactic plane has been replaced with a constrained Gaussian realization (Planck Collaboration A11 2014). The two
top rows employ linear color scales, and the bottom row employs the non-linear HDR color scale.
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Fig. 15. Maximum posterior amplitude polarization maps derived from the Planck observations between 30 and 353 GHz
(Planck Collaboration X 2015). The left and right columns show the Stokes Q and U parameters, respectively. Rows show from top
to bottom CMB, synchrotron polarization at 30 GHz and thermal dust polarization at 353 GHz. The CMB map has been highpass-
filtered with a cosine-apodized filter between � = 20 and 40, and the Galactic plane (defined by the 17 % CPM83 mask) has been
replaced with a constrained Gaussian realization (Planck Collaboration IX 2015).
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Fig. 16. Brightness temperature rms as a function of frequency and astrophysical component for temperature (left) and polarization
(right). For temperature, each component is smoothed to an angular resolution of 1� FWHM, and the lower and upper edges of each
line are defined by masks covering 81 and 93 % of the sky, respectively. For polarization, the corresponding smoothing scale is 40⇥,
and the sky fractions are 73 and 93 %.
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Fig. 16. Maximum posterior amplitude polarization maps derived from the Planck observations between 30 and 353 GHz. Left and
right columns show the Stokes Q and U parameters, and rows show, from top to bottom, CMB, synchrotron polarization at 30 GHz
and thermal dust polarization at 353 GHz. The CMB map has been highpass-filtered with a cosine-apodized filter between � = 20
and 40, and the Galactic plane has been replaced with a constrained Gaussian realization (Planck Collaboration A11 2014). The two
top rows employ linear color scales, and the bottom row employs the non-linear HDR color scale.
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Fig. 15. Maximum posterior amplitude polarization maps derived from the Planck observations between 30 and 353 GHz
(Planck Collaboration X 2015). The left and right columns show the Stokes Q and U parameters, respectively. Rows show from top
to bottom CMB, synchrotron polarization at 30 GHz and thermal dust polarization at 353 GHz. The CMB map has been highpass-
filtered with a cosine-apodized filter between � = 20 and 40, and the Galactic plane (defined by the 17 % CPM83 mask) has been
replaced with a constrained Gaussian realization (Planck Collaboration IX 2015).
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Fig. 16. Brightness temperature rms as a function of frequency and astrophysical component for temperature (left) and polarization
(right). For temperature, each component is smoothed to an angular resolution of 1� FWHM, and the lower and upper edges of each
line are defined by masks covering 81 and 93 % of the sky, respectively. For polarization, the corresponding smoothing scale is 40⇥,
and the sky fractions are 73 and 93 %.
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Fig. 16. Maximum posterior amplitude polarization maps derived from the Planck observations between 30 and 353 GHz. Left and
right columns show the Stokes Q and U parameters, and rows show, from top to bottom, CMB, synchrotron polarization at 30 GHz
and thermal dust polarization at 353 GHz. The CMB map has been highpass-filtered with a cosine-apodized filter between � = 20
and 40, and the Galactic plane has been replaced with a constrained Gaussian realization (Planck Collaboration A11 2014). The two
top rows employ linear color scales, and the bottom row employs the non-linear HDR color scale.
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Fig. 15. Maximum posterior amplitude polarization maps derived from the Planck observations between 30 and 353 GHz
(Planck Collaboration X 2015). The left and right columns show the Stokes Q and U parameters, respectively. Rows show from top
to bottom CMB, synchrotron polarization at 30 GHz and thermal dust polarization at 353 GHz. The CMB map has been highpass-
filtered with a cosine-apodized filter between � = 20 and 40, and the Galactic plane (defined by the 17 % CPM83 mask) has been
replaced with a constrained Gaussian realization (Planck Collaboration IX 2015).
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Fig. 16. Brightness temperature rms as a function of frequency and astrophysical component for temperature (left) and polarization
(right). For temperature, each component is smoothed to an angular resolution of 1� FWHM, and the lower and upper edges of each
line are defined by masks covering 81 and 93 % of the sky, respectively. For polarization, the corresponding smoothing scale is 40⇥,
and the sky fractions are 73 and 93 %.
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Temperature Polarization

Planck collaboration 2015Planck collaboration 2015

Credits:  Josquin Errard
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Component separation: a concrete example
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2- Solving the linear system (2), with A estimated above — general 
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Component separation: results

14

Fig. 14. Maximum posterior intensity maps derived from the joint analysis of Planck, WMAP, and 408 MHz observations
(Planck Collaboration X 2015). From left to right, top to bottom: CMB, synchrotron, free-free, spinning dust, thermal dust, line
emission around 90 GHz, CO J = 1� 0, CO J = 2� 1, and CO J = 3� 2.

Figures and captions from Planck 2015 results. I. Overview of products and scientific results, arXiv:1502.01582
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Fig. 14. Planck collaboration 2015
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Space based experiments

Stage−I − ≈ 100 detectors

Stage−II − ≈ 1,000 detectors

Stage−III − ≈ 10,000 detectors

Stage−IV − ≈ 100,000 detectors

Figure 6. Plot illustrating the evolution of the raw sensitivity of CMB experiments, which scales as
the total number of bolometers. Ground-based CMB experiments are classified into Stages with Stage II
experiments having O(1000) detectors, Stage III experiments having O(10,000) detectors, and a Stage IV
experiment (such as CMB-S4) having O(100,000) detectors.

consequence, the fundamental production unit for TES devices are arrays of detectors (see Fig. 8), an
important attribute when considering the production of the 500,000 detectors required by CMB-S4. Second
TES devices are low-impedance (�1 �) and can be multiplexed with modern-day Superconducting QUantum
Interference Device (SQUID) multiplexers [96, 97, 98]. Multiplexed readouts are important for operating
large detector arrays at sub-Kelvin temperatures and are essential for CMB-S4. Lastly, TES detectors have
been successfully deployed as focal planes at the forefront of CMB measurements.

The TES was invented by HEP for detecting Dark Matter and neutrinos. Its subsequent integration into
CMB focal planes has enabled kilo-pixel arrays realizing the Stage II CMB program and ushering in an
era of unprecedented sensitivity. TES-based CMB detectors are the favored technology among Stage II
and proposed Stage III experiments, and have a clear path to the sensitivities required by CMB-S4. The
ubiquity of TES detectors for CMB illustrates the direct connection between HEP-invented technology and
CMB science.

The CMB-S4 Experimental Program

Delivering a half-million background-limited bolometers necessitates a change in the execution of the US
ground-based CMB program. The current US program consists of a number of independent (primarily

Community Planning Study: Snowmass 2013

Josquin Errard (APC) for the Simons Observatory Collaboration, 53rd Rencontres de Moriond, 2018

POLARBEAR ➔ Simons Array

ACTPOL ➔ ADVANCED-ACTPOL

The Simons Observatory site 

23

CLASS

Smith et al 2007, Hirata et al 2008

Lots of data and simulations coming!
As data improve, more challenges and opportunities

15

Final sentence of Das et 
al 2011:  

‘This work is the first 
step of an exciting 
research program’

  

CMB lensing since 2007, directly since 2011, now seen at 10s of sigmas

Smith et al 2007, Hirata et al 2008

Lots of data and simulations coming!
As data improve, more challenges and opportunities

Litebird 
FOSSIL

Josquin Errard 
 on the behalf of the Simons Observatory collaboration  

53rd Rencontres de Moriond 
La Thuile, Italy, 22 March 2018
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State of the art of the CMB secondaries
• ISW “oldest" probe, becoming less competitive because of limited achievable 

precision (cosmic variance…)

•  CMB lensing hints in early 2000s, first detections 2010, now booming!

• SZ picking up after first Planck data release…. 

16

ISW

CMB lensing

(t/k)SZ effect(s)

Others

~1st direct 
detection

1st Planck 
release

1st ACT/
SPT results

Ignore 
units
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CMB and gravitational lensing

• CMB is the most distant and oldest source of radiations: photons cross potential 
wells of LSS as they form.

• Preserves surface brightness: no effect if CMB is fully homogeneous.

17

Image by: Lucy Reading-Ikkanda/Simons Foundation



Name TalkName TalkGiulio Fabbian Les Houches 2025

Lensing cartoon

• WARNING: exaggerated cartoon

• Dark matter introduces features in the CMB anisotropies pattern causing 
shearing and magnification

• The properties of lensing are encoded in the deflection field: can we estimate 
this?

18

Credits 
Wayne Hu
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Details: Lensing Geometry
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• CMB is deflected by mass it 
passes by. Described by i
component of geodesic 
equation

• Derive

• And hence

dpµ
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The lensing geometry

19

Credits 
Anthony 
Challinor

Last scattering surface • According to GR photon obey the 
geodesic equation 
 
 

• Exercise: 

• By pure geometric considerations then  
 
 

• Total effect then given by 
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• And hence

• Therefore, the lensing is related 
to an integral of the potential
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Image: A. Challinor
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0-th order calculation

300 Mpc

 ~7000 Mpc

 ~14000 Mpc

 (R) ⇡ 2 · 10�5

�� ⇡ 2 (R)

c2
⇡ 10�4

Ndev ' 50

�✓ ⇡
p
Ndev ⇥ �� ⇡ 7⇥ 10�4 = 2 arcmin

�✓coherence ' 300

7000
⇡ 2�
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• Unbiased tracers of the whole integrated matter distribution along the line of sight. 
 
 
 

• Sensitive to total matter distribution  at z~0.6-5 on mildly non-linear scales.σ8Ω0.25
m

The CMB lensing potential

21

parameters estimation if left unmodelled [27].
In this paper we evaluate how N

(3/2) propagates to the cross-correlation of CMB lensing
with other density tracers such as galaxy lensing and galaxy counts, and assess the relevance
for future CMB experiments and galaxy surveys. Since the non-Gaussianity of the matter
distribution increases to lower redshift, the bias in correlation with low-redshift tracers could
become important. Furthermore, for the CMB auto-spectrum there is a near cancellation
between the biases from the bispectrum from large-scale structure and post-Born lensing.
However, low redshift tracers have a smaller post-Born signal due to the reduced path length,
so there is much less cancellation, potentially making the N

(3/2) bias relatively much more
important in cross-correlation [26].

We show that the N
(3/2) cross-correlation bias can be modelled quite well theoretically,

and hence should be relatively straightforward to include in future analyses. However detailed
numerical results are somewhat sensitive to the details of the fully-nonlinear LSS bispectrum
shape, which can only be modelled rather approximately analytically, and residual accuracy
is hard to assess. We therefore also use numerical simulations for comparison, where the
non-linear effects can be measured from the simulation non-perturbatively.

In Sec. 2 we review the relevant theoretical background. In Sec. 3 we review the details
of the modelling implemented in the simulations and the assessment of their level of realism in
both the CMB lensing potential and LSS tracers. In Sec. 4 we show the results of our numerical
experiments and their impact for future surveys, including the estimation of cosmological and
systematics parameters. Conclusions are drawn in Sec. 5.

2 Theory

2.1 Gravitational lensing

In the weak lensing formalism the effect of deflections of light rays coming from a source plane
is described by the lens equation. This maps the source position � of a ray originating at
comoving radial distance � to the observed angular position ✓. Assuming General Relativity
and using natural units AL: I changed some of this around a bit, check I understood your
notation right

�i(✓,�) = ✓i � 2

Z �

0

DA(�� �
0)

DA(�)DA(�0)
 ,�i

�
�(✓,�0),�0

�
d�0

, (2.1)

where  (�,�) is the Weyl gravitational potential located on the photon path,  (�,�),�i the
angular derivatives1, and DA(�) is the comoving angular diameter distance.

In the Born approximation, the photon path is approximated by the unperturbed photon
geodesic x(�) ⇡ ✓�, such that the line integral of the Newtonian potential  simplifies and
the geodesic equation becomes

�(✓,�⇤) = ✓ +r�(✓), (2.2)

where r�(✓) is the deflection field and � the lensing potential

�(✓) = �2

Z �s

0

DA(�s � �
0)

DA(�s)DA(�0)
 
�
✓,�0

�
d�0

. (2.3)

1The derivatives in the small angle limit should be computed using a coordinate system orthogonal to the
current light ray’s direction of travel. Numerical tests have shown that using angular derivatives causes a
negligible error (see e.g. [28] and references therein).

– 3 –

• Redshift origin of signal: mean at z~2, peak at z~1, broad sensitivity to z~0.5-6+

• Scale origin of signal: near-linear. Mild sensitivity to non-linear scales beyond k~0.2h/Mpc

Redshift and scale origin of CMB lensing

18Mathew Madhavacheril, University of Pennsylvania 

L Planck Collab. and/or Blake Sherwin

Namikawa+(2014)

Notation 
Warning!d = ∇ϕ

PTEP 2014, 06B108 T. Namikawa

Fig. 1. The angular power spectrum of the gradient mode generated by matter density fluctuations with the lin-
ear matter power spectrum (black dotted), and with the fitting formula of the non-linear matter power spectrum
given in Refs. [44] (green dashed) or [45] (red solid).

◦ vector perturbations:

S(±1)
φ,ℓ (λ, λ′) =

√
(ℓ + 1)!
2(ℓ − 1)!

[
λ − λ′

λλ′
jℓ(λ′)
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(λ′)2
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dλ′

]
, (29)

S(±1)
ϖ,ℓ (λ, λ′) = ±

√
1

2ℓ(ℓ + 1)
jℓ(λ′), (30)

◦ tensor perturbations:

S(±2)
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√
(ℓ + 2)!
32(ℓ − 2)!

[
λ − λ′
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jℓ(λ′)

λ′ − 2
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1
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d[λ′ jℓ(λ′)]
dλ′

]
+ δℓ,2

10
√
3
δ(λ′),

(31)

S(±2)
ϖ,ℓ (λ, λ′) = ±

√
(ℓ + 2)!
(ℓ − 2)!

1
2ℓ(ℓ + 1)

jℓ(λ′)

λ′ . (32)

2.2.3. Angular power spectrum of gradient and curl modes. Figure 1 shows the angular power
spectrum of the gradient mode generated by the matter density fluctuations. Three lines show the
cases with different fitting formulas of the matter power spectrum, i.e., the halofit model [44] and
its revised formula [45], in calculating the angular power spectrum. For comparison, we also show
the case with the linear power spectrum. Note that the lensing power spectrum is computed with
CAMB [46]. The linear approximation to the matter power spectrum would be accurate at the scales
where the signal becomes large (ℓ ∼ 10–100). The non-linear growth of matter density perturbations
enhances the amplitude by 20–30% at ℓ ∼ 2000 compared to linear theory. The sensitivity of Cφφ

ℓ to
the models of the non-linear evolution would be not so significant even at these scales, because the
lensing power spectrum computed with the halofit model of Ref. [44] is only a few percent smaller
than the revised formula.
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Breaking degeneracies with CMB lensing

22

BREAKING DEGENERACIES WITH LENSING

• Lensing sensitive to geometry and late-time growth of structure: curvature

• Neutrino masses:

150

Credits 
Anthony 
Challinor
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Lensing on CMB maps

23

B(n̂) (±2.5µK)

T(n̂) (±350µK)

E(n̂) (±25µK)

Unlensed

(no primordial B-modes)

Tuesday, March 25, 2014

credits D. Hanson
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Lensing on CMB maps

23
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Unlensed

(no primordial B-modes)

Tuesday, March 25, 2014
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(no primordial B-modes)

Tuesday, March 25, 2014

credits D. Hanson
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Effects on maps
• Lensed and unlensed maps are practically indistinguishable by eye 

• Their difference shows a pattern similar to the LSS which lensed the signal

S. Basak et al.: Simulating weak lensing of CMB maps 57

Fig. 3. Top left: a small portion of a simulated unlensed CMB temper-
ature anisotropy map. Top right: a small portion of the corresponding
lensed CMB temperature anisotropy map. Bottom left: a small portion
of the amplitude of the simulated deflection field map. Bottom right: a
small portion of the difference of simulated lensed and unlensed CMB
maps. These maps are obtained using NFFT for the oversampling factor
σ = 2 and convolution length K = 4.

Table 3. Variation in CPU time and memory requirements with resolu-
tion to simulate CMB maps (unlensed and lensed, oversampling factor
σ = 2, convolution length K = 4) using NFFT.

nside lmax CPU Memory
time requirement

256 512 1 min 12 s 491 MB
512 1024 6 min 8 s 1.9 GB

1024 2048 32 min 7.6 GB

such realization of a lensed CMB temperature field, as well as
the difference between the lensed and unlensed fields.

Since weak lensing of CMB is a tiny effect on small angu-
lar scales, we show a realization of a small portion of the un-
lensed CMB temperature anisotropies, lensed CMB temperature
anisotropies, amplitude of deflection field and, the difference of
lensed and unlensed CMB temperature anisotropies in Fig. 3 to
illustrate the lensing effect more clearly. Although unlensed and
lensed CMB temperature anisotropies are indistinguishable to
the naked eye, the correlation between the deflection field and
the difference between the lensed and unlensed CMB tempera-
ture anisotropies is clearly visible.

Table 3 shows the typical CPU time and memory required to
simulate a single realization of unlensed and lensed CMB tem-
perature and polarization, at different resolutions. These timings
correspond to an AMD880 CPU running at 2.4 GHz. Storage of
the window function at the grid points in both the spatial and
frequency domain before computing the Fourier transform con-
sumes a fair amount of memory, which ultimately increases the
overall memory requirement for the simulation of lensed CMB
maps (Kunis & Potts 2008; Fourmont 2003).

Tables 4 and 5 show the same, but with varying convolu-
tion lengths and oversampling factors. Increase in the convo-
lution length not only increases the computational cost of the

Table 4. Variation in the CPU time and memory requirements with
the convolution length K to simulate a CMB map (both unlensed and
lensed, with nside = 1024, lmax = 2048) using NFFT.

Oversampling Convolution CPU Memory
factor length time requirement
(σ) (K)
2 4 32 min 7.6 GB
2 6 45 min 8.4 GB
2 8 60 min 9.1 GB

Table 5. Variation in CPU time and memory requirements with the over-
sampling factor σ for simulating a realization CMB map (both unlensed
and lensed, nside = 1024, lmax = 2048) using NFFT.

Oversampling Convolution CPU Memory
factor length time requirement
(σ) (K)
2 4 32 min 7.6 GB
3 4 38 min 10 GB
4 4 47 min 13 GB

interpolation part of NFFT, but also increases the cost of the
precomputation of window function and memory requirement
since one has to compute and store the window function at a
larger number of grid points in the spatial domain before apply-
ing NFFT (Kunis & Potts 2008; Fourmont 2003). On the other
hand, increasing the oversampling factor only impacts the mem-
ory and CPU requirements of the (oversampled) FFT part of the
algorithm.

On the same plots, Fig. 4 shows the theoretical power spectra
CXY

l , where XY represents TT, EE, T E and BB respectively, for
the lensed and unlensed cases, as predicted by CAMB (Challinor
& Lewis 2005). In the cosmological model, we decided to in-
clude no primordial tensors, hence CBB

l is entirely due to lensing.
An accurate recovery of this power spectrum from lensed

polarization maps is therefore a powerful test of our simulation
method. In Fig. 5, we show, on top of the lensed theoretical
spectra (lines), the average empirical power spectra computed
from 1000 simulations (circles). We can see that the agreement
is excellent, which is remarkable for CBB

l as explained above.
We have ignored the lensed angular power spectrum beyond the
multipole l = 1700 in the comparison, because the accurate com-
putation of the average empirical power spectra for the multi-
poles l > 1700 requires lensed CMB maps simulated from the
power spectra of unlensed CMB and a lensing potential beyond
the multipole lmax = 2048, which is the maximum multipole we
used in the simulations. It is worth noting here that theoretical
predictions for the B-mode power spectra induced from lensing,
as computed in CAMB, are based on non-trivial, partially re-
summed expansions of correlation functions (Challinor & Lewis
2005). Figure 5 clearly shows very good agreement between the
power spectra predicted from CAMB and measured from our
simulations, therefore validating a posteriori the theoretical pre-
dictions.

To obtain a more quantitative view of the accuracy of the
method, we show in Fig. 6 the relative difference between the
average empirical power spectra computed on the 1000 simula-
tions and the theoretical spectra from CAMB, both for the un-
lensed (red solid) and lensed (green dashed) cases. In each plot,
we also show the theoretical root-mean-square deviation of the
averaged empirical spectra, computed by neglecting the small
lensing-induced non-Gaussianity in the lensed cases. Note that
this corresponds to a very small underestimation of the scatter

S. Basak et al.: Simulating weak lensing of CMB maps 57

Fig. 3. Top left: a small portion of a simulated unlensed CMB temper-
ature anisotropy map. Top right: a small portion of the corresponding
lensed CMB temperature anisotropy map. Bottom left: a small portion
of the amplitude of the simulated deflection field map. Bottom right: a
small portion of the difference of simulated lensed and unlensed CMB
maps. These maps are obtained using NFFT for the oversampling factor
σ = 2 and convolution length K = 4.

Table 3. Variation in CPU time and memory requirements with resolu-
tion to simulate CMB maps (unlensed and lensed, oversampling factor
σ = 2, convolution length K = 4) using NFFT.

nside lmax CPU Memory
time requirement

256 512 1 min 12 s 491 MB
512 1024 6 min 8 s 1.9 GB

1024 2048 32 min 7.6 GB

such realization of a lensed CMB temperature field, as well as
the difference between the lensed and unlensed fields.
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illustrate the lensing effect more clearly. Although unlensed and
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the window function at the grid points in both the spatial and
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sumes a fair amount of memory, which ultimately increases the
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interpolation part of NFFT, but also increases the cost of the
precomputation of window function and memory requirement
since one has to compute and store the window function at a
larger number of grid points in the spatial domain before apply-
ing NFFT (Kunis & Potts 2008; Fourmont 2003). On the other
hand, increasing the oversampling factor only impacts the mem-
ory and CPU requirements of the (oversampled) FFT part of the
algorithm.

On the same plots, Fig. 4 shows the theoretical power spectra
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l , where XY represents TT, EE, T E and BB respectively, for
the lensed and unlensed cases, as predicted by CAMB (Challinor
& Lewis 2005). In the cosmological model, we decided to in-
clude no primordial tensors, hence CBB

l is entirely due to lensing.
An accurate recovery of this power spectrum from lensed

polarization maps is therefore a powerful test of our simulation
method. In Fig. 5, we show, on top of the lensed theoretical
spectra (lines), the average empirical power spectra computed
from 1000 simulations (circles). We can see that the agreement
is excellent, which is remarkable for CBB

l as explained above.
We have ignored the lensed angular power spectrum beyond the
multipole l = 1700 in the comparison, because the accurate com-
putation of the average empirical power spectra for the multi-
poles l > 1700 requires lensed CMB maps simulated from the
power spectra of unlensed CMB and a lensing potential beyond
the multipole lmax = 2048, which is the maximum multipole we
used in the simulations. It is worth noting here that theoretical
predictions for the B-mode power spectra induced from lensing,
as computed in CAMB, are based on non-trivial, partially re-
summed expansions of correlation functions (Challinor & Lewis
2005). Figure 5 clearly shows very good agreement between the
power spectra predicted from CAMB and measured from our
simulations, therefore validating a posteriori the theoretical pre-
dictions.

To obtain a more quantitative view of the accuracy of the
method, we show in Fig. 6 the relative difference between the
average empirical power spectra computed on the 1000 simula-
tions and the theoretical spectra from CAMB, both for the un-
lensed (red solid) and lensed (green dashed) cases. In each plot,
we also show the theoretical root-mean-square deviation of the
averaged empirical spectra, computed by neglecting the small
lensing-induced non-Gaussianity in the lensed cases. Note that
this corresponds to a very small underestimation of the scatter
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Fig. 3. Top left: a small portion of a simulated unlensed CMB temper-
ature anisotropy map. Top right: a small portion of the corresponding
lensed CMB temperature anisotropy map. Bottom left: a small portion
of the amplitude of the simulated deflection field map. Bottom right: a
small portion of the difference of simulated lensed and unlensed CMB
maps. These maps are obtained using NFFT for the oversampling factor
σ = 2 and convolution length K = 4.

Table 3. Variation in CPU time and memory requirements with resolu-
tion to simulate CMB maps (unlensed and lensed, oversampling factor
σ = 2, convolution length K = 4) using NFFT.

nside lmax CPU Memory
time requirement

256 512 1 min 12 s 491 MB
512 1024 6 min 8 s 1.9 GB

1024 2048 32 min 7.6 GB

such realization of a lensed CMB temperature field, as well as
the difference between the lensed and unlensed fields.

Since weak lensing of CMB is a tiny effect on small angu-
lar scales, we show a realization of a small portion of the un-
lensed CMB temperature anisotropies, lensed CMB temperature
anisotropies, amplitude of deflection field and, the difference of
lensed and unlensed CMB temperature anisotropies in Fig. 3 to
illustrate the lensing effect more clearly. Although unlensed and
lensed CMB temperature anisotropies are indistinguishable to
the naked eye, the correlation between the deflection field and
the difference between the lensed and unlensed CMB tempera-
ture anisotropies is clearly visible.

Table 3 shows the typical CPU time and memory required to
simulate a single realization of unlensed and lensed CMB tem-
perature and polarization, at different resolutions. These timings
correspond to an AMD880 CPU running at 2.4 GHz. Storage of
the window function at the grid points in both the spatial and
frequency domain before computing the Fourier transform con-
sumes a fair amount of memory, which ultimately increases the
overall memory requirement for the simulation of lensed CMB
maps (Kunis & Potts 2008; Fourmont 2003).

Tables 4 and 5 show the same, but with varying convolu-
tion lengths and oversampling factors. Increase in the convo-
lution length not only increases the computational cost of the

Table 4. Variation in the CPU time and memory requirements with
the convolution length K to simulate a CMB map (both unlensed and
lensed, with nside = 1024, lmax = 2048) using NFFT.

Oversampling Convolution CPU Memory
factor length time requirement
(σ) (K)
2 4 32 min 7.6 GB
2 6 45 min 8.4 GB
2 8 60 min 9.1 GB

Table 5. Variation in CPU time and memory requirements with the over-
sampling factor σ for simulating a realization CMB map (both unlensed
and lensed, nside = 1024, lmax = 2048) using NFFT.

Oversampling Convolution CPU Memory
factor length time requirement
(σ) (K)
2 4 32 min 7.6 GB
3 4 38 min 10 GB
4 4 47 min 13 GB

interpolation part of NFFT, but also increases the cost of the
precomputation of window function and memory requirement
since one has to compute and store the window function at a
larger number of grid points in the spatial domain before apply-
ing NFFT (Kunis & Potts 2008; Fourmont 2003). On the other
hand, increasing the oversampling factor only impacts the mem-
ory and CPU requirements of the (oversampled) FFT part of the
algorithm.

On the same plots, Fig. 4 shows the theoretical power spectra
CXY

l , where XY represents TT, EE, T E and BB respectively, for
the lensed and unlensed cases, as predicted by CAMB (Challinor
& Lewis 2005). In the cosmological model, we decided to in-
clude no primordial tensors, hence CBB

l is entirely due to lensing.
An accurate recovery of this power spectrum from lensed

polarization maps is therefore a powerful test of our simulation
method. In Fig. 5, we show, on top of the lensed theoretical
spectra (lines), the average empirical power spectra computed
from 1000 simulations (circles). We can see that the agreement
is excellent, which is remarkable for CBB

l as explained above.
We have ignored the lensed angular power spectrum beyond the
multipole l = 1700 in the comparison, because the accurate com-
putation of the average empirical power spectra for the multi-
poles l > 1700 requires lensed CMB maps simulated from the
power spectra of unlensed CMB and a lensing potential beyond
the multipole lmax = 2048, which is the maximum multipole we
used in the simulations. It is worth noting here that theoretical
predictions for the B-mode power spectra induced from lensing,
as computed in CAMB, are based on non-trivial, partially re-
summed expansions of correlation functions (Challinor & Lewis
2005). Figure 5 clearly shows very good agreement between the
power spectra predicted from CAMB and measured from our
simulations, therefore validating a posteriori the theoretical pre-
dictions.

To obtain a more quantitative view of the accuracy of the
method, we show in Fig. 6 the relative difference between the
average empirical power spectra computed on the 1000 simula-
tions and the theoretical spectra from CAMB, both for the un-
lensed (red solid) and lensed (green dashed) cases. In each plot,
we also show the theoretical root-mean-square deviation of the
averaged empirical spectra, computed by neglecting the small
lensing-induced non-Gaussianity in the lensed cases. Note that
this corresponds to a very small underestimation of the scatter
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Fig. 3. Top left: a small portion of a simulated unlensed CMB temper-
ature anisotropy map. Top right: a small portion of the corresponding
lensed CMB temperature anisotropy map. Bottom left: a small portion
of the amplitude of the simulated deflection field map. Bottom right: a
small portion of the difference of simulated lensed and unlensed CMB
maps. These maps are obtained using NFFT for the oversampling factor
σ = 2 and convolution length K = 4.
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such realization of a lensed CMB temperature field, as well as
the difference between the lensed and unlensed fields.

Since weak lensing of CMB is a tiny effect on small angu-
lar scales, we show a realization of a small portion of the un-
lensed CMB temperature anisotropies, lensed CMB temperature
anisotropies, amplitude of deflection field and, the difference of
lensed and unlensed CMB temperature anisotropies in Fig. 3 to
illustrate the lensing effect more clearly. Although unlensed and
lensed CMB temperature anisotropies are indistinguishable to
the naked eye, the correlation between the deflection field and
the difference between the lensed and unlensed CMB tempera-
ture anisotropies is clearly visible.

Table 3 shows the typical CPU time and memory required to
simulate a single realization of unlensed and lensed CMB tem-
perature and polarization, at different resolutions. These timings
correspond to an AMD880 CPU running at 2.4 GHz. Storage of
the window function at the grid points in both the spatial and
frequency domain before computing the Fourier transform con-
sumes a fair amount of memory, which ultimately increases the
overall memory requirement for the simulation of lensed CMB
maps (Kunis & Potts 2008; Fourmont 2003).

Tables 4 and 5 show the same, but with varying convolu-
tion lengths and oversampling factors. Increase in the convo-
lution length not only increases the computational cost of the

Table 4. Variation in the CPU time and memory requirements with
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factor length time requirement
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2 4 32 min 7.6 GB
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Table 5. Variation in CPU time and memory requirements with the over-
sampling factor σ for simulating a realization CMB map (both unlensed
and lensed, nside = 1024, lmax = 2048) using NFFT.

Oversampling Convolution CPU Memory
factor length time requirement
(σ) (K)
2 4 32 min 7.6 GB
3 4 38 min 10 GB
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interpolation part of NFFT, but also increases the cost of the
precomputation of window function and memory requirement
since one has to compute and store the window function at a
larger number of grid points in the spatial domain before apply-
ing NFFT (Kunis & Potts 2008; Fourmont 2003). On the other
hand, increasing the oversampling factor only impacts the mem-
ory and CPU requirements of the (oversampled) FFT part of the
algorithm.

On the same plots, Fig. 4 shows the theoretical power spectra
CXY

l , where XY represents TT, EE, T E and BB respectively, for
the lensed and unlensed cases, as predicted by CAMB (Challinor
& Lewis 2005). In the cosmological model, we decided to in-
clude no primordial tensors, hence CBB

l is entirely due to lensing.
An accurate recovery of this power spectrum from lensed

polarization maps is therefore a powerful test of our simulation
method. In Fig. 5, we show, on top of the lensed theoretical
spectra (lines), the average empirical power spectra computed
from 1000 simulations (circles). We can see that the agreement
is excellent, which is remarkable for CBB

l as explained above.
We have ignored the lensed angular power spectrum beyond the
multipole l = 1700 in the comparison, because the accurate com-
putation of the average empirical power spectra for the multi-
poles l > 1700 requires lensed CMB maps simulated from the
power spectra of unlensed CMB and a lensing potential beyond
the multipole lmax = 2048, which is the maximum multipole we
used in the simulations. It is worth noting here that theoretical
predictions for the B-mode power spectra induced from lensing,
as computed in CAMB, are based on non-trivial, partially re-
summed expansions of correlation functions (Challinor & Lewis
2005). Figure 5 clearly shows very good agreement between the
power spectra predicted from CAMB and measured from our
simulations, therefore validating a posteriori the theoretical pre-
dictions.

To obtain a more quantitative view of the accuracy of the
method, we show in Fig. 6 the relative difference between the
average empirical power spectra computed on the 1000 simula-
tions and the theoretical spectra from CAMB, both for the un-
lensed (red solid) and lensed (green dashed) cases. In each plot,
we also show the theoretical root-mean-square deviation of the
averaged empirical spectra, computed by neglecting the small
lensing-induced non-Gaussianity in the lensed cases. Note that
this corresponds to a very small underestimation of the scatter
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Fig. 3. Top left: a small portion of a simulated unlensed CMB temper-
ature anisotropy map. Top right: a small portion of the corresponding
lensed CMB temperature anisotropy map. Bottom left: a small portion
of the amplitude of the simulated deflection field map. Bottom right: a
small portion of the difference of simulated lensed and unlensed CMB
maps. These maps are obtained using NFFT for the oversampling factor
σ = 2 and convolution length K = 4.
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σ = 2, convolution length K = 4) using NFFT.
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time requirement
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512 1024 6 min 8 s 1.9 GB
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such realization of a lensed CMB temperature field, as well as
the difference between the lensed and unlensed fields.

Since weak lensing of CMB is a tiny effect on small angu-
lar scales, we show a realization of a small portion of the un-
lensed CMB temperature anisotropies, lensed CMB temperature
anisotropies, amplitude of deflection field and, the difference of
lensed and unlensed CMB temperature anisotropies in Fig. 3 to
illustrate the lensing effect more clearly. Although unlensed and
lensed CMB temperature anisotropies are indistinguishable to
the naked eye, the correlation between the deflection field and
the difference between the lensed and unlensed CMB tempera-
ture anisotropies is clearly visible.

Table 3 shows the typical CPU time and memory required to
simulate a single realization of unlensed and lensed CMB tem-
perature and polarization, at different resolutions. These timings
correspond to an AMD880 CPU running at 2.4 GHz. Storage of
the window function at the grid points in both the spatial and
frequency domain before computing the Fourier transform con-
sumes a fair amount of memory, which ultimately increases the
overall memory requirement for the simulation of lensed CMB
maps (Kunis & Potts 2008; Fourmont 2003).

Tables 4 and 5 show the same, but with varying convolu-
tion lengths and oversampling factors. Increase in the convo-
lution length not only increases the computational cost of the

Table 4. Variation in the CPU time and memory requirements with
the convolution length K to simulate a CMB map (both unlensed and
lensed, with nside = 1024, lmax = 2048) using NFFT.
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factor length time requirement
(σ) (K)
2 4 32 min 7.6 GB
2 6 45 min 8.4 GB
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Table 5. Variation in CPU time and memory requirements with the over-
sampling factor σ for simulating a realization CMB map (both unlensed
and lensed, nside = 1024, lmax = 2048) using NFFT.

Oversampling Convolution CPU Memory
factor length time requirement
(σ) (K)
2 4 32 min 7.6 GB
3 4 38 min 10 GB
4 4 47 min 13 GB

interpolation part of NFFT, but also increases the cost of the
precomputation of window function and memory requirement
since one has to compute and store the window function at a
larger number of grid points in the spatial domain before apply-
ing NFFT (Kunis & Potts 2008; Fourmont 2003). On the other
hand, increasing the oversampling factor only impacts the mem-
ory and CPU requirements of the (oversampled) FFT part of the
algorithm.

On the same plots, Fig. 4 shows the theoretical power spectra
CXY

l , where XY represents TT, EE, T E and BB respectively, for
the lensed and unlensed cases, as predicted by CAMB (Challinor
& Lewis 2005). In the cosmological model, we decided to in-
clude no primordial tensors, hence CBB

l is entirely due to lensing.
An accurate recovery of this power spectrum from lensed

polarization maps is therefore a powerful test of our simulation
method. In Fig. 5, we show, on top of the lensed theoretical
spectra (lines), the average empirical power spectra computed
from 1000 simulations (circles). We can see that the agreement
is excellent, which is remarkable for CBB

l as explained above.
We have ignored the lensed angular power spectrum beyond the
multipole l = 1700 in the comparison, because the accurate com-
putation of the average empirical power spectra for the multi-
poles l > 1700 requires lensed CMB maps simulated from the
power spectra of unlensed CMB and a lensing potential beyond
the multipole lmax = 2048, which is the maximum multipole we
used in the simulations. It is worth noting here that theoretical
predictions for the B-mode power spectra induced from lensing,
as computed in CAMB, are based on non-trivial, partially re-
summed expansions of correlation functions (Challinor & Lewis
2005). Figure 5 clearly shows very good agreement between the
power spectra predicted from CAMB and measured from our
simulations, therefore validating a posteriori the theoretical pre-
dictions.

To obtain a more quantitative view of the accuracy of the
method, we show in Fig. 6 the relative difference between the
average empirical power spectra computed on the 1000 simula-
tions and the theoretical spectra from CAMB, both for the un-
lensed (red solid) and lensed (green dashed) cases. In each plot,
we also show the theoretical root-mean-square deviation of the
averaged empirical spectra, computed by neglecting the small
lensing-induced non-Gaussianity in the lensed cases. Note that
this corresponds to a very small underestimation of the scatter
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A sketch of the effect of lensing
• Expanding in 2D Fourier modes 

• Expanding in Taylor series and Fourier transforming

• The power spectrum reads 

25

Hu+(2000) 
Lewis & Challinor (2006)

297

• Expand temperature in Fourier modes

• Therefore

• And the lensed power spectrum follows from
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Effect of CMB angular power spectra
• Effective smoothing of peaks measured at 1% error and routinely accounted for 

 
 
 

• Smoothing = power redistribution. More accurate formulas available… 
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• Second term is a convolution. Interpretation: some regions 
magnified, some demagnified

Effect On Power Spectra
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• Similar calculation and similar peak-smoothing effect for 
other polarized spectra

Image: A. Challinor

• Second term is a convolution. Interpretation: some regions 
magnified, some demagnified
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Visualizing the lensing convolution 
•  
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Fabbian & Stompor (2013)

Giulio Fabbian and Radek Stompor: High-precision simulations of weak lensing e↵ect on CMB polarization
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Fig. 3. Lensing kernels K ˜̀ X (` Y , `�) for X = Y = T , left column, X = Y = E, middle, and X = B,Y = E, right, for two di↵erent
values of the multiple number of the lensed signal, ˜̀ X = 500, 1000, top to bottom. The color scale shows the logarithm of the kernel
elements and ranges from dark blue ⇠ 10�15 to ⇠ 1, dark red. The solid-line contours show the best achievable precision of the
estimated lensed spectrum, that can be obtained if the bandwidths of the E and/or � unlensed spectra are truncated to ` E and `�.
The contours range from 25% to 0.01% from left to right. The precision is computed with respect to the lensed multipoles calculated
with ` E

max
= `�

max
= 8000.

widths of the input fields used in the simulations. For this reason
we introduce 2D kernels, K ˜̀ B (` E , `�), defined as,

K ˜̀ B (` E , `�) ⌘ 1
2
|2F ˜̀ B `� ` E |2

2 ˜̀
B + 1

C
��
`� C

EE

` E (1 � (�1)L). (14)

These define for a given value of `B a contribution of the E power
at ` = ` E and the � power at ` = `� to the amplitude of the
lensed B-modes spectrum at that ` = ˜̀ B, which can then be
computed by summing over ` E and `�, i.e.,

C̃
BB

˜̀ B
=
X

`�, ` E

K ˜̀ B (` E , `�). (15)

The sum in this equation involves in principle an infinite number
of terms and therefore would have to be truncated in any nu-
merical work, either explicitly, e.g., by setting finite limits in the
formula above, or implicitly, e.g., by selecting the bandwidths,
pixel sizes, etc, in the pixel-domain codes. We therefore used
these kernels to study the precision problems involved in this
type of calculations. As the expressions for the kernels are ap-
proximate, so will be our conclusions. However, as our goal is
to provide guidelines on how to select the correct values for the
simulations codes, this should not pose any problems. We will
return to this point later in this section.

We show a sample of the kernels, K ˜̀ B (` E , `�) in Fig. 3.
These are computed for selected values of `B̃ for which the ap-
proximations involved in their computation are expected to be
valid. We note that all elements of the kernel, K ˜̀ B (` E , `�), van-
ish if the quantity L, defined in the previous section, is even, as
do those for which the triangular relation
���` E � `�

���  ˜̀ B  ` E + `� (16)

is not satisfied. This last fact is a consequence of the Wigner
3-j symbols in the expressions for 2F ˜̀ B `� ` E , (Hu 2000). Within
these restrictions it is apparent from Fig. 3 that each multipole
of the lensed B-modes spectra ˜̀B receives contributions from
a wide range of harmonic modes of both E and � spectra, ex-
tending to values of ` E and `� significantly higher than ˜̀ B and
roughly independent of the latter value at least for ˜̀ B <⇠ 2000.
For its higher values a non-negligible fraction of the contribu-
tion starts to come from progressively higher multipoles of both
E and �. Clearly, these trends are consistent with what we have
inferred earlier with help of the 1-dim kernels.

As also observed earlier, we find the B-modes kernels quali-
tatively di↵erent from those computed for the lensed total inten-
sity and E-modes polarization signals, Fig. 3, and they are more
localized in the harmonic space with the bulk of power coming
mainly from scales for which both `T,E are relatively close to the
considered lensed multipole, ˜̀ T, E .
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Fig. 2. 1D lensings kernels. The lensed power for T , E, and B spectra is computed assuming a delta-like spectra with power in
a single mode `0 = 10, 50, 100, 500, 1000, 2000, 3000, 4000, 5000 and 6000 in the unlensed CMB spectra. The blue dashed
line represents the reference lensed spectra as computed by CAMB. The sum of all single-mode contributions for `0 2 [0,1] would
reproduce the lensed spectra. For T and E cases, the subdominant contribution of the convolution part only is shown for visualization
purposes and o↵set terms are ignored (see Sect. 3.2 and Eq. 20). The comparison of 1D kernel shapes for T , E, and B for `0 = 1000
is shown in the bottom-right panel: the peculiar shape of each type of kernel drives the locality and amplitude of the contribution to
the lensed spectra.

tion would be that the bandwidth of the unlensed E-modes spec-
trum will have to be higher than the highest value of the lensed
B-modes signal multipole for which high precision is required,
and potentially higher than the scale of Silk damping. Because
these very high multipoles of the lensed B spectrum are expected
to have a significant contribution from relatively low multipoles
of the unlensed E signal, i.e., for which ` E ⌧ ˜̀ B given the trian-
gular relations, Eq. 16, and the definition of the kernels, Eq. 13,
we can conclude that the bandwidth of the potential field used in
the simulations will have to be at least as large as ˜̀ B.

There are two main conclusions to be drawn here. First, it is
clear that a high-fidelity simulation of the B-polarization power
spectrum even in a restricted range of angular scales will require
broad bandwidths, potentially all the way up to the scale of Silk
damping, for both the unlensed E-mode polarization signal and
the gravitational potential. However, these bandwidth values are
not expected to depend very strongly on the maximal B-mode
multipole that we want to recover, at least as long as it is in the
range ˜̀ B <⇠ 2000. Second, because the expected bandwidths are

broad, it is important to optimize them to ensure e�ciency of the
numerical codes without a↵ecting precision of the results.

Thanks to the peaked character of the respective kernels, the
lensed modes for the lensed T and E spectra are typically domi-
nated by a local contribution coming from the immediate vicin-
ity of the mode. This in general permits setting the bandwidth
for the potential shorter than the mode of the lensed spectrum to
be computed. By contrast, the unlensed T and E spectrum have
to be known at least up to the multiple of interest of the lensed
spectrum, ˜̀ X , (X = T or E), augmented by the assumed band-
width of the potential. These observations reflect the usual rule
of thumb, (e.g., Lewis 2005), indicating that lower bandwidth
values can be used in these two cases for the same required ac-
curacy.

3.2. Accuracy

In this section we aim at turning the consideration presented
above into more quantitative prescriptions concerning the band-

6
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CMB lensing reconstruction fundamentals

28

UnlensedMagnified Demagnified

Courtesy 
Antony Lewis

• Modulation of the statistical properties as a function of the position of the sky, i.e. a field 
(CMB) modulated by an intervening one (lensing): break of translational invariance

• Similar techniques for other quantities in CMB: ,  ….τ(n̂) α(n̂)

⟨Θ(l)Θ*(L − l)⟩ = 0 ⟨Θ̃(l)Θ̃*(L − l)⟩ ∼ ϕ(L)
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• A general quadratic estimator uses a combination of 2 Fourier modes of the data

• One has to pick the g and A to make the estimator unbiased and optimal  
 
 

• Once you have that you can compute your power spectrum (with some complications)

• Similar estimators can be derived for polarization or temperature plus polarization.

• Better estimator can be derived to minimize spurious contaminations (e.g. foregrounds…)

More in details…

29

Lensing Reconstruction Technical Details

• This motivates us to derive a quadratic lensing estimator

where we must suitably choose the weight function f.

• Our first condition for choosing f is unbiasedness, i.e. 
which implies a constraint

281

⇥̃ ⇥̃

C ̂ϕ ̂ϕ
L ∼ ⟨Θ̃Θ̃Θ̃Θ̃⟩ → ⟨Θ̃Θ̃Θ̃Θ̃⟩ − ⟨Θ̃Θ̃⟩⟨Θ̃Θ̃⟩ + … = Cϕϕ

L + N0 + N1…

Lensing Reconstruction Technical Details

• Our second condition for choosing f is minimum variance V:

• So, minimize V[f] subject to constraint I[f]=1 with Lagrange 
multipliers. Exercise!

• Guess f~(S/N)2:

282

n n n n

�̂(L) ⇠
Z

dl
K(l,L)

var[⇥(l)⇥(L� l)]
⇥̃(l)⇥̃(L� l)

<latexit sha1_base64="WmsETkE8Ho+9rI/mpqdhQ8bvkoU="></latexit>

Hu  & Okamoto (2001) 
Lewis (2011) 

Fabbian, Lewis, Beck (2019)

Lensing Reconstruction Technical Details

• Agrees with full calculation, “Optimal” Quadratic Estimator:

where N is normalization function of Cls.

• Similar estimators can be derived for polarization (and 
better ones).

• We can measure lensing power spectrum from this 
reconstruction (with some complications!)

283

�̂(L) = N(L)L ·
Z

d2l

(2⇡)2
lCl

Cnoisy
l

⇥(l)
C|L�l|

Cnoisy
|L�l|

⇥(l� L)
*

Lensing Reconstruction Technical Details

• Showed earlier that

• This implies that to leading order

280

⇥(x) = ⇥(x+ d) = ⇥(x) +r� ·r⇥+ · · ·

⇥(l) = ⇥(l) +

Z
d2L

(2⇡)2
[L�(L)] · [(l� L)⇥(l� L)]

⇥̃ ⇥̃

⇥̃

⇥̃ ⇥̃

response
function

̂ϕ(L) = AL ∫l
f(l, L)Θ̃expt(l)Θ̃expt(L − l)
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38 Qu, Sherwin, Madhavacheril, Han, Crowley et al.

Figure 26. Compilation of CMB lensing power spectrum measurements, with our results shown as red datapoints. The CMB
lensing power spectrum presented in this paper represents (along with Planck NPIPE, which reaches similar precision) the highest
signal-to-noise lensing spectrum measured to date.

for cosmological parameters ✓, and Cbb0 is the baseline
covariance matrix. We discussed the construction of the
covariance matrix in Section 5.11, while verification of
the Gaussianity of the lensing bandpowers can be found
in Appendix H. Further corrections to this likelihood are
applied when considering joint constraints with CMB
power spectra, as described in our companion paper,
Madhavacheril et al. (2023). These account for the de-
pendence of the normalization of the lensing bandpowers
on the true CMB power spectra and of the N1 correc-
tion on both the true CMB and lensing power spectra.
For the lensing-only constraints presented in this pa-
per, we account for uncertainty in the CMB power spec-
tra by sampling 1000 ⇤CDM CMB power spectra from
ACT DR4+Planck and propagating these through the
lensing normalization; the scatter in the normalization
leads to an additional broadening of the bandpower co-
variance matrix. For further details, see our earlier dis-
cussion in Section 5.10 and also Appendix B.

9.2. Constraints on the amplitude of structure from
lensing alone

We now consider constraints on the basic ⇤CDM pa-
rameters — cold dark matter and baryon densities, ⌦ch

2

and ⌦bh
2, the Hubble constant H0, the optical depth to

reionization ⌧ , and the amplitude and scalar spectral in-
dex of primordial fluctuations, As and ns — from our

Table 5. Priors used in the lensing-only cosmological analy-
sis of this work. Uniform priors are shown in square brackets
and Gaussian priors with mean µ and standard deviation �

are denotedN (µ,�). The priors adopted here are identical to
those used in the lensing power spectrum analysis performed
by the Planck team (Planck Collaboration et al. 2020a).

Parameter Prior

ln(1010As) [2, 4]

H0 [40, 100]

ns N (0.96, 0.02)

⌦bh
2 N (0.0223, 0.0005)

⌦ch
2 [0.005, 0.99]

⌧ 0.055

lensing measurements alone. These parameters are var-
ied with priors as summarised in Table 5; these are the
same priors assumed in the most recent Planck lens-
ing analyses (Planck Collaboration et al. 2020a; Carron
et al. 2022). Since lensing is not sensitive to the CMB
optical depth, we fix this at ⌧ = 0.055 (Planck Collab-
oration et al. 2016). We fix the total neutrino mass to
be consistent with the normal hierarchy, assuming one
massive eigenstate with a mass of 60meV.
Weak lensing observables in cosmology depend on

both the late-time amplitude of density fluctuations in
terms of �8 and the matter density ⌦m; there is an ad-

CMB lensing state of the art

30

Qu+2023

Planck (2018), Carron+(2022)

Planck DR4 |d | = |∇ϕ | ACT (~40% sky, )κ ∝ ∇2ϕ

Madhavacheril+(2024), Qu+(2023). 

See also Fe, Millea+(2024) for SPT on 1500deg2

40  
detection

σ
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L

��(fsky =0.4): SO LAT + Planck

Lensing Power
Baseline / MV N

L from Standard ILC (no deproj.)

Goal / MV N
L from Standard ILC (no deproj.)

Goal / Pol-only N
L from Standard ILC (no deproj.)

Goal / MV N
L from tSZ+CIB and dust+synch. deprojected

Planck

Figure 6. ⇤CDM CMB lensing power spectrum (black) compared to SO LAT lensing noise curves,
N


L , reconstructed assuming a polarization only (Pol-only) or minimum variance (MV) combination

of estimators in the case of standard ILC for both CMB temperature and polarization cleaning (solid
and dashed curves), and tSZ and fiducial CIB SED deprojection for CMB temperature cleaning and
fiducial polarized dust and synchrotron SED deprojection for CMB polarization cleaning (dot-dashed
curve). SO baseline and goal scenarios are shown in blue and orange, respectively, and compared to the
Planck lensing noise ([288], yellow). SO will be able to map lensing modes with S/N > 1 to L > 200.

with SO LAT (fsky = 0.4) and two foreground cleaning cases: (i) standard ILC for both CMB
temperature and polarization cleaning, and (ii) tSZ and fiducial CIB SED deprojection for
CMB temperature cleaning and fiducial polarized dust and synchrotron SED deprojection
for CMB polarization cleaning.

Using these noise curves and anticipated sky coverage (40% for the LAT, and 10%
for the SATs), we show the forecast errors on the temperature, polarization, and lensing
power spectra in figure 7. These include the anticipated instrument noise and foreground
uncertainty, but do not include any additional systematic error budget. Figure 7 also shows
projected errors for the B-mode power spectrum described in section 3.

2.5.3 Optimization

Our nominal noise curves correspond to the SO LAT frequency distribution given in table 1.
However, to determine this frequency distribution, we performed a full end-to-end optimiza-
tion for various LAT observables. This study will be described elsewhere, but we provide a
summary here for reference. We considered a range of sky areas (from fsky = 0.03 to 0.4)
and all configurations of LAT optics tubes, with the constraint that there are a total of seven
tubes, and they can each have 27/39 GHz, 93/145 GHz, or 225/280 GHz.

Using the noise calculator described in Simons Observatory Collaboration (in prep.) [332]
and [146], we computed the SO LAT noise properties for each choice of survey region and
experimental configuration, and then processed these noise curves through the foreground
modeling and component separation methodology described in the previous subsections. We
then used the post-component-separation noise curves to determine the S/N of various SO
LAT observables: the CMB TT power spectrum, the CMB lensing power spectrum recon-
structed via the TT estimator, the tSZ power spectrum, the kSZ power spectrum, the CMB
EE power spectrum, the CMB BB power spectrum (lensing-only), and the CMB lensing

– 15 –

What we expect in the coming years

31

• First detection at  30% precision in ~2011, rapid progress but this is just the beginning. 

• SO will measure CMB lensing potential at >100σ significance, even higher precision for S4.

• CMB lensing will soon start imaging non-linear structures on large sky fractions

Simons Observatory 
collaboration (2019)

Josquin Errard  
 on the behalf of the Simons Observatory collaboration  

53rd Rencontres de Moriond 
La Thuile, Italy, 22 March 2018

1 {• Instrumental effects.

• Analysis systematics /  
new estimators 

• Theoretical systematics

• Galactic and extragalactic 
foregrounds.
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Towards a coherent modeling of lensing
• Lensing depends on matter and we know matter is not a Gaussian random field… 

32
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Figure1.Theonionuniverse:adecompositionofthelightcone
thatmimicsthedatastructureinphotometricgalaxysurveys.
Thesimulateduniverseisrenderedasadiscretesetofprojected
matterdensityshpericalshellsinthelightconearoundtheob-
server,i.e,atthecenteroftheconcentricspheres.2Dspherical
shellsareequallyspacedincomovingtimeandpixelizedusing
theHealpixtesselationofchosenangularresolution.Forclarity,
inthisfigureweonlyshowoneofthehemispheres(i.ehalfthe
onionuniverse)forseveralofthelowestredshiftshells.

rootofthenumberofindependentrBAOcells:

∆BAO≡
∆rBAO

rBAO
≃

„

r3
BAO

V

«1/2

(1)

whereVisthesampledvolume,andwehaveassumedGaus-

sianerrors(withnegligibleshot-noise)overthefirsttwo
BAOwiggles(seealsoAnguloetal2008).Thus,forthe

onionshellatz=0.6weestimate∆BAO≃1/
√

1000≃3%.

Accordingtothisruleofthumb,wecangetto0.6%relative
errorinmeasuringrBAOusingthewholeMICEsimulation

volume,ascomparedto9%withtheMilleniumsimulation.

2.2Compressionfactor

Tobuildthelight-conewithsufficientaccuracy,wehaveused
200comovingsimulationoutputs.Eachoutputtakes250

Gbytes,sothetotalstoragerequiredisabout49Terabytes.
Ifwematchthespatialwidthoftheonionshells(aswehave

done)tothetimelagbetweentheoutputsthatareused

tobuildthelight-conewewillhaveequivalentinformation
forapplicationsthatdonotrequireangularorredshiftres-

olutionbetterthanthatprojectedontothepixelmaps.We

haveproduced200suchHealpixmaps,eachoccupies201
Megabyte,whichrepresentsatotalof39Gigabytes.Thus,

thereistotalcompressionfactorofabout1300whenusing

Figure2.Onionshelldensitymapatz≃0.036(thiscorresponds
toacomovingdistanceofr=108±8Mpc/h)

Figure3.Onionshelldensitymapatz≃0.15(comovingdis-
tancer=439±9Mpc/h)

c⃝0000RAS,MNRAS000,000–000

! !

!!"

!"#$%"$&'&'($)*+,'+-.

!"##$%&'"(")*$+$

'"*)%,$-./

0(12$&3456

70!8&!9,1:;&<&=.&>9(?&5.=@

+ =

• Non-linearities 
fully accounted

Fosalba+,08

z = 1100

z = 0

• Realistic photon 
diffusion propagation

Carbone+(2009)  
Calabrese+(2015) 
Lewis+(2016,2017) 
Pratten+(2017) 
Fanizza+(2016) 
Fabbian+(2018)



Name TalkName TalkGiulio Fabbian Les Houches 2025

Post-Born corrections: what are they?

33

LOS

Born 
displacement

post-Born 
displacement

Born 
displacement

post-Born 
displacement

Lensing changes location of later lensing events

Size and shape of image affected by first lensing event
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FIG. 4. Slices through the weighted convergence bispectrum (L2L3)
1/2 bL1L2L3

/(C
L1

C
L2

C
L3

)1/2 for L1 = 103. The top row shows
the tree-level LSS bispectrum and the bottom row shows the non-linear fit of Scoccimarro and Couchman [41] (“SC”). The left plots show the
post-Born contributions, the middle plots the large-scale structure contributions and the right plots the cancellations that occur due to negative
contributions from the post-Born bispectrum in approximately flattened configurations, i.e. L1 + L2 ⇠ L3. For approximately equilateral
configurations, i.e. L1 ⇠ L2 ⇠ L3, we find an enhancement of the total bispectrum. The grey dashed line denotes the b = 0 contour. In
the equilateral limit, the tree-level LSS bispectrum is enhanced by a factor of ⇠ 2 by the post-Born corrections and the non-linear SC LSS
bispectrum by a factor of ⇠ 1.5.

This agrees with the galaxy lensing result of Ref. [10] when restricted to observing the convergence (trace of the distortion
tensor) directly.

Non-linear structure growth will also give additional contributions from the large-scale structure bispectrum, which in the
Limber approximation has the form [42]

b

L1L2L3

= L
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2
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2
3
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0
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W (�,�s)3

�4
B
   (L1/�, L2/�, L3/�;�). [LSS] (4.7)

The potential bispectrum on the right-hand side of this equation can be approximated by the tree-level result for the fractional
matter density perturbations [43]:

b
���(k1, k2, k3;�) = 2F2(k1,k2; z)P��(k1, z(�))P��(k2, z(�)) + cyc. perm., (4.8)
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and k
2 (k, z) ⇡ ��(z)�(k, z) with �(z) ⇡ k

2
p
P  (k, z)/P��(k, z) approximately independent of k. The baseline tree-level

result has A = B = C = 1 in Eq. (4.9), so that F2 is independent of redshift, but even in this case we use the non-linear P��

from halofit to improve accuracy [41]. We also consider extended fitting formulae for A, B and C from Scoccimarro and
Couchman [41] (denoted “SC”) to assess the order of magnitude of fully non-linear corrections beyond tree level5

5 We use a dewiggled form for n ⌘ d lnP��,lin/d ln k in the fitting function following Ref. [44]. Ref. [44] (“GM”) also provide updated fits, but they are
not validated at high redshift and may behave in an unphysical way there, so we restrict to the original fit of Ref. [41]. Using the updated fits would slightly
increase the LSS bispectrum signal, but not change results qualitatively. At L = 1000 the equilateral lensing bispectrum is enhanced by ⇡ 2⇥ compared
to tree level using the SC fit, and ⇡ 2.5⇥ in the GM fit, but the difference is much less for folded configurations (where the non-linear enhancement at
L1 = 1000 is less than 20%).

Higher-order biases in CMB lensing estimation

34

Pratten & Lewis (2016)

Fabbian+(2018)
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P  (k, z)/P��(k, z) approximately independent of k. The baseline tree-level

result has A = B = C = 1 in Eq. (4.9), so that F2 is independent of redshift, but even in this case we use the non-linear P��

from halofit to improve accuracy [41]. We also consider extended fitting formulae for A, B and C from Scoccimarro and
Couchman [41] (denoted “SC”) to assess the order of magnitude of fully non-linear corrections beyond tree level5

5 We use a dewiggled form for n ⌘ d lnP��,lin/d ln k in the fitting function following Ref. [44]. Ref. [44] (“GM”) also provide updated fits, but they are
not validated at high redshift and may behave in an unphysical way there, so we restrict to the original fit of Ref. [41]. Using the updated fits would slightly
increase the LSS bispectrum signal, but not change results qualitatively. At L = 1000 the equilateral lensing bispectrum is enhanced by ⇡ 2⇥ compared
to tree level using the SC fit, and ⇡ 2.5⇥ in the GM fit, but the difference is much less for folded configurations (where the non-linear enhancement at
L1 = 1000 is less than 20%).

Throughout the paper, we will use the convention that the
differential operator ∇ is only applied to the object directly
following it. Applications on composite objects will be
indicated by brackets. In harmonic space, products turn into
convolutions and gradients correspond to multiplication
with −il, so that

~TðlÞ ¼ TðlÞ þ δTðlÞ þ δ2TðlÞ þOðϕ3Þ ð9Þ

with OðϕÞ correction,

δTðlÞ ¼ −
Z

l0
l0 · ðl − l0ÞTðl0Þϕðl − l0Þ; ð10Þ

and Oðϕ2Þ correction

δ2TðlÞ ¼ 1

2

Z

l0

Z

l00
½l0 · l00&½l0 · ðl − l0 − l00Þ&

× Tðl0Þϕðl00Þϕðl − l0 − l00Þ: ð11Þ

All perturbations are linear in the unlensed temperature T.
The lensing potential is a weighted projection of the

gravitational potential ψ along the line of sight,

ϕðn̂Þ ¼ 2

Z
χ'

0
dχWðχÞψðχn̂; ηðχÞÞ ð12Þ

where χ denotes the comoving angular diameter distance,
W the lensing efficiency and η the conformal time. In a flat
Universe, which is assumed here, the lensing efficiency
simplifies to

WðχÞ ¼ −
χ' − χ
χ'χ

; ð13Þ

where an asterisk is used to mark quantities at decoupling.
This description of CMB lensing relies on the Born
approximation, which assumes that the integration can
be carried out along the unperturbed photon geodesic.
Commonly, the lensing potential is modeled as a

homogeneous Gaussian random field, which is solely
characterized by its power spectrum. This power spectrum
is well described by a Limber projection of the power
spectrum of matter fluctuations, Pδðk; ηÞ,

Cϕϕ
L ¼

Z
χ'

0
dχ

4WðχÞ2

χ2
γðχÞ2

ðL=χÞ4
PδðL=χ; χÞ; ð14Þ

where

γðχÞ≡ 3

2

H2
0Ωm0

c2aðχÞ
: ð15Þ

In this work, we drop the assumption of Gaussianity and
allow for a nonzero bispectrum of the lensing potential.

Similarly to the lensing power spectrum, the lensing
bispectrum is a projection of the bispectrum of density
perturbations Bδðk1;k2;−k1 − k2; χÞ:

Bϕðl1; l2; l3Þ ¼ −
Z

χ'

0
dχχ28WðχÞ3 γðχÞ3

ðl1l2l3Þ2

× Bδðl1=χ; l2=χ; l3=χ; χÞ: ð16Þ

As summarized in Appendix A, this follows by applying
the Fourier space analogue of Limber’s equation for
bispectra (see e.g., [41,42]). On very large scales, we
expect the flat-sky and the Limber approximations that
we assume to break down. The lensing power spectrum is
overestimated on large scales in the Limber approximation
and the bispectrum could be affected similarly. We will
therefore only consider multipoles L > 100.
The bispectrum of matter perturbations can be modeled

by standard Eulerian perturbation theory, which gives at
leading order in the linear matter overdensity (see [43] for a
review),

Bδðk1;k2;k3; ηÞ ¼ 2F2ðk1;k2ÞPδðk1; ηÞPδðk2; ηÞ
þ ð1 ↔ 3Þ þ ð2 ↔ 3Þ: ð17Þ

This is quadratic in the linear matter power spectrumPδ and
involves the symmetrized kernel,

F2ðki;kjÞ ¼
5

7
þ 1

2

!
ki
kj

þ
kj
ki

"
k̂i · k̂j þ

2

7
ðk̂i · k̂jÞ2; ð18Þ

where k̂i ¼ ki=jkij. The simple bispectrum model (17) is
only accurate on relatively large scales that are under
perturbative control (roughly k≲ 0.07h=Mpc at z ¼ 0, see
e.g., [44] for a recent study). It can be extended to smaller,
nonlinear scales by including higher-order (loop) correc-
tions. A simpler phenomenological modification that
extends the range of validity to slightly smaller scales
can be obtained by replacing PδðkÞ with a matter power
spectrum with nonlinear corrections, Pnl

δ ðkÞ, in Eq. (17)
[45]. On smaller scales, that cannot be modeled analyti-
cally, one needs to resort to fitting formulae calibrated
against simulations.

B. Lensing reconstruction

For a fixed lensing potential, the effect of lensing is to
introduce a correlation between different modes of the
temperature field, which in the unlensed case are indepen-
dent. The resulting nondiagonal terms in the 2-point
correlator of the CMB in harmonic space can be used to
construct a quadratic lensing reconstruction estimator
[46,47], which can be written on the flat sky as

ϕ̂ðLÞ ¼ AL

Z

l
gðl;LÞ ~TexptðlÞ ~TexptðL − lÞ; ð19Þ
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Throughout the paper, we will use the convention that the
differential operator ∇ is only applied to the object directly
following it. Applications on composite objects will be
indicated by brackets. In harmonic space, products turn into
convolutions and gradients correspond to multiplication
with −il, so that

~TðlÞ ¼ TðlÞ þ δTðlÞ þ δ2TðlÞ þOðϕ3Þ ð9Þ

with OðϕÞ correction,

δTðlÞ ¼ −
Z

l0
l0 · ðl − l0ÞTðl0Þϕðl − l0Þ; ð10Þ

and Oðϕ2Þ correction

δ2TðlÞ ¼ 1

2

Z

l0

Z

l00
½l0 · l00&½l0 · ðl − l0 − l00Þ&

× Tðl0Þϕðl00Þϕðl − l0 − l00Þ: ð11Þ

All perturbations are linear in the unlensed temperature T.
The lensing potential is a weighted projection of the

gravitational potential ψ along the line of sight,

ϕðn̂Þ ¼ 2

Z
χ'

0
dχWðχÞψðχn̂; ηðχÞÞ ð12Þ

where χ denotes the comoving angular diameter distance,
W the lensing efficiency and η the conformal time. In a flat
Universe, which is assumed here, the lensing efficiency
simplifies to

WðχÞ ¼ −
χ' − χ
χ'χ

; ð13Þ

where an asterisk is used to mark quantities at decoupling.
This description of CMB lensing relies on the Born
approximation, which assumes that the integration can
be carried out along the unperturbed photon geodesic.
Commonly, the lensing potential is modeled as a

homogeneous Gaussian random field, which is solely
characterized by its power spectrum. This power spectrum
is well described by a Limber projection of the power
spectrum of matter fluctuations, Pδðk; ηÞ,

Cϕϕ
L ¼

Z
χ'

0
dχ

4WðχÞ2

χ2
γðχÞ2

ðL=χÞ4
PδðL=χ; χÞ; ð14Þ

where

γðχÞ≡ 3

2

H2
0Ωm0

c2aðχÞ
: ð15Þ

In this work, we drop the assumption of Gaussianity and
allow for a nonzero bispectrum of the lensing potential.

Similarly to the lensing power spectrum, the lensing
bispectrum is a projection of the bispectrum of density
perturbations Bδðk1;k2;−k1 − k2; χÞ:

Bϕðl1; l2; l3Þ ¼ −
Z

χ'

0
dχχ28WðχÞ3 γðχÞ3

ðl1l2l3Þ2

× Bδðl1=χ; l2=χ; l3=χ; χÞ: ð16Þ

As summarized in Appendix A, this follows by applying
the Fourier space analogue of Limber’s equation for
bispectra (see e.g., [41,42]). On very large scales, we
expect the flat-sky and the Limber approximations that
we assume to break down. The lensing power spectrum is
overestimated on large scales in the Limber approximation
and the bispectrum could be affected similarly. We will
therefore only consider multipoles L > 100.
The bispectrum of matter perturbations can be modeled

by standard Eulerian perturbation theory, which gives at
leading order in the linear matter overdensity (see [43] for a
review),

Bδðk1;k2;k3; ηÞ ¼ 2F2ðk1;k2ÞPδðk1; ηÞPδðk2; ηÞ
þ ð1 ↔ 3Þ þ ð2 ↔ 3Þ: ð17Þ

This is quadratic in the linear matter power spectrumPδ and
involves the symmetrized kernel,

F2ðki;kjÞ ¼
5

7
þ 1
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ki
kj

þ
kj
ki

"
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2

7
ðk̂i · k̂jÞ2; ð18Þ

where k̂i ¼ ki=jkij. The simple bispectrum model (17) is
only accurate on relatively large scales that are under
perturbative control (roughly k≲ 0.07h=Mpc at z ¼ 0, see
e.g., [44] for a recent study). It can be extended to smaller,
nonlinear scales by including higher-order (loop) correc-
tions. A simpler phenomenological modification that
extends the range of validity to slightly smaller scales
can be obtained by replacing PδðkÞ with a matter power
spectrum with nonlinear corrections, Pnl

δ ðkÞ, in Eq. (17)
[45]. On smaller scales, that cannot be modeled analyti-
cally, one needs to resort to fitting formulae calibrated
against simulations.

B. Lensing reconstruction

For a fixed lensing potential, the effect of lensing is to
introduce a correlation between different modes of the
temperature field, which in the unlensed case are indepen-
dent. The resulting nondiagonal terms in the 2-point
correlator of the CMB in harmonic space can be used to
construct a quadratic lensing reconstruction estimator
[46,47], which can be written on the flat sky as

ϕ̂ðLÞ ¼ AL

Z

l
gðl;LÞ ~TexptðlÞ ~TexptðL − lÞ; ð19Þ
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indicated by brackets. In harmonic space, products turn into
convolutions and gradients correspond to multiplication
with −il, so that
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All perturbations are linear in the unlensed temperature T.
The lensing potential is a weighted projection of the

gravitational potential ψ along the line of sight,

ϕðn̂Þ ¼ 2

Z
χ'

0
dχWðχÞψðχn̂; ηðχÞÞ ð12Þ

where χ denotes the comoving angular diameter distance,
W the lensing efficiency and η the conformal time. In a flat
Universe, which is assumed here, the lensing efficiency
simplifies to

WðχÞ ¼ −
χ' − χ
χ'χ

; ð13Þ

where an asterisk is used to mark quantities at decoupling.
This description of CMB lensing relies on the Born
approximation, which assumes that the integration can
be carried out along the unperturbed photon geodesic.
Commonly, the lensing potential is modeled as a

homogeneous Gaussian random field, which is solely
characterized by its power spectrum. This power spectrum
is well described by a Limber projection of the power
spectrum of matter fluctuations, Pδðk; ηÞ,
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where
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In this work, we drop the assumption of Gaussianity and
allow for a nonzero bispectrum of the lensing potential.

Similarly to the lensing power spectrum, the lensing
bispectrum is a projection of the bispectrum of density
perturbations Bδðk1;k2;−k1 − k2; χÞ:
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As summarized in Appendix A, this follows by applying
the Fourier space analogue of Limber’s equation for
bispectra (see e.g., [41,42]). On very large scales, we
expect the flat-sky and the Limber approximations that
we assume to break down. The lensing power spectrum is
overestimated on large scales in the Limber approximation
and the bispectrum could be affected similarly. We will
therefore only consider multipoles L > 100.
The bispectrum of matter perturbations can be modeled

by standard Eulerian perturbation theory, which gives at
leading order in the linear matter overdensity (see [43] for a
review),

Bδðk1;k2;k3; ηÞ ¼ 2F2ðk1;k2ÞPδðk1; ηÞPδðk2; ηÞ
þ ð1 ↔ 3Þ þ ð2 ↔ 3Þ: ð17Þ

This is quadratic in the linear matter power spectrumPδ and
involves the symmetrized kernel,
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where k̂i ¼ ki=jkij. The simple bispectrum model (17) is
only accurate on relatively large scales that are under
perturbative control (roughly k≲ 0.07h=Mpc at z ¼ 0, see
e.g., [44] for a recent study). It can be extended to smaller,
nonlinear scales by including higher-order (loop) correc-
tions. A simpler phenomenological modification that
extends the range of validity to slightly smaller scales
can be obtained by replacing PδðkÞ with a matter power
spectrum with nonlinear corrections, Pnl

δ ðkÞ, in Eq. (17)
[45]. On smaller scales, that cannot be modeled analyti-
cally, one needs to resort to fitting formulae calibrated
against simulations.

B. Lensing reconstruction

For a fixed lensing potential, the effect of lensing is to
introduce a correlation between different modes of the
temperature field, which in the unlensed case are indepen-
dent. The resulting nondiagonal terms in the 2-point
correlator of the CMB in harmonic space can be used to
construct a quadratic lensing reconstruction estimator
[46,47], which can be written on the flat sky as

ϕ̂ðLÞ ¼ AL

Z
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gðl;LÞ ~TexptðlÞ ~TexptðL − lÞ; ð19Þ
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where ~Texpt are beam-deconvolved noisy temperature
fluctuations. The observed temperature fluctuations are
assumed to contain white noise and a Gaussian beam, so
that the final power spectrum is

C ~T ~T
l;expt ¼ C ~T ~T

l þ σ2N exp ½lðlþ 1Þθ2FWHM=ð8 ln 2Þ&; ð20Þ

where the instrumental noise level is specified by σ2N and
the beam size is given in terms of the full width at half-
maximum (FWHM) θFWHM. The weight g in Eq. (19) is
chosen such that the variance of the estimator is minimized
[21,48,49],

gðl;LÞ ¼
ðL − lÞ ·LC ~T ~T

jL−lj þ l ·LC ~T ~T
l

2C ~T ~T
l;exptC

~T ~T
jL−lj;expt

: ð21Þ

Note that gðL − l;LÞ ¼ gðl;LÞ ¼ gð−l;−LÞ. The nor-
malization is given by

A−1
L ¼ 2

Z

l
gðl;LÞl ·LC ~T ~T

l : ð22Þ

The power spectrum of the lensing reconstruction (19)
involves the lensed temperature 4-point function,

hϕ̂ðLÞϕ̂ð−LÞi ¼ A2
L

Z

l1

Z

l2
gðl1;LÞgðl2;LÞh ~Texptðl1Þ

× ~TexptðL − l1Þ ~Texptð−l2Þ ~Texptðl2 −LÞi:
ð23Þ

This 4-point function can be split into a disconnected part,
obtained by contracting two pairs of lensed temperature
fields with each other, and a connected part, given by the
full 4-point function minus the disconnected part. The
disconnected part leads to the Nð0Þ power spectrum bias,
which would be present even for Gaussian temperature
fluctuations in absence of lensing. It is called Nð0Þ because
it is of zeroth order in Cϕϕ.1 Note Nð0Þ

L ¼ AL (a conse-
quence of optimal weighting). The connected part of the
4-point function in Eq. (23) leads to the desired signal
contribution Cϕϕ

L . Additionally, it gives rise to the Nð1Þ bias
which is also of order Cϕϕ [21,22,50]. The expectation
value of the measured lensing power spectrum is, therefore,

hCϕ̂ ϕ̂
L i ¼ Nð0Þ

L þ Cϕϕ
L þ Nð1Þ

L þO½ðCϕϕÞ3& ðGaussianϕÞ
ð24Þ

if the lensing potential ϕ is assumed to be Gaussian. To
obtain an unbiased estimator for the signal Cϕϕ, the Nð0Þ

and Nð1Þ biases are calculated (typically using simulations
or simulation-data combinations) and subtracted from the
measured lensing power.

III. EFFECT OF LENSING BISPECTRUM ON
MEASURED LENSING POWER SPECTRUM

A. Overview

We now drop the assumption that the lensing potential
ϕ is Gaussian. In this case, n-point functions with an odd
number of lensing potentials no longer need to vanish,
and n-point functions no longer need be determined by
the Gaussian 2-point power spectrum Cϕϕ alone. We
consider only a nonzero 3-point function or bispectrum,
and ignore corrections from all higher-order n-point
functions. This approximation is motivated by the spe-
cific non-Gaussianity generated by large-scale structure
modes in the mildly nonlinear regime relevant for CMB
lensing. For simplicity we ignore the ISW effect and its
induced correlations like hTϕi and hTTϕi, but note that
accounting for it may lead to additional biases that should
be investigated in the future. We also assume that the
unlensed CMB is a Gaussian field.
Allowing a nonzero lensing potential bispectrum Bϕ,

the lensed temperature 4-point function entering the
expectation value for the measured lensing power spec-
trum (23) picks up additional contractions that would
vanish for a Gaussian lensing potential. For example,
using the Taylor expansion (8), one new allowed con-
traction is of the form

ð25Þ

where subscripts denote gradients T;i ¼ ∇iT and
ϕ;i ¼ ∇iϕ. Since the lensing change δnT is of order
ϕn and linear in the unlensed temperature T, there are
four qualitatively different contraction types that arise for
the measured lensing power spectrum (23) at order ϕ3:

typeA∶ hδTδTδT 0T 0i typeB∶ hδ2TδTT 0T 0i
typeC∶ hδ2TTδT 0T 0i typeD∶ hδ3TTT 0T 0i: ð26Þ

The last two temperature fields are labeled with primes to
indicate that they correspond to the second reconstruction
field ϕ̂ð−LÞ in Eq. (23); quantities without primes
correspond to the first reconstruction field ϕ̂ðLÞ.2
Each type of terms allows several Wick’s theorem

contractions. For example, for type A there are three
contractions that we label A1, A2, and A3:

1We follow the common power-counting practice where only
explicit appearances of Cϕϕ are counted that are not contained in
lensing contributions to C ~T ~T .

2In position space, this corresponds to reconstructed lenses at
two different positions x and x0 on the sky; also see Appendix E.
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ð27Þ

Similarly, the type-B term has three contractions B1, B2, and B3,

ð28Þ

and the type C term has contributions C1, C2, and C3:

ð29Þ

We omit the type-D terms here as these can be shown to be
zero.
In our paper, we evaluate the A1 and C1 terms numeri-

cally and focus on them in the main text. We focus on these
terms both because they are expected to be among the
largest and because they allow for numerical evaluation
on reasonable timescales. In contrast, as discussed in
Appendix C, the B1 term is zero, and the A2 and A3
terms are tightly coupled, which makes numerical evalu-
ation difficult and time-consuming (the integrals are six-
dimensional), but also suggests that these terms are small.
Furthermore, the C2 term should be naturally accounted for
in the (realization-dependent) calculations of the Nð0Þ bias,
which is included in modern lensing pipelines. We defer a
full evaluation of the remaining B2, B3, and C3 terms to
future work; we note that if they have a similar order of
magnitude to A1þ C1, our approximate calculation might
underestimate the true bias.
The new contractions allowed by a nonzero lensing

bispectrum lead to a new bias Nð3=2Þ
L;tot of the measured

4-point lensing power spectrum,

hCϕ̂ ϕ̂
L i ¼ Nð0Þ

L þ Cϕϕ
L þ Nð1Þ

L þ Nð3=2Þ
L;tot þO½ðCϕϕÞ5=2&

ðnon-GaussianϕÞ: ð30Þ

We call the new non-Gaussian reconstruction bias Nð3=2Þ

because it scales like ϕ3 ∝ ðCϕϕÞ3=2, and previously con-
sidered biases like Nð0Þ and Nð1Þ were labeled by the power
of Cϕϕ they involve. The total Nð3=2Þ bias is a sum over all
possible 4-point contractions listed above,

Nð3=2Þ
tot ¼ ðNð3=2Þ

A1 þ Nð3=2Þ
C1 Þ þ Nð3=2Þ

A2 þ Nð3=2Þ
A3 þ Nð3=2Þ

B2

þ Nð3=2Þ
B3 þ Nð3=2Þ

C2 þ Nð3=2Þ
C3 : ð31Þ

where as explained previously we focus here on the A1 and
C1 terms in parentheses.

The A1 and C1 bias terms in Eqs. (27) and (29) have a
simple intuitive interpretation: They arise because the
quadratic response of the lensing reconstruction ϕ̂ðLÞ to
the true lensing potential ϕ is correlated with the linear
response of the lensing reconstruction ϕ̂ð−LÞ to the true
lensing potential ϕ0. This correlation involves the 3-point
correlation function hϕϕϕ0i of the true lensing potential,
which is nonzero in presence of nonlinear gravitational
clustering.
We proceed by discussing these A1 and C1 terms, which

contribute substantially to the total bias (31), in detail.
Analytical expressions for the remaining bias contributions
are given in Appendix C.

B. A1 contribution to the Nð3=2Þ bias

We begin by computing the lensing bias from the
contraction A1 in Eq. (27). This contraction is given by

hδTl1δTl2δTl3Tl4iA1
¼ −ð2πÞ2δDðl1 þ l2 þ l3 þ l4ÞCTT

l4
½ðl3 þ l4Þ · l4&

×
Z

l
½l · ðl1 − lÞ&½l · ðl2 þ lÞ&

× CTT
l Bϕðl1 − l; l2 þ l;−l1 − l2Þ; ð32Þ

where we used the Fourier space expression (10) for the
first-order temperature change δT due to lensing, and
contracted temperature and lensing fields as indicated for
the A1 term in Eq. (27).3 Inserting this into Eq. (23) yields
the following A1 bias of the measured lensing power
spectrum:

3For Gaussian instrument noise that is uncorrelated
with the signal, all contributions to the four point correlator
h ~Texpt

l1
~Texpt
l2

~Texpt
l3

~Texpt
l4

i that involve instrument noise either vanish
or contribute to the Gaussian noise bias. This justifies ignoring
instrument noise in the calculation of the connected four point
contributions to Nð3=2Þ.

BIAS TO CMB LENSING MEASUREMENTS FROM THE … PHYSICAL REVIEW D 94, 043519 (2016)

043519-5

Böhm+(2016)
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Non-linear  
clustering

Non-Gaussian effects in reconstructed ϕ(N3/2)

35

CMB-S4

Beck+(2018)
Bohm+(2018)

Biases or 
inconsistencies in 

cosmological 
parameters +DESI BAO

Nasty effects  in 
cross-correlation 

with galaxy surveys

z=1

Fabbian+ 
(2019)

Beck+ 
(2018)

Mimics IA

post-Born

Total effect

C ̂ϕ ̂ϕ
L ∼ Cϕϕ

L + N0
L + N1

L + N3/2
L
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• CMB lensing: integrated, 2D 
projected, unbiased probe of matter.

• Integrated = overlaps with all the 
matter in the universe.

• Synergies with any other probe of 
matter e.g. LSS surveys.

• Reduces systematics

CMB probes and cross-correlation

36

Madavacheril+2023

κCMB,obs = κCMB + sCMB

⟨κCMB,obsκgal,obs⟩ = ⟨κCMBκgal⟩ + ⟨sCMBsgal⟩ + ⟨κCMBsgal⟩ + ⟨κgalsCMB⟩

κgal,obs = κgal + sgal

⟨κgal,obsκgal,obs⟩ = ⟨κgalκgal⟩ + ⟨sgalsgal⟩ + ⟨κgalsgal⟩

⟨κCMB,obsκCMB,obs⟩ = ⟨κCMBκCMB⟩ + ⟨sCMBsCMB⟩ + ⟨κCMBsCMB⟩
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Beyond CMB observations

37

• Spectroscopic 
surveys (e.g. DESI, 
Euclid) 

• Observing matter distributions as it grows: we need “tracers"

f [δm]

• Photometric 
surveys (e.g. Rubin, 
Euclid)
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Cosmological probes: galaxy clustering

38

• CMB alone is weakly sensitive to the details of recent growth rate of LSS

• To test LCDM model large scale structures offer invaluable tomographic help!

• Galaxy clustering: P(k), BAO, RSD, voids are more sensitive but are local, biased, 
non-linear tracers…

3.3 Cosmological Measurements of Neutrino Mass 53
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Figure 2–3: Visualizing the impact on cosmological power spectra of varying the
total neutrino mass. Each curve represents a change in the total neutrino mass of
0.1 eV. At top left, the impact on the matter power spectrum is shown, with the
top-right panel showing the relative change, in comparison to the no-mass case. The
massive neutrinos wash out structure on scales k > 0.01hMpc�1. Similar behavior is
seen in the two-dimensional CMB lensing power spectra (middle row). The bottom
row shows the impact on the CMB temperature power spectrum.

20

Figure 14. The e�ect of massive neutrinos on the matter power spectrum and CMB lensing power

spectrum. Top Left: The e�ect of neutrino mass on the matter power spectrum. Top Right: The change to

the matter power spectrum relative to the case with massless neutrinos. Bottom Left: The projected matter

power spectrum observed through CMB lensing shows the same suppression with neutrino mass. Bottom
Right: The relative change to the lensing potential power spectrum.

The lower limit on ⇧⌃h2 is a reflection of the lower limit on the sum of the masses,
#

m⌃ & 58meV, that

is determined from neutrino oscillation experiments [278]. This sets a clear observational target for future

observations.

Any probe of Pmm at late times is, in principle, sensitive to the sum of the neutrino masses. The question

we will be most interested in is whether a given probe is sensitive to the lower limit,
#

m⌃ = 58meV (or

⇧⌃h2 = 0.0006) under realistic circumstances. In this subsection, we will discuss the two methods through

which CMB-S4 can directly constrain the neutrino mass, CMB lensing and SZ cluster abundances. We will

also compare these observables to other cosmological probes of the neutrino mass from upcoming large scale

structure surveys such as DESI and LSST.

CMB-S4 Science Book

Philcox+2020
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Cosmological probes: weak lensing

39

• Galaxy ellipticity: correlated by the presence of dark matter through lensing.

•  
 
 
 
 
 
 
 
 
 
 
 

• Galaxy intrinsic alignment: 

• PSF, noise and lensed galaxies' distribution: 

⟨ ̂γ ̂γ⟩ = ⟨γγ⟩ + ⟨ϵsϵs⟩ + ⟨γϵs⟩

̂γ = (1 + m)γ + n

Doux+2022

Measuring the shear

Correlate shapes of 
millions of galaxies to 
measure the cosmological 
signal at 10-3 in ellipticity

Test combined growth 
and expansion history 

Telescope

Massey+

The statistics of shape correlations as a 
function of angular scale and redshift can 
be used to directly infer the statistics of 
the density fluctuations and consequently 
cosmology.
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• Galaxy clustering:  local, growth rate 

• Weak lensing /shear: LOS integrated, sensitive to amplitude of fluctuations .

• Shear + galaxy-shear: sensitive to  

Cgg
ℓ ∝ b2

gσ2
8

S8

∂Cℓ /∂P(k), Cgγ
ℓ ∝ bgσ2

8
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Figure 1. Cosmological constraints on the cosmological parameters f8 (left) and (8 (right) with the matter density ⌦m in flat-⇤CDM. We adopt a Hybrid
pipeline to re-analyse cosmic shear observations from DES Y3 (green) and KiDS-1000 (yellow) and conduct a joint-survey analysis of DES Y3 + KiDS-1000
(pink). The cosmic shear constraints can be compared to a re-analysis of the Planck Collaboration (2020) CMB observations (blue) using a common set of
cosmological parameters and priors. The marginalised posterior contours show the 68% (inner) and 95% (outer) credible intervals.

two surveys we assessed their consistency. We find a DES-
KiDS Hellinger distance offset in (8 of 1.0f (Equation 6),
and a �tension parameter shift in (8 � ⌦m of 0.8f (Equa-
tion 8), thus meeting the < 2.3f threshold for consistent
data sets.

For the DES Y3+KiDS-1000 joint-survey analysis, the
mean marginal values of (8, ⌦m and f8 and are found with
68% credible intervals to be

(8 = 0.790+0.018
�0.014

⌦m = 0.280+0.037
�0.046

f8 = 0.825+0.067
�0.073 ,

(12)

constituting a 2.0% precision measurement of (8 34. These
constraints are summarised in Figure 2 and tabulated in
Table 4 including the maximum marginal and MAP+PJ-
HPD values for (8. In all cases the model is found to
provide a good fit to the data (see Table 3). For our fiducial
joint-survey analysis we find a goodness of fit probability
?(j2 > j2

min |a) = 0.068. We also measure the goodness of
fit of the DES and KiDS data vector for the best-fit set of
parameters from the joint analysis. The DES goodness of
fit is essentially unchanged by the joint analysis. The KiDS
goodness of fit degrades slightly, but nevertheless passes the
goodness of fit requirement with ?(j2 > j2

min |a) = 0.035.
Reviewing the different mean marginal, maximum

marginal and MAP (8 values in Table 4, it is worth not-
ing that the 0.6f offset between the MAP and mean is ex-

?KiDS (j2 > j2
min |a) = 0.66 in the Li et al. (2023b) Hybrid analysis of

an improved KiDS-1000 shear catalogue that also adopts enhanced shear
and redshift calibration techniques. We note that the Li et al. (2023b)
(8 constraints are unchanged from this analysis, with the MAP+PJHPD
(8 = 0.776+0.029+0.002

�0.027�0.003. The second set of errors here account for system-
atic uncertainties within the shear calibration.

34 It is interesting to note that the joint-survey constraints on (8 are the
same as those estimated through a naive approach of taking the weighted
average of the individual survey constraints in Equation 11. We do not
recommend this naive approach for future survey combinations, especially
in cases where the analysis choices differ. A weighted average of the
published constraints from Amon et al. (2022); Asgari et al. (2021); Secco,
Samuroff et al. (2022) is offset from our joint-survey constraints at the level
of 1.6f. We discuss how the different analysis choices for each survey
team impacts the (8 constraints in Section 3.6, as quantified through mock
survey studies in Appendices C.4 and E.2.

Analysis j2
min #⇥ j2

red ? (j2
min |aeff )

DES Y3 (Full area) 284.2 5.4 1.06 0.231
DES Y3 (KiDS-excised) 288.3 4.6 1.07 0.192
KiDS-1000 88.3 7.1 1.30 0.048

DES Y3+KiDS-1000:

Fiducial 378.0 9.6 1.12 0.068
⌃<a = 0.06eV 376.6 9.7 1.11 0.074
Shared IA 382.2 8.0 1.12 0.057
NLA (no z) 379.3 8.8 1.12 0.065
TATT 371.5 12.3 1.11 0.087
Dark Matter %X (: ) 375.5 10.2 1.11 0.076

Table 3. Goodness of fit statistics for the Hybrid pipeline: the best-fit
j2

min, the estimated effective number of free parameters, #⇥, the reduced
j2

red = j2
min/a, where a is the number of degrees of freedom, and the

goodness of fit probability ? (j2 > j2
min |a) (see Section 2.7). The number

of data points for the DES, KiDS and joint-survey data vectors, are #data =
273, 75, 348 respectively. The upper section reports results for the fiducial
analysis of the individual and joint surveys. The lower section varies
one aspect of the Hybrid joint-survey analysis: fixing the neutrino mass
to ⌃<a = 0.06eV, sharing the IA parameters between the two surveys,
assuming an NLA IA model without redshift evolution (no z), adopting the
TATT IA model, and using a dark matter-only correction for the non-linear
model of the matter power spectrum, %X (: ) .

pected from our analysis of E�����E��������2 mocks in
Appendix E.2. This offset reflects the significant skew in the
marginal (8 posterior, in addition to a potential projection
effect which would arise when marginalising over a neu-
trino mass prior that is asymmetrical about the truth (see
Appendix C.3). In the discussion that follows we quote the
mean marginal values for (8, referring the reader to Table 4
for the alternative MAP+PJ-HPD or maximum marginal
metrics of the posterior.

3.2. Fixing the neutrino mass density
In our fiducial analysis we allow the neutrino mass density

to vary. Following Planck Collaboration (2020) we inves-
tigate adopting a fixed neutrino mass with ⌃<a = 0.06eV,
based on the minimum mass allowed by oscillation exper-
iments when assuming a normal mass hierarchy (Capozzi
et al. 2016). We find our constraints to be fairly insensitive

KIDS & DES collaboration (2024)

S8 = σ8 Ωm /0.3
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deflections so that the ��⌦ or �⌦⌦ bispectra are non-null2. However, the effects of this
higher-order correlation is negligible for the analysis presented in the following. We finally
note that post-Born corrections depend strongly on the length of the photon path and are
thus progressively less important for source planes located at lower redshift.

2.2 CMB lensing cross-correlation

The lensing potential can be related to the lensing convergence  in the weak lensing regime
through the Poisson equation  = �r

2
�/2, so that in the harmonic domain

LM =
L(L+ 1)

2
�LM . (2.5)

Gravitational lensing directly probes the Weyl gravitational potential, but in General Rela-
tivity (and after matter domination) the potential can be related directly to the comoving
density perturbation � via the Poisson equation. Observed angular galaxy densities as a func-
tion of redshift depend on a variety of effects (including redshift distortions, magnification
bias, velocity and potential effects), but can also be approximated at some level as biased
tracers of the comoving density perturbation. It is therefore convenient to rewrite the lensing
observables in terms of convergence field so that the cross-correlation between CMB lensing
and LSS tracers in a given redshift bin can be written in the Limber approximation as

C
AB
L ⇡

Z
d�

�2
WA(�)WB(�)P�

✓
k =

L+ 1/2

�
, z(�)

◆
, A,B 2 {g,CMB,z} (2.6)

where P� is the comoving density matter power spectrum, g is the galaxy density, CMB the
CMB lensing convergence and z the lensing convergence of galaxies located at redshift z.
The window function W determines the redshift distribution so that for galaxy density

Wg(�) = bg(z)
1

n

dn

dz

dz

d�
n =

Z
dz

dn

dz
. (2.7)

where bg is the galaxy bias and dn/dz the redshift distribution of the observed galaxies. For
lensing of a source at a comoving distance �s

W(�) ⌘ W(�,�s) = �(�)�2

✓
1

�
�

1

�s

◆
⇥(�s � �), (2.8)

where ⇥ is the step function and the potential  and density are related by k
2 ⇡ ��(z)�,

where � is approximately independent of k. In the case of the CMB, �s is the comoving
distance to the last scattering surface, which can be well approximated as a single source
plane. In the case of the lensing convergence of galaxies located at �z, the lensing efficiency
has to be integrated over the source distribution used to estimate the convergence field

Wz(�) =
1

n

Z
d�

dn

dz

dz

d�
W(�,�z). (2.9)

2
Following the consistency relations of Eq. (2.5), (3.4), we will refer to these higher order correlations as

! or !! to conform to the most common convention adopted in the literature.
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Figure 8. DG forecasts for the LSST photometric galaxy survey cross-correlated with Planck (light red crosses), Simons
Observatory (purple triangles), and CMB-S4 lensing maps (black circles). Points are o↵set by �z = ±0.01 for visualization
purposes. The current 2MPZ measurement is shown as a dark blue star, while the yellow square points represent the DES
measurement from Giannantonio et al. (2016). The solid blue line represents the linear growth factor in the standard ⇤CDM
scenario, while the grey lines show D(z) for di↵erent dark energy/modified gravity models. Note that in this case we have not
applied the �8⌦mH

2
0 rescaling as in Fig 4.

to recover the largest scales from ground observations,
up to a redshift dependent cuto↵ multipole given by
`max(z) = kNL(z)�(z), in order to avoid the inclusion of
non-linear scales. This cuto↵ scale goes from `max ⇡ 30
at low redshift, up to more than 3000 for higher red-
shift. We show the forecasted DG, along with the cur-
rent measurements, in Fig. 8. To give a rough estimate
of how the sensitivity to DG varies across the experimen-
tal landscape, we calculate the total S/N integrated over
angular scales and redshift bins zi as

S/N =

vuut
X

zi

✓
DG(zi)

�DG(zi)

◆2

. (11)

We can also predict at what significance level a certain
datasets combination can di↵erentiate between standard
⇤CDM and a given alternative model. To this end, we

calculate

�
2 =

X

zi

 
D

DE/MG

G (zi) � DG(zi)

�DG(zi)

!2

, (12)

where DG and D
DE/MG

G are the growth factor calculated
for ⇤CDM and a certain dark energy/modified gravity
model respectively. Then, we can quote

p
�2 as the

significance of the discrimination between two scenarios
(Pullen et al. 2015). As can be seen in Tab. 1, LSST
high galaxy number density will allow for high S/N

measurements of DG, making possible the discrimina-
tion between di↵erent exotic models at high significance.
Specifically, the lower lensing reconstruction noise that
characterizes the forthcoming CMB surveys will improve
the overall S/N by a factor 3.4 and 5 with respect to
Planck for SO and CMB-S4, respectively.

deflections so that the ��⌦ or �⌦⌦ bispectra are non-null2. However, the effects of this
higher-order correlation is negligible for the analysis presented in the following. We finally
note that post-Born corrections depend strongly on the length of the photon path and are
thus progressively less important for source planes located at lower redshift.

2.2 CMB lensing cross-correlation

The lensing potential can be related to the lensing convergence  in the weak lensing regime
through the Poisson equation  = �r
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Gravitational lensing directly probes the Weyl gravitational potential, but in General Rela-
tivity (and after matter domination) the potential can be related directly to the comoving
density perturbation � via the Poisson equation. Observed angular galaxy densities as a func-
tion of redshift depend on a variety of effects (including redshift distortions, magnification
bias, velocity and potential effects), but can also be approximated at some level as biased
tracers of the comoving density perturbation. It is therefore convenient to rewrite the lensing
observables in terms of convergence field so that the cross-correlation between CMB lensing
and LSS tracers in a given redshift bin can be written in the Limber approximation as
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where P� is the comoving density matter power spectrum, g is the galaxy density, CMB the
CMB lensing convergence and z the lensing convergence of galaxies located at redshift z.
The window function W determines the redshift distribution so that for galaxy density
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where ⇥ is the step function and the potential  and density are related by k
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where � is approximately independent of k. In the case of the CMB, �s is the comoving
distance to the last scattering surface, which can be well approximated as a single source
plane. In the case of the lensing convergence of galaxies located at �z, the lensing efficiency
has to be integrated over the source distribution used to estimate the convergence field
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Following the consistency relations of Eq. (2.5), (3.4), we will refer to these higher order correlations as
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FIG. 5. Left panel: 68% confidence constraints on the shear biases mi for LSST, when self-calibrating them with LSST
cosmic shear alone (blue), LSST full (i.e. clustering, galaxy-galaxy lensing and cosmic shear; green), combination 1 (orange),
combination 2 (yellow) and the full LSST & CMB S4 lensing (red). The self-calibration works down to the level of LSST
requirements (dashed lines) for the highest redshift bins, where shear calibration is otherwise most di�cult. We stress that all
the solid lines correspond to self-calibration from the data alone, without relying on image simulations. Calibration from image
simulations is expected to meet the LSST requirements, and CMB lensing will thus provide a valuable consistency check for
building confidence in the results from LSST.
Right panel: Impact of unaccounted intrinsic alignments (see Sec. IID). The lines show the bias in the self-calibrated value
of mi, and the colored bands show the 68% confidence constraints, corresponding to the curves in the left panel. Intrinsic
alignments produce a bias in the shear calibration, but not beyond the 68% confidence region.

of sensitivity in temperature (assumed
p

2 times smaller than in polarization; left panel), beam FWHM (central panel)
and maximum multipole included in the analysis `max T,P (parameterizing the e↵ectiveness of component separation;
right panel). When one parameter is varied, the others remain fixed to their fiducial values from Fig. 1. Note that in
all cases, the survey area is kept fixed at 18, 000 deg2 (fsky = 44%). The bottom row of Fig. 7 shows the corresponding
constraints on shear biases mi for each configuration.

The shear calibration improves slowly with sensitivity, by a factor of ⇠ 2 when the noise varies from 10 to 0.5µK
0.

This is understandable since the CMB lensing signal falls o↵ quickly at high `, and therefore a significant reduction
in reconstruction noise is needed to image higher ` lensing modes. For the same reason, we expect iterative lensing
reconstruction methods [61, 62] to only improve shear calibration by a few tens of percent.

For our choice of fiducial `-limits (`max = 3000 for T; `max = 5000 for E,B), set by foreground cleaning, varying the
beam FWHM between 0.50 and 30 has basically no impact on the shear calibration: a higher resolution experiment
can image higher `-modes, but we are discarding these small scales to avoid foreground contamination.

More realistically, a higher resolution experiment might perform better at component separation and allow to use
higher temperature and polarization multipoles. However, for our fiducial parameters, we find that varying `max T, P

between 2, 000 and 10, 000 only changes the shear calibration by about 25%.
This is encouraging and shows that upcoming third generation experiments such as Advanced ACT (AdvACT, 1.40

resolution, ⇠ 10µK
0 sensitivity on half of the sky) [98] and SPT-3G (10 resolution, 2.5µK

0 sensitivity on 2, 500 deg2)
[99] can already calibrate the shear from LSST. This calibration will be less precise than from CMB S4, but already
at a useful level. The amount of overlap of AdvACT and SPT-3G with LSST may evolve in the future, and will a↵ect
the shear calibration.

B. Sensitivity to photometric redshift uncertainties

In Sec. III B, we showed that CMB S4 lensing can calibrate the shear from LSST, assuming that the photometric
redshift uncertainties are under control. In this subsection, we ask how crucial this assumption is. We therefore vary
the priors on source and lens photo-z uncertainties and re-run our forecast. The left panel of Fig. 8 shows that the
shear calibration is mildly dependent on the source photo-z uncertainties. The dependence is higher at low redshift,

deflections so that the ��⌦ or �⌦⌦ bispectra are non-null2. However, the effects of this
higher-order correlation is negligible for the analysis presented in the following. We finally
note that post-Born corrections depend strongly on the length of the photon path and are
thus progressively less important for source planes located at lower redshift.
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Gravitational lensing directly probes the Weyl gravitational potential, but in General Rela-
tivity (and after matter domination) the potential can be related directly to the comoving
density perturbation � via the Poisson equation. Observed angular galaxy densities as a func-
tion of redshift depend on a variety of effects (including redshift distortions, magnification
bias, velocity and potential effects), but can also be approximated at some level as biased
tracers of the comoving density perturbation. It is therefore convenient to rewrite the lensing
observables in terms of convergence field so that the cross-correlation between CMB lensing
and LSS tracers in a given redshift bin can be written in the Limber approximation as
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where P� is the comoving density matter power spectrum, g is the galaxy density, CMB the
CMB lensing convergence and z the lensing convergence of galaxies located at redshift z.
The window function W determines the redshift distribution so that for galaxy density
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where ⇥ is the step function and the potential  and density are related by k
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where � is approximately independent of k. In the case of the CMB, �s is the comoving
distance to the last scattering surface, which can be well approximated as a single source
plane. In the case of the lensing convergence of galaxies located at �z, the lensing efficiency
has to be integrated over the source distribution used to estimate the convergence field
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Following the consistency relations of Eq. (2.5), (3.4), we will refer to these higher order correlations as

! or !! to conform to the most common convention adopted in the literature.
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• Different probes means different scales at different redshift…

• Need to assess if this is real or effects of non-linear physics. S8 tension II 9

Figure 7. The Planck TTTEEE, both with and without Planck
lensing (Efstathiou & Gratton 2021) and the ACT+BAO con-
strains (Madhavacheril et al. 2023) 1� constraints on S8 are shown
in grey. Below these, in black, blue and green, are the results for
the KiDS data analysed with no scale cuts, no scale cuts with
Amod (from AAGE) and no scale cuts with both a Planck prior
and Amod variants 12 and 13 from Table 2 respectively. The next
three results show in order the results of variants 4, 3 and adding a
Planck prior to the DES analysis of variant 3, respectively (black).
Finally, the results of variants 5 and 6 are shown in red and yellow
respectively. This illustrates the sensitivity of the S8 tension on
scale cuts and the modelling of non-linear scales.

fiducial Amod for the fits that include the Planck prior. The
constraints from the binned model track the general shape
and amplitude of the one-parameter Amod model. The main
new result from this analysis is that power suppression of
⇠ 3�10% spanning mildly non-linear scales (bin 2, spanning
wavenumbers in the range 0.1 < k < 0.5) is required to
reconcile the Planck⇤CDM data with the DES weak lensing
data. It is not possible to avoid suppression in bin 2 by
increasing the suppression at smaller scales, mainly because
⇠� is dominated by bin 2 over the angular range ✓ ⇠ 400 �
1000 (see the green curves in Fig. 5).

Fig. 6 also shows the power spectrum suppression mea-
sured in the BAHAMAS and C-OWLS simulations (as in
Fig. 2). Evidently, if baryonic feedback is responsible for the
apparent S8 tension, the analysis of this section shows that
the feedback must propagate to scales k

<⇠ 0.3. This requires
stronger feedback than in the BAHAMAS simulation with
log10(�TAGN/K) = 7.8 favoured by (McCarthy et al. 2017),
in agreement with the conclusions of Sec. 3.

6 DISCUSSION AND CONCLUSION

The aim of this investigation has been to assess whether the
S8 tension can be resolved, that is Planck ⇤CDM cosmology
can be made consistent with weak lensing observations by
modifying the matter power spectrum on non-linear scales.
Following Paper I, we have investigated constraints on the
power suppression parameter, Amod of Eq. 1, using DES Y3
cosmic shear data. In this analysis we include a Planck prior
describing their constraints on key cosmological parameters
and the associated uncertainties.

The DES data require substantial suppression of the
matter power spectrum on non-linear scales to become con-
sistent with Planck. The suppression required is less ex-
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Figure 8. A rough guide to the approximate scale-dependence in
terms of wavenumber, k, and redshift-dependence, z, of cosmolog-
ical observations. CMB lensing measurements are consistent with
Planck ⇤CDM (both blue, filled) and have negligible sensitivity
on non-linear modelling and span the range z ⇠ 0.5 � 5. Weak
galaxy lensing is sensitive to a wide range of scales at z < 1,
but primarily probes the non-linear regime (red, filled). With fu-
ture lensing data, is it possible to separate the linear informa-
tion from weak-lensing. Both redshift space distortions and cross-
correlations of CMB lensing with galaxy positions typically limit
their analyses to linear scales and are sensitive to lower redshifts
than CMB lensing. These two probes therefore provide a powerful
test of the non-linear solution to the S8 tension proposed here.
Lyman-alpha measurements are also sensitive to a wide range of
scales, but at higher redshifts.

treme than found from the KiDS weak lensing measure-
ments, though the results from these two surveys are statisti-
cally consistent. However, if such a suppression is interpreted
in terms of baryonic feedback, then it must be stronger than
the most extreme feedback prescription implemented in the
BAHAMAS simulations.

The constraints on Amod depend on the angular scale
cuts applied to the ⇠± measurements. If the DES ‘⇤CDM-
Optimised’ angular scale cuts are imposed on ⇠±, the cos-
mological constraints from DES data are degraded and are
statistically compatible with the Planck cosmology. For this
case, Amod is consistent with unity, though with a large er-
ror.

We have analysed the DES Y3 data using an extended
Amod model that includes either a redshift or wavenumber
dependence. The DES data have little sensitivity to redshifts
outside of a relatively narrow range centred at z ⇠ 0.3. The
one parameter Amod model, therefore, provides an adequate
approximation at this redshift but cannot be extrapolated
reliably to higher or lower redshifts.

To investigate the wavenumber dependence, we solved
for amplitude suppression factors Ai in five logarithmi-
cally spaced bins. The results show that consistency be-
tween DES and Planck ⇤CDM requires suppression on scales
k

<⇠ 0.3 h/Mpc. This result is in agreement with our results
for Amod and shows that the requirement of the data for
power suppression on these scales is not an artefact of the
simple Amod parameterisation.

Fig. 7 summarizes both the updated results of Paper I

MNRAS 000, 000–000 (0000)

Preston, Amon, 
Efsthathiou (2023)



Name TalkName TalkGiulio Fabbian Les Houches 2025

CMB lensing x galaxies: state of the art 1

44

• 6xp2t w/ UNWISE x ACT DR6 & Planck 
PR4: in agreement with CMB primary

• UNWISe Green / blue galaxies at z~0.6 / 1.1

• Tensions limited to  in 
 (from 2x2pt)

k ≳ 0.3 h /Mpc
0.2 ≤ z ≤ 1.6

S8 = 0.816 ± 0.015 σ8 = 0.815 ± 0.012

Farren+ 
(2023)

unWISE x ACT DR6 3⇥2pt cosmology 15

Figure 6. Within the �8-⌦m plane one can see that our
results show no significant tension with any one galaxy weak
lensing survey. The 3x2pt contour in black shows significant
overlap with the contours from DES, KiDS and HSC (blue
tones). There is also overlap with the posterior from the
cross-correlation between ACT DR6 and Planck PR4 CMB
lensing reconstructions and DESI LRG targets (in red).

the constraints from the two cross-correlations and the
CMB lensing auto-correlation, each analysed jointly
with BAO. The redshift kernels shown at the bottom of
the top panel give an indication of the redshift sensitiv-
ity of the samples given by the fractional contribution to
the signal-to-noise, d log SNR/dz. The computation of
d log SNR/dz includes an approximate marginalisation
over galaxy nuisance parameters, achieved by linearising
the model for Cgg

` and C
g
` in small fluctuations around

the best-fit linear bias and shot noise and propagating
the uncertainty in these parameters to the covariance
matrix.
We adopt the median of the redshift sensitivity kernel

to represent the e↵ective redshift of each of the three
measurements and compute �8(z) as �8(z = 0)D(z),
where D(z) is the linear growth function which is pri-
marily dependent on ⌦m. These results are also sum-
marised in Table 2. We find excellent agreement with
the growth of structures predicted by the ⇤CDM model
fit to the primary CMB from Planck (grey band in
Fig. 8).
However, as can be easily seen from Fig. 8, the three

samples have significant redshift overlap. In particular,
while the median redshift of the measurement from the
lensing auto-spectrum is zMed ' 3.5 it receives signif-
icant contributions from lower redshifts where we also
have information from the cross-correlation measure-
ments. To optimally combine the available information
we explore a reconstruction of the growth of (linear) per-

Figure 7. A comparison with various estimates of the Hub-
ble constant. We include measurements dependent on the
sound horizon (on light purple background) from the pri-
mary CMB (in magenta), the three dimensional clustering
of galaxies (in gold), and our own work in combination with
BAO (first black data point). On a light blue background we
contrast these measurements with several sound horizon in-
dependent measurements from this work (in black), from the
analysis of the CMB lensing power spectrum (in green; note
that these are included in the 3x2pt results from this work),
from the CMB lensing cross-correlation analysis (in red; this
measurement is also part of our 3x2pt analysis), and from
the clustering of BOSS galaxies with explicit marginalisation
over the sound horizon scale. Finally, on a light orange back-
ground we show several results from local measurements of
H0 using Cepheid-, TRGB-, or JAGB-calibrated supernovae,
and two strong-lensing time-delay measurements using dif-
ferent lensing mass profiles.
⇤ Denotes data sets included in our 3x2pt analysis.

turbations with redshift through a parametric form of
�8(z) which we constrain jointly with all three samples
taking into account their overlap. With this method
we are able to use the cross-correlation measurements
to constrain the low redshift contribution to the lens-
ing auto-spectrum and extract information on the inte-
grated growth of structure at high redshifts, above the

two galaxy samples (z & 2.4). Due to the broad redshift
kernels of our data sets we cannot constrain the growth
of perturbations with arbitrary resolution. Instead we
adopt the following simple parametrisation similar to
Abbott et al. (2023b): We rescale the linear power spec-

unWISE x ACT DR6 3⇥2pt cosmology 21

Figure 12. Using a combination of our low redshift lens-
ing data with primary CMB anisotropies we place tight con-
straints on spatial curvature, showing good consistency with
a spatially flat universe. We compare our results to curvature
constraints from the primary CMB only, which show a weak
preference for a closed universe. When combining primary
CMB observations with BAO this preference also disappears
and one obtains tight constraints on ⌦k centred on zero.

is assumed to be a cosmological constant, ⇤, equivalent
to a cosmological fluid with equation of state w = �1.
First, we consider allowing w to take on values di↵erent
from �1 but remain constant in time. Our data alone is
only very weakly sensitive to w and the e↵ect is largely
degenerate with other parameters. However, when com-
bining the 3x2pt data set with the primary CMB from
Planck we find

w = �1.53+0.20
�0.31 (3x2pt + CMB) (46)

with large uncertainties but consistent with w = �1
at ⇠2�. This is not competitive with the constraint
obtained using all external data sets considered in this
work (CMB + BAO + SN) which yields w = �0.979±
0.026. Adding the 3x2pt data improves constraints only
very marginally by ⇠4% to

w = �0.982±0.024 (3x2pt+CMB+BAO+SN). (47)

Without supernovae data we find

w = �1.027+0.050
�0.043 (3x2pt + CMB+ BAO) (48)

compared to w = �1.022+0.053
�0.048 from CMB and BAO

without our 3x2pt data (a ⇠7% improvement). These
constraints are shown in Fig. 13.

Figure 13. The figure shows constraints on the dark en-
ergy equation of state, w, and the matter density, ⌦m, in
a wCDM model. While combining just our 3x2pt data set
with primary CMB data is not competitive with CMB +
BAO + SN constraints, adding the 3x2pt data to the latter
achieves a marginal, 4%, improvement in constraining power
(w = �0.982± 0.025).

We also consider a phenomenological parameterisation
of an evolving dark energy equation of state. As in Ab-
bott et al. (2023b) we adopt the CPL model (Chevallier
& Polarski 2001; Linder 2003):

w(a) = w0 + (1� a)wa (49)

where a = 1/(1 + z) is the scale factor and both w0

and wa are free parameters. This commonly considered
parametrisation has been shown to provide a good fit to
several physically motivated dark energy models (Linder
2003).
Our constraints on w0 and wa are shown in Fig. 14.

When using only 3x2pt data and the primary CMB w0

and wa are so significantly degenerate that we are unable
to provide meaningful constraints. However, in combi-
nation with BAO and SN we find

w0 =� 0.881± 0.060

wa =� 0.43+0.25
�0.22

)
( 3x2pt + CMB + BAO + SN)

(50)
only a very minor ⇠5% and ⇠9% improvement on w0

and wa respectively over constraints from CMB, BAO
and SN alone. Removing the supernovae data yields

w0 =� 0.56± 0.24

wa =� 1.27± 0.66

)
( 3x2pt + CMB + BAO) (51)

Farren+(2024)

Also Sherwin+(2011),  
Stompor & Efsthathiou (1997)
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Figure 2. The Blue and Green samples of unWISE galaxies
span the redshift ranges z ' 0.2 � 1.1 and z ' 0.3 � 1.8
with mean redshifts of approximately 0.6 and 1.1 respec-
tively. In the top panel we show the normalised estimate
of b(z)dN/dz obtained from cross-correlating with spectro-
scopic tracers from SDSS, BOSS, and eBOSS. The Blue and
Green curves are the spline interpolations of the best fitting
estimates of b(z)dN/dz for the two galaxy samples. We also
show several noise realisations in grey and the clustering red-
shift measurements in red. The lower panel shows estimates
of dN/dz obtained by cross-matching with photometric data
from COSMOS2015.

that are designed to remove any relationship between
the galaxy overdensity and various imaging property
maps (Ross et al. 2012, 2017; Ata et al. 2018; Bautista
et al. 2018; Elvin-Poole et al. 2018; Ross et al. 2020;
Rodŕıguez-Monroy et al. 2021). Krolewski et al. (2021)
did not follow this approach; instead, the authors ap-
plied a high-pass filter to the galaxy data, removing all
modes of the galaxy survey at ` < 20, and found that
this led to better agreement between the ` < 100 auto-
correlation and a theory model. Additionally, Krolewski
et al. (2021) did not use the galaxy auto-correlation at

` < 100, where changing the Galactic mask significantly
changed the shape of the unWISE auto-correlation5.

In this work, we update the method used in Krolewski
et al. (2021) to apply weights that explicitly remove cor-
relations between the galaxy density and maps of stellar
density and WISE depth. This is similar to the ap-
proach taken by other galaxy surveys and ensures that
our unWISE galaxy maps are uncorrelated with known
foreground survey systematics that may a↵ect the au-
tocorrelation at ` > 100. These weights were originally
created in Krolewski & Ferraro (2022) to use the low-`
unWISE data in cross-correlation with CMB tempera-
ture to measure the integrated Sachs-Wolfe e↵ect. We
also no longer filter out the low-` (` < 20) modes in
the unWISE map. The large-scale filtering has a sim-
ilar e↵ect to weighting, also reducing large-scale power
by removing correlations between systematics and the
true galaxy density. However, removing large scales in
harmonic space complicates the use of the MASTER
algorithm Hivon et al. (2002) to obtain unbiased band-
powers through mode decoupling. Hence, we no longer
adopt this method. This change has only a small impact
on the power spectra (< 0.5% on the auto- and cross-
correlation; see Fig. 45), but we consider the updated
results more robust because the galaxy density has a
significantly reduced dependence on both Galactic stel-
lar density and WISE depth.

In the remainder of this section we provide more detail
on the construction of these weights. We measure the
correlation between unWISE galaxy density and several
templates: 1) Gaia stellar density; 2&3) W1 and W2
limiting magnitude; 4) dust extinction E(B � V ) from
the Schlegel-Finkbeiner-Davis map corrected for cos-
mic infrared background (CIB) contamination (cSFD,
Schlegel et al. 1998; Chiang 2023)6; 5) neutral hydrogen
column density NHI from the H14PI survey (HI4PI Col-
laboration et al. 2016) as an alternative dust map that
is noisier than SFD but has much reduced extragalactic
contamination (Chiang & Ménard 2019); 6&7) a 3.5 and
4.9 µm sky brightness from the DIRBE Zodi-Subtracted
Mission Average (ZSMA)7; 8) a DIRBE measurement of

5 At ` & 100, changing the Galactic (or ecliptic latitude) mask
produced a scale-independent change in the unWISE auto-
correlation (Krolewski et al. 2019). This is due to the fact that
the selection properties of the galaxy catalogue vary with Galac-
tic or ecliptic latitude due to variations in the WISE coverage
depth. This induces di↵erences in the galaxy bias. We return to
this in Sec. 7.2.

6 The relationship between unWISE galaxy density and cSFD is
nearly identical if we use the uncorrected SFD instead.

7 https://lambda.gsfc.nasa.gov/product/cobe/dirbe zsma data
get.cfm
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Figure 2. The Blue and Green samples of unWISE galaxies
span the redshift ranges z ' 0.2 � 1.1 and z ' 0.3 � 1.8
with mean redshifts of approximately 0.6 and 1.1 respec-
tively. In the top panel we show the normalised estimate
of b(z)dN/dz obtained from cross-correlating with spectro-
scopic tracers from SDSS, BOSS, and eBOSS. The Blue and
Green curves are the spline interpolations of the best fitting
estimates of b(z)dN/dz for the two galaxy samples. We also
show several noise realisations in grey and the clustering red-
shift measurements in red. The lower panel shows estimates
of dN/dz obtained by cross-matching with photometric data
from COSMOS2015.

that are designed to remove any relationship between
the galaxy overdensity and various imaging property
maps (Ross et al. 2012, 2017; Ata et al. 2018; Bautista
et al. 2018; Elvin-Poole et al. 2018; Ross et al. 2020;
Rodŕıguez-Monroy et al. 2021). Krolewski et al. (2021)
did not follow this approach; instead, the authors ap-
plied a high-pass filter to the galaxy data, removing all
modes of the galaxy survey at ` < 20, and found that
this led to better agreement between the ` < 100 auto-
correlation and a theory model. Additionally, Krolewski
et al. (2021) did not use the galaxy auto-correlation at

` < 100, where changing the Galactic mask significantly
changed the shape of the unWISE auto-correlation5.

In this work, we update the method used in Krolewski
et al. (2021) to apply weights that explicitly remove cor-
relations between the galaxy density and maps of stellar
density and WISE depth. This is similar to the ap-
proach taken by other galaxy surveys and ensures that
our unWISE galaxy maps are uncorrelated with known
foreground survey systematics that may a↵ect the au-
tocorrelation at ` > 100. These weights were originally
created in Krolewski & Ferraro (2022) to use the low-`
unWISE data in cross-correlation with CMB tempera-
ture to measure the integrated Sachs-Wolfe e↵ect. We
also no longer filter out the low-` (` < 20) modes in
the unWISE map. The large-scale filtering has a sim-
ilar e↵ect to weighting, also reducing large-scale power
by removing correlations between systematics and the
true galaxy density. However, removing large scales in
harmonic space complicates the use of the MASTER
algorithm Hivon et al. (2002) to obtain unbiased band-
powers through mode decoupling. Hence, we no longer
adopt this method. This change has only a small impact
on the power spectra (< 0.5% on the auto- and cross-
correlation; see Fig. 45), but we consider the updated
results more robust because the galaxy density has a
significantly reduced dependence on both Galactic stel-
lar density and WISE depth.

In the remainder of this section we provide more detail
on the construction of these weights. We measure the
correlation between unWISE galaxy density and several
templates: 1) Gaia stellar density; 2&3) W1 and W2
limiting magnitude; 4) dust extinction E(B � V ) from
the Schlegel-Finkbeiner-Davis map corrected for cos-
mic infrared background (CIB) contamination (cSFD,
Schlegel et al. 1998; Chiang 2023)6; 5) neutral hydrogen
column density NHI from the H14PI survey (HI4PI Col-
laboration et al. 2016) as an alternative dust map that
is noisier than SFD but has much reduced extragalactic
contamination (Chiang & Ménard 2019); 6&7) a 3.5 and
4.9 µm sky brightness from the DIRBE Zodi-Subtracted
Mission Average (ZSMA)7; 8) a DIRBE measurement of

5 At ` & 100, changing the Galactic (or ecliptic latitude) mask
produced a scale-independent change in the unWISE auto-
correlation (Krolewski et al. 2019). This is due to the fact that
the selection properties of the galaxy catalogue vary with Galac-
tic or ecliptic latitude due to variations in the WISE coverage
depth. This induces di↵erences in the galaxy bias. We return to
this in Sec. 7.2.

6 The relationship between unWISE galaxy density and cSFD is
nearly identical if we use the uncorrected SFD instead.

7 https://lambda.gsfc.nasa.gov/product/cobe/dirbe zsma data
get.cfm
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• DESI Legacy LRGs calibrated with 
spectroscopy data x ACT DR6

• Complementary scales wrt UNWISE.

• Highly tested for bias expansion

• Consistent results with CMB, other 
analysis ongoing…
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Figure 1. Contour plots of the peak normalized SNR(k, z) for the galaxy-CMB lensing cross-
correlations (Cg

` , left) and the galaxy auto-correlations (Cgg
` , right) when taking `max = 600.

SNR(k, z) is defined as the contribution to the signal-to-noise ratio per dz d ln k, such that the to-
tal (signal-to-noise ratio)2 is SNR2 =

R
dz d ln k SNR2(k, z). See Appendix B for a more detailed

discussion. The colors of the contours correspond to the redshift bin (see Fig. 2 for the redshift
distributions and Fig. 3 for the measurements themselves) while the shading indicates the value of
each contour (from lighter to darker these values are 0.15, 0.3, 0.45, 0.6 0.75, and 0.9). The brown
solid line corresponds to k = 600/�(z), while knl = [

R
dkPlin(k)/6⇡

2]�1/2 (grey dot dashed line) and
kHEFT ' 0.6 h Mpc�1 (grey dashed line) is the maximum scale for which we expect HEFT to be valid
to the percent level [67] for LRG-like galaxies.

primary cosmological constraints on S8 and �8, including the addition of BAO data.

The remainder of this paper is organized as follows. In §2 we summarize the data used
in our analysis. In §3 we outline the methodology for ancillary power spectra measurements
and covariance estimation used in our Planck PR3 reanalysis and systematics tests. We
discuss the modeling (including alternatives to HEFT) in §4 and present our likelihood and
associated tests in §5. In §6 we perform additional systematics tests for the galaxy auto-
spectra and the cross-correlation with Planck PR4. Our main cosmological results are given
in §7. We discuss our results in the context of previous constraints in §8 and conclude with
§9.

2 Data

Our analysis utilizes a photometric sample of Luminous Red Galaxies (LRGs) from the DESI
Legacy Imaging Survey DR9 [64, 68, 69] and CMB lensing convergence maps reconstructed
from Planck [44, 45] and Atacama Cosmology Telescope (ACT) [46, 63, 70] data. DESI is
a highly multiplexed spectroscopic survey that is capable of measuring 5000 objects at once
[71–73] and is currently operating on the Mayall 4-meter telescope at Kitt Peak National
Observatory [74]. DESI is currently conducting a five-year survey and will obtain spectra for
approximately 40 million galaxies and quasars [75–77], enabling constraints on the nature of
dark energy through its impact on the universe’s expansion history [78].

Some key properties of the LRG sample are summarized in Table 1. The LRG footprint,
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Figure 21. A comparison of our results with recent tomographic structure growth measurements
obtained from cross-correlations of CMB lensing and galaxy positions. In blue we show the results
obtained from the blue and green unWISE samples (correlated with PR4 and DR6) [62], while in
orange we show the results obtained from the lowest two redshift bins of the Quaia quasar sample
(correlated with PR4) [61]. Following §7.4 we estimate 9, 13 and 28% correlations between the z1�z2,
z2 � z3 and z3 � z4 amplitude measurements respectively.
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FIG. 5. Constraints on mi , AIA and ⌘IA, that we marginalize over
(source redshift bias parameters are also marginalized over but not
shown here). The constraints that we obtain are weaker but in agree-
ment with that from the cosmic shear measurements [11].
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FIG. 6. Constraints on ⌦m and S8 from �tCMB, cosmic shear mea-
surement from [11], 3 ⇥ 2pt measurement from [12] and CMBCMB
measurement from [10].

The cross-correlation is detected at 10.8� significance in-
cluding all angular bins; this is reduced to 6.0� after removing
scales that we find to be a�ected by systematics such as tSZ
contamination of CMB and the e�ects of baryons on the matter
power spectrum as described in [23].

We perform several consistency checks on the measure-
ments as well as tests for possible systematic errors. These
include performing null tests by cross-correlating CMB with
stellar density, dust extinction, PSF residuals and the cross-
shear component, and testing our model for tSZ and CIB con-
tamination of the CMB map. We find that of these possible
systematics, the tSZ e�ect dominates, and we mitigate this
bias by applying scale cuts to remove the angular scales that
are a�ected the most.

The analytical covariance matrix that we use is tested by
comparing with the jackknife covariance matrix estimated di-
rectly from the data. The diagonal elements of these covariance
matrices agree to within 25%, which is a reasonable agreement
given that the jackknife method produces a noisy estimate of
the underlying covariance.

Using the measured w�tCMB (✓) correlation functions, we
perform parametric fits. Assuming a ⇤CDM Planck best-fit
cosmology and fixing nuisance parameters to fiducial values
set by DES-Y1, we obtain a global best-fit amplitude of A =
0.99 ± 0.17 which is consistent with expectations from the
⇤CDM cosmological model (A = 1).

Next, we combine our measurement with the Planck base-
line likelihood, and vary the nuisance parameters and attempt
to constrain them. For the shear calibration bias parameters
we obtain the constraints m2,3,4 =[ �0.08+0.47

�0.31, �0.06+0.20
�0.28,

�0.14+0.14
�0.28], while m1 is not constrained well. These con-

straints are less stringent than the DES-Y1 priors derived from
data and simulations, it is anticipated that the �tCMB corre-
lation will be able to constrain shear calibration bias to better
precision than these methods [68] for future surveys such as
CMB-S4 [69] and LSST [70].

For the amplitude of IA, we obtain the constraint AIA =
0.54+0.92

�1.18, which is in agreement with what is obtained from
DES-Y1 cosmic shear measurements. However, the red-
shift evolution parameter ⌘IA is not constrained well using
w�tCMB (✓) measurement alone.

When we marginalize over the nuisance parameters using
the DES-Y1 priors listed in Table I, we obtain constraints on
cosmological parameters that are consistent with recent re-
sults from [37]: ⌦m = 0.261+0.070

�0.051 and S8 ⌘ �8
p
⌦m/0.3 =

0.660+0.085
�0.100. While the constraining power of �tCMB is rela-

tively weak, we obtain independent constraints on ⌦m and S8,
which will help break degeneracies in parameter space when
all the probes are combined.

Future data from the full DES survey and SPT-3G [71]
should provide significant reduction in measurement uncer-
tainties on the w�tCMB (✓) correlation function. Moreover, tSZ
contamination of the temperature-based CMB lensing map
necessitates removal of certain angular scales, which reduces
the signal-to-noise of the measurements significantly. For
SPT-3G, the CMB lensing map will be reconstructed using
polarisation data, which will have minimal tSZ contamina-

ACT DR4  & SPT X DES cosmic shear
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• Tightens systematics but large uncertainties new analyses on the way.

Omori+(DES collaboration 2019)

4 Shaikh et al.

Figure 1. Top panel shows the DES-Y3 source galaxy redshift dis-
tribution, n(z), in four tomographic bins. The bottom panel shows
the product of the respective galaxy weak lensing kernel with the
CMB weak lensing kernel.

We model the correlation between C and �E in spherical
harmonic space. The angular power spectrum between the
CMB convergence C and the E-mode of the galaxy shear
�E at multipole `, under the Limber approximation (Limber
1953; LoVerde & Afshordi 2008), is (e.g. Kaiser 1992)

C
C�E
` =

Z zH

0

dz
H(z)
�2(z)c

W
CMB

 (z)W g

� (z)P��

⇣
k =

`+ 0.5
�(z)

, z

⌘
,

(5)

where P��(k, z) is the matter power spectrum at redshift z,
�(z) and a(z) denote the comoving distance and the scale
factor at z, respectively, c is the speed of light, andH(z) is the
Hubble parameter as a function of z. WCMB

 (z) and W
g

� (z)
are the lensing weights for the CMB and the source galaxies,
respectively. The lensing weight for the CMB is given by:

W
CMB

 (z) =
3H2

0⌦m,0

2H(z)c
�(z)
a(z)

�(z⇤)� �(z)
�(z⇤)

, (6)

where z
⇤ is the redshift of the surface of the last scattering

of the CMB, ⌦m,0 and H0 are matter density and Hubble
parameters at the current epoch. The lensing weight for the
source galaxies depends on their redshift distribution, n(z):

W
g

� (z) =
3H2

0⌦m,0

2H(z)c
�(z)
a(z)

Z zH

z

dz
0
n(z0)

�(z0)� �(z)
�(z0)

. (7)

We use the Core Cosmology Library (CCL, Chisari et al. 2019)
to compute C

C�E
` .2 We model the non-linear contributions

to P��(k) using the halofit model (Smith et al. 2003; Taka-
hashi et al. 2012). We also include contributions to the ob-
served power spectrum from astrophysical and experimental
e↵ects, which we fully describe in Section 5.2.
In Figure 1, we show the source redshift distribution n(z)

used in this work and the product of the lensing weight func-
tion W

CMB

 (z)W g

� (z). The latter shows the redshift range
of the matter distribution that contributes to the cross-
correlation C

C�E
` .

2
https://github.com/LSSTDESC/CCL

Figure 2. DES-Y3 and ACT-DR4 D56 footprints and their common
footprint. The sky area common between them is around 450 deg2.

3 DATA

We use overlapping CMB weak lensing and galaxy weak lens-
ing data from the ACT and DES, respectively. We exten-
sively use the individual work of these collaborations in re-
ducing their raw data and preparing science-ready CMB lens-
ing maps and cosmic shear catalogues, but we perform our
own analyses to generate the cross-correlation C

C�E
` data

vector.

3.1 ACT CMB lensing data

We use the ACT-DR4 CMB lensing convergence maps from
Darwish et al. (2021). These lensing maps are reconstructed
using CMB temperature and polarization measurements by
ACT in two frequency channels (98 and 150 GHz) during the
2014 and 2015 observing seasons (Aiola et al. 2020; Mallaby-
Kay et al. 2021). The arcminute-resolution maps produced by
the ACT Collaboration are described in Choi et al. (2020);
Aiola et al. (2020); Madhavacheril et al. (2020). ACT-DR4
consists of lensing maps in two sky regions, Deep-56 (D56)
and BOSS-North (BN), with respective sky areas 456 deg2

and 1633 deg2 (Darwish et al. 2021). We use the lensing map
in the D56 region, which overlaps with the DES-Y3 footprint,
as shown in Figure 2.
CMB lensing maps are obtained using the quadratic es-

timator (Hu & Okamoto 2002). Signatures of extragalactic
astrophysical processes present in the individual frequency
maps, such as the Cosmic Infrared Background (CIB) and
thermal Sunyaev-Zeldovich (tSZ) e↵ect, lead to biases in the
reconstructed convergence map (Osborne et al. 2014; van En-
gelen et al. 2014). These signals trace the large-scale struc-
ture and can lead to biases in the cross-correlation of C

with other large-scale structure probes, such as galaxy weak
lensing. For the range of redshifts (z . 1.0) probed by ACT-
DR4 and DES-Y3 C

C�E
` , the biases due to tSZ are expected

to be more prominent than those due to the CIB (Baxter
et al. 2019), which is sourced by galaxies spanning a broad
range of redshift with the peak between z ⇠ 1 to 2 (Schmidt
et al. 2015). ACT-DR4 provides two lensing maps: a tSZ-

free C map where the contamination due to the tSZ ef-
fect is deprojected (Madhavacheril & Hill 2018), and with-

MNRAS 000, 1–23 (2023)
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Table 3. 1D Marginalised posterior mean and 68% credible interval
for the parameters sampled during our main analysis.

Parameter Prior Posterior

Cosmology
⌦ch

2 U [0.05, 0.99] 0.161+0.042
�0.073

log(As1010) U [1.6, 4.0] —
H0 U [40, 100] —
�8 — 0.79+0.16

�0.19

⌦m — 0.338+0.05
�0.17

S8 = �8 (⌦m/0.3)0.5 — 0.782± 0.059

Galaxy Intrinsic Alignment
AAIA N (0.35, 0.65) 0.31± 0.57
⌘AIA N (1.66, 4) �1.0+3.8

�3.1

Galaxy redshift calibration
�z1 N (0.0, 0.018) 0.001± 0.018
�z2 N (0.0, 0.015) 0.001± 0.015
�z3 N (0.0, 0.011) �0.001± 0.011
�z4 N (0.0, 0.017) 0.000± 0.017

Galaxy shear calibration
m1 N (�0.006, 0.009) �0.0062± 0.0089
m2 N (�0.020, 0.008) �0.0198± 0.0080
m3 N (�0.024, 0.008) �0.0240± 0.0080
m4 N (�0.037, 0.008) �0.0370± 0.0080

Figure 18. The measured cosmological parameter S8 from our
fiducial DES-Y3⇥ACT-DR4+Planck -tSZ deprojected data vector
alongside a number of other measurements of the same parame-
ters. Note that the ACT-DR4+Planck ⇥KiDS measurement uses
the C of the BN region of ACT-DR4 data (Robertson et al. 2021).

7.3 S8 at di↵erent redshifts

As discussed in Section 1, across the multiple measurements
of S8 from various observables, it has been noted that higher
redshift probes often favour a higher value (e.g. the primary
CMB in Planck Collaboration 2020; Aiola et al. 2020; Dutcher
et al. 2021), whilst lower redshift ones favour a lower value
(e.g. galaxy weak lensing in Heymans et al. 2021; Abbott
et al. 2022; More et al. 2023; Miyatake et al. 2023; Sugiyama
et al. 2023). In light of this, we split our data vector into
two di↵erent sub-sets and constrain the S8 parameter inde-
pendently in each one. One subset contains only the spec-

Figure 19. Measurement of the cosmological parameters in two sub-
sets of the data, one covering galaxy redshifts 0 < z 6 0.63 and
with the resulting C

C�E
` kernel peaking below z = 0.5 and the

other covering redshifts 0.63 < z < 2.0 and with the resulting
C

C�E
` kernel peaking above z = 0.5. We find both subsets of the

inferred parameters to be consistent.

tra made with DES-Y3 tomographic bins 1 and 2 (covering
redshifts 0 < z 6 0.63 and with the resulting C

C�E
` ker-

nel peaking below z = 0.5), and the other contains only to-
mographic bins 3 and 4 (covering redshifts 0.63 < z < 2.0
and with the resulting C

C�E
` kernel peaking above z = 0.5).

In Figure 19, we show the two posteriors on cosmological
parameters, along with the one from our fiducial analysis
with all four tomographic bins. For the sample at lower red-
shift (bins 1 and 2), we obtained ⌦m = 0.385+0.073

�0.22 and
S8 = 0.85+0.17

�0.13, �8 = 0.80+0.19
�0.23. Consistently, for the sample

at higher redshift (bins 3 and 4), we found ⌦m = 0.357+0.052
�0.20 ,

S8 = 0.779± 0.073, �8 = 0.77+0.15
�0.19. Our analysis reveals that

the constraining power is significantly stronger at higher red-
shifts, primarily due to the better overlap with the CMB
lensing kernel. This suggests that the dominant contribution
to the overall constraining power when utilizing the entire
sample stems from these bins.

7.4 Weak lensing nuisance parameters

The priors on weak lensing galaxy redshift and shear calibra-
tion detailed in Table 2 and used in the above inference runs
are derived from a series of simulations and deep training
data implemented as part of the DES-Y3 analysis pipelines.
They are therefore informative and dominate the posterior
for the nuisance parameters (as seen in Figure B2). It is in-
teresting to use the CMB lensing from ACT-DR4 as an extra
high redshift lensing bin to attempt to independently cali-
brate these nuisance parameters and validate the priors avail-
able from simulations. This has been previously advocated as
a productive use of CC�E

` data sets (e.g. Das et al. 2013).
Though these simulation-derived priors are often given as un-
correlated, wider priors may result in degeneracies in 3x2pt
analyses. In such a case, the C

C�E
` observable may provide

useful degeneracy breaking thanks to the di↵erences in red-

MNRAS 000, 1–23 (2023)

Shaikh, 
Harrison 
+(2023)
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Data combination perspectives…
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• Current data: marginalizing over systematics at limited cost, no additional power!

• Euclid: ~3x improvement on non-standard /extended  models

Euclid consortium: Ilic+(w/ GF 2022)

~2013

Stage 2/3 surveys 
(DES, ACT, SPT, PB)

~2032

CMB-S4 
deployment

2024

Simons Observatory 
first light

2030s

LiteBIRD 
launch

7/2023

Euclid launch

Josquin Errard 
 on the behalf of the Simons Observatory collaboration  

53rd Rencontres de Moriond 
La Thuile, Italy, 22 March 2018

1

2025

Rubin/
SphereX
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Euclid preview
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• Euclid will cover 30 years 
of Hubble operation every 
~5 days

• Euclid FOV ~ 3x the 
moon size

• Complements other 
facilities from space and 
ground (e.g. DESI).

JWST/NIRCam FOV 
0.003 deg2

Hubble/ACS FOV 7e-05 
deg2

Euclid mission review (Mellier+24)



EUCLID
RESULTS SO FAR

Credit: Ralf Bender & Ross Collins using public data from Euclid and VISTA



EUCLID
RESULTS SO FAR

Credit: Ralf Bender & Ross Collins using public data from Euclid and VISTA
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What to expect: synergies between surveys.
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Euclid Early Release Observation image

~2032

CMB-S4 
deployment

2030s

LiteBIRD 
launch

Rubin 1st wide imageEuclid Q1 release

DESI Legacy Imaging Survey

Romanowsky+(2025)
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In the meantime… Gaia!

51

• Photometry, astrometry, slitless spectroscopy with  resolution

• DR3 released 6.6 million quasar candidates!

• Complete, low purity, as many are stars masquerading as QSO :/ but… we can 
improve it

30 ≤ λ/Δλ ≤ 100

Gaia Collaboration: Gaia Data Release 3: The extragalactic content

Fig. 5. Galactic sky distribution of all the sources in the qso_candidates table (left) and galaxy_candidates table (right). The plot is shown
at HEALpixel level 7 (0.210 sq. deg.) in Hammer–Aito↵ projection. The colour scale, which is logarithmic, covers the full range for each panel,
so is di↵erent for each panel.

Fig. 6. G-band magnitude distribution of all objects in the
qso_candidates (blue) and galaxy_candidates (orange) table on
a logarithmic scale. The brightest known quasar (3C273 – source_id
3700386905605055360) has a G magnitude of 12.8.

sources, as these are less likely to get a high probability classifi-
cation in both Specmod and Allosmod.

One thing to bear in mind is that Specmod and Allosmod
do not deal with identical sets of sources, because these clas-
sifiers require di↵erent input data. In particular, Allosmod re-
quires parallaxes and proper motions, that is 5p or 6p astromet-
ric solutions (see Lindegren et al. 2021a for the definition of
these solutions). Galaxies often only get 2p solutions (no par-
allax or proper motion) on account of their physical extent. Of
the 3 566 085 million sources in the galaxy_candidates table
with classlabel_dsc = galaxy, 3 367 211 have all three pho-
tometric bands, but of these, only 1 015 462 have parallaxes and
proper motions and so can be classified by Allosmod (these num-
bers are for the whole sky, so including the LMC and SMC). As
classlabel_dsc_joint can only be set to galaxy when Al-
losmod results are present, the change in the distribution we see
in Fig. 9 for the two class labels is partially due to this. Plots
in Delchambre et al. (2022) show the change when only consid-
ering the subset with 5p or 6p solutions. Most quasars, in con-
trast, do have 5p or 6p solutions: Of the 5 243 012 sources in the
qso_candidates with classlabel_dsc = quasar, 5 086 531
have all three photometric bands, of which 4 815 212 have paral-
laxes and proper motions.

Because DSC is not the only contributor to the integrated
tables, some of the sources in these tables have DSC class la-
bels that are not the class of the table. In the qso_candidates
table, 156 970 sources have classlabel_dsc set to galaxy,
and 12 302 have classlabel_dsc_joint set to galaxy. In the

Fig. 7. Colour–colour diagram (top) and colour–magnitude diagram
(bottom) for all sources in the qso_candidates table (blue) and
galaxy_candidates table (orange). The contours show density on a
linear scale. The points are a random selection of 10 000 sources for
each class.

galaxy_candidates table, the numbers with these two class-
labels set to quasar are 12 933 and 234 respectively.

Article number, page 9 of 33

QSO / arcmin2
Bailer-Jones+2022
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Gaia: more than astrometry  

52

• Space-quality data means e.g. no seeing, airmass, stable observing conditions…

• larger volume, cleaner selection function than any existing sample (full sky).

• Synergies with external data allowed to clean this sample further: Quaia

Credits ESA

DESI spectra

Gaia spectra
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• High redshift

• Linear or quasi-linear scales.

101 102 103 104

` = k¬(z) ° 1/2

10°1

100

101

102

103

104

(1
+

z)
°

3
P

(k
,z

)
[M

p
c3

]

k = kNL

k = 0.1 Mpc°1

k = 0.01 Mpc°1

0.3

1.5

2.8

4.0

z
Alonso, GF, Storey-

Fisher+(2023)

What Quaia can do for cosmology?

53
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• Large sky coverage means capability to measure large angular scales.

• Towards non-degenerate  measurementsσ8, Ωm
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What Quaia can do for cosmology?

54
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Cosmology from Quaia x CMB lensing
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• Tomographic ,  with Planck lensing

• New high-z  constraints 

• Results competitive with current LSS 
surveys with fewer objects and/or 
worse redshifts. 

• Tomographic 3x2pt ,  with 
ACT CMB lensing

• Constraints on 

Cgg
ℓ Cκg

ℓ

σ8

Cgg
ℓ Cκg

ℓ , Cκκ
ℓ

σ8(z = 5.1)

New!

Piccirilli, GF, Alonso+ 2024) 
x 

Planck CMB lensing


21

Figure 12. Reconstruction of �8(z) from the 3⇥2pt analysis. The fiducial �8(z) curve is rescaled in each redshift bin byp
Ai, where Ai are the amplitude parameters introduced in Equation (12). Shaded regions denote 1� confidence intervals. This

reconstruction probes the redshift evolution of the amplitude of the growth of structure out to z > 3. Constraints from a
similar 3⇥2pt analysis (Farren et al. 2025) are shown as blue bands, while the measurements from Miyatake et al. (2022) and
de Belsunce et al. (2025) are shown with red and black data points, respectively. We also show the prediction from ⇤CDM as
measured by Planck primary CMB (Planck Collaboration 2020) plotted as a gray band.

Lastly, we include the measurement from de Belsunce
et al. (2025), which cross-correlates DESI DR1 quasars
with Planck PR4 CMB lensing. The DESI quasars have
a similar redshift coverage and number density to those
in Quaia. However, their analysis uses smaller scales,
with roughly kmax = 0.21hMpc�1, and is modeled with
hybrid perturbation theory. Their constraints are con-
sistent with ours within 1�; we show their results for
the first and last redshift bins, omitting the middle bin
(as done in their paper) due to its limited constraining
power on its own.

8. CONCLUSION

We have presented new constraints on structure
growth from the cross-correlation of quasars in the
Quaia catalog and state-of-the-art CMB lensing maps
from ACT DR6 and Planck PR4. We also performed a
3⇥2pt analysis by incorporating the ACT DR6 CMB
lensing auto-spectrum into the cross-correlation mea-
surement, allowing us to place one of the highest redshift
constraints on structure growth to date.

Using the cross-correlation information alone of the
Quaia quasars and combined ACT and Planck lensing,
we obtain a 7% constraint on our best-constrained pa-
rameter S⇥

8 = �8(⌦m/0.3)0.4 = 0.836+0.053
�0.070, and a 6.4%

constraint on �8 = 0.802+0.045
�0.057 when BAO information

from BOSS and 6dF is included (see Section 7.1.2).
We revisit the previous measurement (Alonso et al.

2023), which cross-correlated the Quaia quasars with
Planck PR4 lensing only. We restrict our analysis to
more conservative scale cuts and add a Gaussian prior
on the shot-noise amplitude. These decisions (discussed
in Appendix A) are motivated by observed instabili-
ties in the inferred cosmological parameters when using
the baseline analysis choices from the previous measure-
ment. These changes come at the cost of a SNR re-
duction, and, therefore, the resulting cosmological con-
straints are less competitive than we initially hoped.
Nonetheless, this work represents an improvement on
the robustness of the measurement.
To validate the robustness of our measurements with

ACT lensing, we perform a suite of systematic and null

Embil-Villagra+(2025)  
x 

ACT DR6 CMB lensing
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(Beyond) Inflation in a nutshell

56

• Energy density dominated by potential energy of a scalar field that fills the universe

• Small level of acceleration drive the exponential expansion 

• Non-Gaussianity offers a new window beyond slow-roll / single-field models

2.4 Slow-Roll Approximation

From the pressure and density equations (51) and (52), it can be seen that:

if „̇2 π V („) ∆ P ƒ ≠fl, (56)

hence, one has the equation of state of a vacuum-dominated universe, and inflation can take
place. The assumption that „̇2 π V („) significantly simplifies the equations of motion of the
scalar field and is known as Slow-Roll Approximation (SRA). Thus, during the SRA period of
inflation, the variations with respect to the time of the inflaton are negligible, as can be seen in
Figure 4.

Fig. 4 – This figure illustrates a conventional behaviour of the scalar field with some potential. First, the
inflaton begins to roll down slowly to a minimum and during this period the kinetic term is negligible. However,
as long as the inflaton reach the minimum the „̈ term of the equation of motion becomes larger and larger and
the inflaton field rolls down rapidly. When the inflaton reaches the minimum, the inflationary period ends and

the inflaton oscillates around the minimum radiating its energy and reheating the universe.

From an equivalent point of view, if inflation take place (ä > 0), then, from (17) we obtain
the condition P < ≠1

3fl, and then using equations (51) and (52) one obtains that the potential
must dominate over the kinetic term:

ä > 0 ∆ P < ≠1
3fl ∆ („̇)2 π V („). (57)

Thus, using this approximation the equations of motion of the inflaton can be rewritten as:

3H„̇ = ≠V Õ(„), (58)

H2 = 8fi

3m2
P

V („). (59)

in equation (58) has also been neglected the „̈ term because this has to be small in order to
ensure that „̇ is also small. Then, provided a potential for the scalar field it can be defined the
first two slow-roll parameters26 as:

‘V („) = m2
P

16fi

3
V Õ

V

42
, (60)

÷V („) = m2
P

8fi

3
V ÕÕ

V

4
. (61)

26More precise is to say that these are the Potential Slow-Roll (PSR) parameters.

17

Φ(x)NG = Φ(x) + fNL (Φ2(x) − ⟨Φ2⟩)

 ns, αs, As dV/dϕ, d2V/dϕ2
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Non-Gaussianities and scale dependent bias

57

• Huge volume and high bias tracers is required to enhance detection.

• Quasars: detectable at high z thanks to bright AGNs,  ~linear scales, ideal for  studies. 

• Galactic extinction, stellar contamination, seeing, survey depth inhomogeneity cause large 
scale variations / power excess in clustering measurements…

fNL

Δb1 ∝
fNLb1bϕ

k2T(k)
Dalal+2008
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Signature of fNL for projected statistics
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Problems

Constraints on fNL

59

• Cross-correlation can reach the largest scales!

• : worse than expectations due to residual systematics σ( fNL) ΔCκg
ℓ ∝ Cκκ

ℓ Cgg
ℓ

!"

Scale cuts from ground-based surveys 
(Krolewski+2023)

Aggressive systematics subtraction 
needs: ~3x degradation of results 

(Rezeie+2025)
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Robustness tests and perspectives

60

• Sensitivity comparable to spectroscopic galaxy surveys in 3D

• Limited by systematics on auto correlation on large scales but highly robust to systematics.

• Newer data releases from Gaia could improve this results (more sources, different source 
separation).

Fa
b
b
ia
n
+

25

(t
hi

s
w
or

k)
Fa

b
b
ia
n
+

25

+
cr

os
s-b

in
B
er

m
ej
o

C
lim

en
t+

24

(L
R
G

)
Fa

b
b
ia
n
+

25
,

no
C

gg
`

K
ro

le
w
sk

i+
23

B
er

m
ej
o

C
lim

en
t+

24

(L
R
G

)
M

cC
ar

th
y+

23
R
ez

ai
e+

24
(L

R
G

)
Fa

b
b
ia
n
+

25
,

no
C

g∑
`

C
as

to
ri
na

+
19

M
ue

lle
r+

21
C
ag

lia
ri
+

24
C
ag

lia
ri
+

25

+
bi

sp
ec

tr
um

C
ha

us
si
do

n+
24

(Q
SO

+
LR

G
)

°100

°50

0

50

fNL

Cgg
` , Cg∑

` Cg∑
` CCIB∑

` P (k)Cgg
`

Fabbian, Alonso, Storey-Fisher (2025)



Name TalkName TalkGiulio Fabbian Les Houches 2025

Higher-order cross-correlation

61

• Why limit to 2-point correlation functions….

• : great tools to reduce errors due to galaxy bias uncertainties.

• High-significant detections appeared very recently, hard to model…

⟨κκg⟩, ⟨κgg⟩

3

FIG. 1. First detection of the galaxy-galaxy-CMB lensing bispectrum obtained via the compressed bispectrum estimator. The

solid data points show a detection of Cg2
L at 26� and 22� (for 100  L  2048) for the Blue (left; z̄ = 0.6) and Green (right;

z̄ = 1.1) samples of unWISE galaxies using Wiener-filtered versions of the galaxy over density maps (light, circular data points).
When imposing a more restrictive cuto↵ on the maximum lensing multipole to conservatively guard against foreground biases,
using 100  L  1000, we still obtain a SNR of 22 and 19 for the two samples respectively. When instead filtering the galaxy
maps to exclude highly non-linear scales (` < 300 and ` < 450 for Blue and Green respectively) we obtain 5� and 9� detections
(on scales 100  L  2 ⇤ `max; dark, triangular data points). The grey lines show an approximate, halo-model based prediction

for Cg2
L based on the HOD fit in Ref. [25] (solid for Wiener-filter and dashed for conservative scale cuts). We note that we do

not perform a fit of the model parameters to the observed bispectrum and so we only compare with theory curves to check that
the form of our results does not drastically di↵er from theoretical expectations and that a detection of the signal is unsurprising
given the size of our errors.

contains significant information from small, highly non-
linear scales. Such scales are likely outside the regime
of validity of the perturbative models commonly used
in cosmological analysis. We thus also show results ob-
tained using more conservative filters. We remove all
modes ` > `g�max = 300 for the Blue sample and
` > `g�max = 450 for the Green sample. These scale cuts
are chosen to correspond approximately to a maximum
scale kmax = 0.2h�1Mpc at the mean redshift of the two
samples (z̄ = 0.6 for Blue and 1.1 for Green). For this
more conservative measurement we also impose a more
restrictive cut on large scales in the galaxy density, re-
moving all modes ` < 50. Using these more conservative
scale cuts we still obtain a detection at 5� and 9� for
the Blue and Green samples of galaxies respectively us-
ing multipoles for which 100  L < 2`g�max (the signal
vanishes for larger multipoles, see Eq. 12). These band-
powers are also shown in Fig. 1 for comparison.

COVARIANCE

To estimate the data covariance we rely on 480 Gaus-
sian lensing reconstruction simulations. The generation
of correlated galaxy realisations is discussed in Ref. [26].
These simulations do not contain the signal we are prob-

ing in this work2 and thus yield the covariance under the
assumption that the bispectrum vanishes as appropriate
for a detection claim. The disconnected, Gaussian part
of the six-point function, captured by our simulations,
is expected to be the dominant contribution to the data
covariance. The diagonal elements of the covariance ma-
trix are shown in Fig. 2 and all o↵-diagonal correlations
are small (< 10%).

DATA SYSTEMATICS TEST

To establish the cosmological origin of the signal ob-
served and to rule out potential foreground contamina-
tion we perform a series of consistency tests on the data.
This includes null-tests comparing di↵erent lensing re-
construction options and di↵erent large scale masks.
Firstly, we investigate stability for di↵erent varia-

tions of the lensing reconstruction. To test for po-
tential contamination from foregrounds such as thermal
Sunyaev-Zeldovich (tSZ) clusters or the Cosmic Infrared
Background (CIB) we assess the consistency of bispec-
trum bandpowers measured using lensing reconstructions

2 We verify that we indeed obtain a signal consistent with zero
when applying our pipeline to these simulations.
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Figure 5: Forecasted 1� marginalized errors on M⌫ and fNL for LSST combined with CMB-

S4 (same as the bottom two rows of Tab. 2). The darker bars show the constraints from

the one-loop power spectra and the lighter bars show the constraints with the bispectra also

included.

100 meV, we see that the combination of these two experiments will be capable of ruling out

the inverted hierarchy at about 4� confidence if M⌫ ' 60 meV. It is worth mentioning that

these constraints do not assume any prior information on the optical depth. Our results should

be compared to that of [22], which showed that the cross-spectra between galaxies from LSST

and CMB lensing from CMB-S4 can reach �(M⌫) = 68meV without any prior information on

the optical depth. (To be more precise, this corresponds to the LSST Gold galaxy sample with

non-overlapping tomographic bins and tree-level power spectra with kmax = 0.1 hMpc�1.)

We improve upon this result by a factor of 5, which mainly comes from both adding the

one-loop corrections to power spectra, which enables us to extend kmax to 0.3 hMpc�1 from

0.1 hMpc�1, and adding the bispectrum information. Also, we see that the constraints on

the local non-Gaussianity amplitude �(fNL) ' 1 will be achievable, which is about a factor

of 5 improvement over the current constraint from Planck [8].

Figure 6 shows the 1� and 2� contours, showing correlations between di↵erent parame-

ters. We see that when adding bispectra, the parameter constraints improve by a factor of 3

for M⌫ and a factor of 2 for the rest the parameters. In turn, adding galaxy and CMB lensing

cross-correlations improves the results by twofold for most parameters, except for ns and As

whose constraints improve by factors of 4 and 8, respectively. Because including CMB lensing

strongly breaks the degeneracy between As and the linear bias b�, it significantly improves

the constraint on As. Similar results can also be found in [21], in which they show that the

precision of �8 improves by more than a factor of 10 with cross-correlations of CMB lensing.

4.2.1 CMB Lensing

CMB lensing serves as a tracer for the underlying matter density field. By cross-correlating

it with a galaxy survey, we can circumvent the cosmic variance limited by the survey volume,

and also partially cancel the degeneracy between di↵erent cosmological parameters. The idea

– 27 –
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Farren+(2023)

Chen+(2023), 
Fabbian+(2019)
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CMB B polarization* with small r
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Lensing and CMB B-modes polarization 

• E to B-modes conversion  
can hide primordial signal 

•  

• Limiting factor to constrain 
inflation from deep data (10x 
degradation for CMB-S4)

σ(r) ∝ NBB
ℓ + CBB,lens

ℓ
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CMB B-modes status 
• First direct measurement in 2014 by POLARBEAR ( )

• Highest SNR by SPT and BICEP on large sky fractions.

• Inflationary part not detected, signal consistent with lensing only.

∼ 3σ, fsky < 0.1 %

63

17

Figure 8. Compilation of B-mode power spectra measurements from ACT, BICEP/Keck (Ade et al. 2021), SPTpol (Sayre
et al. 2020a) and POLARBEAR (POLARBEAR Collaboration 2017). The ACT amplitude is consistent with expectations
from the ⇤CDM model with amplitude ACMB = 0.91 ± 0.23 with respect to the P-ACT best-fit cosmology. This corresponds
to evidence at 4� for the lensed B-mode signal.

bands: PA5 f090, PA5 f150, PA6 f090, and PA6 f150.
In EB a clear non-zero excess is visible. In TB the sig-
nal is consistent with null.
To test whether these spectra are consistent with

an overall rotation angle, we denote  ↵ as the mis-
calibration (or birefringence) angle of the array-band ↵.
Assuming that EB and TB are zero at the time of decou-
pling and that we have negligible foreground emission,
we model our observed EB and TB power spectra as

DE↵B↵0 ,model

` =DEE
` cos 2 ↵ sin 2 ↵0 �DBB

` sin 2 ↵ cos 2 ↵0

DB↵E↵0 ,model

` =DEE
` cos 2 ↵0 sin 2 ↵ �DBB

` sin 2 ↵0 cos 2 ↵

DT↵B↵0 ,model

` =DTE
` cos 2 ↵ sin 2 ↵0

DB↵T↵0 ,model

` =DTE
` cos 2 ↵0 sin 2 ↵. (9)

To estimate the { ↵}, we construct a vector containing
all the 16 EB and BE x-spectra from the four array-
bands. We then sample the posterior distribution for
the four angles simultaneously. The results are shown
in the bottom-left panel of Figure 9.
To evaluate the stability of the results, we repeat this

for both the baseline and extended cuts, and using two
types of masks—a standard mask and an “optimal”
mask21. The optimal mask applies non-uniform pixel

21
The results obtained using this weighting scheme were not sub-

jected to as many null tests as those presented in §4.1, which

employed uniform weights. However, we have repeated the array-

bands null test for the EB and TB power spectra and found them

to be consistent.

weighting, assigning more weight for pixels with higher
signal-to-noise. We note that  PA5 f150 and  PA5 f090

di↵er by more than 3� in the extended cuts case, while
for the baseline cuts the di↵erence is reduced to 2.4�.
Assuming that the angle within an array should be

common, we combine each pair of measurements within
a given optics tube (e.g., for PA5) using the weighted
average:

 PA5 =

 PA5 f090

�2
PA5 f090

+  PA5 f150

�2
PA5 f150

��2

PA5 f090
+ ��2

PA5 f150

. (10)

For the baseline cut with optimal weighting, this gives

 PA5=0.25± 0.04� (stat� only)

 PA6=0.14± 0.05� (stat� only), (11)

with a combined average of 0.20±0.03� accounting only
for statistical errors. The theoretical prediction for the
best-fitting angle of  = 0.2� is shown in Figure 9 to-
gether with our combined EB and TB power spectra.
Defining ��2

EB
= �2

EB
( = 0.2�) � �2

EB
( = 0�), we

obtain

��2

EB
(baseline, uniform weight) = �36

��2

EB
(baseline, optimal weight) = �41

��2

EB
(extended, uniform weight) = �64

��2

EB
(extended, optimal weight) = �67, (12)

for the four di↵erent cases we consider, indicating a
strong preference for a non-zero polarization angle.
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Delensing CMB polarization 
• Subtract a template of the lensing B-modes to reduce signal and variance 

• I need low noise high resolution E-mode polarization (e.g. ACT, SPT…)

• and an estimate of the matter distribution that lensed the CMB, i.e. a good 
estimate of ϕ

64

• How to reduce lensing 
noise?

• Delensing: construct 
Blensing~EΦ map from 
measured κ and E and 
subtract: B - Blensing

Delensing The CMB

measured B 
map – tensors 
+ lensing

estimate of 
lensing B 
(from Φ+E)

_subtract

lensing estimate E mode map

“deflect”

B̂lensBtotal

Blens(l) ⇠
Z

dl0 W (l, l0)E(l0)�(l� l0)

Bdata � B̂lens ⇠ Bdata �
Z

dl0W (l, l0)E(l0)�(l� l0)

<latexit sha1_base64="aNwU20kN1mTEoswuMmbDPlopA38="></latexit>

First Delensing Demonstrations

• First demonstrations give us confidence that methods work!
[Larsen, Challinor, Sherwin, Mak 2016, Manzotti++ 2017, Carron++ 2018, BK 2021]

2017: first reduction in B-mode power 2021: first improved r constraints

[2016: first demo in CMB temperature]

Polarbear coll. (2019)

BICEP and SPT 
coll. (2021)
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Delensing with galaxy surveys
• Accuracy of CMB lensing reconstruction is 

limited by noise.

• Combine external galaxy tracers to 
improve SNR using cross-correlation.

• Crucial improvements for low-
resolution experiments (Litebird…)

65

BICEP-2 coll. (2021)
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FIG. 9. Fraction of lensing B-mode power left over after
delensing in the region of overlap between the SAT and the
LAT. The dashed lines show the ideal case where the CMB
is observed over the full sky with isotropic noise. The dot-
dashed lines show the case if we only use the LAT E-modes
in the template construction. For the baseline (magenta) and
goal (blue) noise cases, approximately 65% and 70% of lensing
B-mode power is able to be removed, respectively.

FIG. 10. Same as Fig. 9 but with delensing using only the
CMB lensing map (blue), galaxies from LSST (green) or the
CIB (cyan), or their optimal combination (magenta), for the
baseline (solid) and goal (dashed) noise levels. The LSST
galaxies make the most significant contribution to delensing.

(solid) and (2) (dashed), the impact of the realistic inho-
mogeneous instrumental noise is small. The figure also
indicates that adding E-modes from the SAT further re-
duces the lensing contribution by more than 5% and its
benefit is not completely negligible.

Figure 10 shows the individual contributions to the
residual B-mode power after delensing with di↵erent
tracers. LSST galaxies contribute most to delensing,

FIG. 11. Demonstration of constraining the tensor-to-scalar
ratio, r, with the cross-spectral (or “cross-correlation”) ap-
proach in which all of the auto- and cross-power spectra be-
tween the observed B-modes and the lensing B-mode tem-
plate are used in the likelihood analysis (solid blue line; see
Sec. II F). For comparison, we also show (in dashed) the
case without the lensing B-mode template, i.e., no delens-
ing. Note that we extend the likelihood into the unphysical
region r < 0 for illustration in the figure. The constraints on r
are �(r) = 0.003 for the no-delensing case and �(r) = 0.0015
with the lensing B-mode template, respectively.

while the reconstructed CMB lensing map and CIB have
similar contributions.

D. Constraining IGWs

Using the lensing B-mode template, we perform a
likelihood analysis to determine the expected constraint
on the tensor-to-scalar ratio, r, using the MBS simula-
tions. The results are shown in Fig. 11. As described in
Sec. II F, we compute the auto- and cross-power spectra
of B-modes obtained from the SAT region and from the
lensing template using the pure-B-mode formalism [59],
and use these in an approximate likelihood. We use B-
mode multipoles between l = 50 and 200. Since our
purpose is to see the impact of practical e↵ects in the
construction of the lensing template on the constraint on
r, we only consider one parameter, r, for simplicity, and
ignore the Galactic foreground complexity.

We show two cases, with and without the lensing tem-
plate in the likelihood. The 1� constraint on r with
delensing is �(r) = 0.0015, which is close to the expecta-
tion from the ideal (isotropic) case and is nearly a factor
of two improvement from the no-delensing case. This in-
dicates that the non-idealities from non-white noise and
masking do not significantly degrade the delensing per-
formance which is enough to reproduce the constraint
on r expected from the idealized forecast, up to possible
Galactic foreground non-idealities.
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ing. Note that we extend the likelihood into the unphysical
region r < 0 for illustration in the figure. The constraints on r
are �(r) = 0.003 for the no-delensing case and �(r) = 0.0015
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while the reconstructed CMB lensing map and CIB have
similar contributions.

D. Constraining IGWs

Using the lensing B-mode template, we perform a
likelihood analysis to determine the expected constraint
on the tensor-to-scalar ratio, r, using the MBS simula-
tions. The results are shown in Fig. 11. As described in
Sec. II F, we compute the auto- and cross-power spectra
of B-modes obtained from the SAT region and from the
lensing template using the pure-B-mode formalism [59],
and use these in an approximate likelihood. We use B-
mode multipoles between l = 50 and 200. Since our
purpose is to see the impact of practical e↵ects in the
construction of the lensing template on the constraint on
r, we only consider one parameter, r, for simplicity, and
ignore the Galactic foreground complexity.

We show two cases, with and without the lensing tem-
plate in the likelihood. The 1� constraint on r with
delensing is �(r) = 0.0015, which is close to the expecta-
tion from the ideal (isotropic) case and is nearly a factor
of two improvement from the no-delensing case. This in-
dicates that the non-idealities from non-white noise and
masking do not significantly degrade the delensing per-
formance which is enough to reproduce the constraint
on r expected from the idealized forecast, up to possible
Galactic foreground non-idealities.
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C. External mass-tracer map

In addition to being reconstructed internally from the
CMB fields themselves, the lensing convergence field can
be estimated from observations of the LSS tracers such
as the spatial distribution of galaxies or the CIB [23, 25–
27, 31].

As proposed in Refs. [25, 49], di↵erent tracers can also
be linearly combined using weights designed to maximize
the cross-correlation between the co-added tracer and the
true convergence. Reference [25] determined that the
weights that achieve this are

ciL =
X

j

(⇢�1)ijL ⇢
j
L

s
C

L

Cbibi

L

, (16)

where the linearly combined tracer is bcomb
LM =

P
i c

i
Lbi

LM .
Here, ⇢iL is the cross-correlation coe�cient, at multipole
L, between tracer bi and the true convergence; ⇢ijL is the

cross-correlation between tracers bi and bj ; and Cbibi

L
is the angular power spectrum of tracer bi. Qualita-
tively, on a given angular scale, this scheme brings to
the fore the tracers that best correlate with the under-
lying truth. In practice, this means that internal recon-
structions, which accurately reconstruct lensing on the
largest angular scales, can be supplemented with exter-
nal tracers on the small scales where they are dominated
by reconstruction noise. Figure 2 illustrates this for an
experiment with the characteristics of the Simons Obser-
vatory. Notice that information gleaned from Planck CIB
data (extracted using the GNILC algorithm [50, 51]), and
from a galaxy survey with the characteristics expected of
the Vera Rubin Observatory Legacy Survey of Space and
Time (LSST) “gold” sample (approximately 40 galaxies
per arcmin2) [52] enables the co-added tracer to maintain
a high degree of correlation with the true lensing conver-
gence on scales of 250 < L < 1000. This is of particular
importance for delensing, since it is those intermediate
and small-scale lenses located primarily at high redshifts
(see Fig. 3 of Ref. [37]) that are most relevant [53]. The
recent Planck lensing analysis demonstrates delensing by
combining the CMB lensing map with the GNILC CIB
map [54].

D. Optimal combination of mass tracers

The optimal estimate of the CMB lensing potential is
obtained as a linear combination of the quadratic esti-
mators and external mass tracers. In practice, the an-
alytic weights in Eq. (16) could be no longer optimal
due to, e.g., an analysis mask and inhomogeneous noise
and residual foregrounds. Instead of using the analytic
optimal weights, our pipeline empirically evaluates the
weights, ciL, from smoothed auto- and cross-spectra de-
termined from simulations to mimic the actual proce-
dure that would likely be applied with new SO and LSST

Internal Reconstruction

LSST gold

GNILC CIB

All coadded

FIG. 2. Correlation coe�cients of the true CMB lensing field
with several LSS tracers, and with a co-added tracer. On large
angular scales, correlation between the CIB map extracted
from Planck data using the GNILC algorithm drops due to the
presence of residual CIB in the dust maps (which, in turn, gets
filtered out of the CIB maps). Fortunately, on those scales in-
ternal techniques can very accurately reconstruct lensing, as
shown here for a projected minimum-variance quadratic es-
timator reconstruction with SO (goal) noise levels [36] and
standard internal-linear-combination (ILC) foreground clean-
ing. On the other hand, the relevance of shot noise on small
scales means that the correlation with the CIB decreases for
large L. The forecasted curves involving LSST galaxies corre-
spond to the case where tomographic observations of galaxies
in the “gold” sample are divided into six redshift bins. The
auto- and cross-spectra of mass tracers for this plot are taken
from Ref. [49].

data. We compute ciL from the covariance of mass tracers
and the input . The Wiener-filtered mass map, bcomb,
is then obtained as defined in the previous subsection.
Here, the indices of the mass tracers, i, include the ⇥⇥,
⇥E, EE and EB quadratic estimators for CMB lensing
reconstruction, the galaxy overdensity at six tomographic
redshift bins with edges at z = [0, 0.5, 1, 2, 3, 4, 7], and the
CIB. When combining mass tracers, we restrict the full-
sky mass-tracer maps (galaxies at each photo-z bin and
the CIB) to the region surveyed by the LAT (see Fig. 3).
We do not take into account correlations between di↵er-
ent L.

E. Lensing B-mode template construction

On large scales, we estimate the lensing B-modes as

Btemp
lm = i

X

l0m0

X

LM

✓
l l0 L
m m0 M

◆
p�F (2)

lLl0(
bEWF
l0m0)⇤(bcomb

LM )⇤ ,

(17)

where bEWF
lm are the Wiener-filtered, observed E-modes.

This first-order lensing template built from lensed E-
modes is indistinguishable for our purposes from an opti-
mal ‘remapping’ method, and will continue to be so until

Namikawa+(2021) 
Yu+(2017) 
Marian+(2008)

70% delensing achievable for e.g. SO

2x inflation 
constraints 

improvement

Namikawa+(2021)
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• Questions? Comments? Remarks? Complaints?

Switching gears to SZ

66

Omori (2023)
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• Inverse Compton scattering off hot electrons in ICM/CGM changes CMB T locally.

• Direct probe of gas pressure

• Interface between astrophysics  
and cosmology.

• Can be disentangled through accurate multi-frequency observations.

tSZ primer

67

y(n̂) =

Z
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kBTe

mec2
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Mroczkowski+(2019)
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• Inverse Compton scattering off hot electrons in ICM/CGM changes CMB T locally.

• Direct probe of gas pressure

• Interface between astrophysics  
and cosmology.

• Can be disentangled through accurate multi-frequency observations.

tSZ primer

67

SO bands

y(n̂) =

Z
ne

kBTe

mec2
�T ds

Mroczkowski+(2019)
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• New analysis on Planck DR4 w/ 
different foreground cleaning 
methods.

• ACT DR6 used Planck 
additional channel and different 
cleaning method for higher-
resolution map. 

tSZ maps state of the art

68

4 Tanimura et al.

Figure 2. All-sky Compton H parameter maps reconstructed in this paper (top) with the MILCA algorithm and in Planck Collaboration (2016a) (bottom) in
orthographic projections. The North Galactic hemisphere centered at the pole is shown on the left, and the South is on the right. Longitude=0 is shown in white
solid lines and other longitudes and latitudes are shown in white dashed lines. The pixel resolution is chosen to be Nside = 128 for visualization purposes.
Compact bright spots in the maps are clusters of galaxies observed via the tSZ e�ect, whereas compact dark spots are radio sources.

evaluate uncertainties accurately. The trispectrum term is dominant
at low multipoles, as shown in Bolliet et al. (2018); Salvati et al.
(2018).

Figure. 8 is the comparison between the 2020 and 2015 cross-
power spectra. The figure shows that their signal amplitudes are con-
sistent with each other, suggesting that the tSZ signals are extracted
similarly well in both H-maps. It also shows that the uncertainties are
smaller at large scales in the 2020 cross-power spectrum than in the

2015 case. It is possibly due to the combination of several e�ects:
lower noise, reduced survey stripes, and our new window function
that suppresses large scales to reduce the residual foreground emis-
sions, mainly from the Galactic thermal dust emission (see Appendix.
A).

MNRAS 000, 1–12 (2021)

Tanimura+2021, 
Chandran+2024

Coulton+
2024

ACT+PlanckPlanck 2015 MILCA
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• Ionized hot and warm gas is ubiquitous and can generate tSZ:  

• Direct probe of gas across environments (filaments, voids, clusters)

• Useful probe of accretion of matter through filaments as well as feedback 
processes.

Where is the tSZ?

69

10 D. Martizzi et al.

Figure 4. Phase diagram of baryons at redshift z = 0, 1, and 4 in different regions of the Cosmic Web. Our classification method with Cartesian grid of size
5123 and Gaussian smoothing on a scale RG = 4 cMpc/h has been used to produce this plot. The phase diagram of baryons depends significantly on the
location in the Cosmic Web. In particular, the hot and warm phase are only abundant in knots and filaments at redshift z < 1.

tures the WHIM mass fraction increases by more than a factor of
10 from redshift z = 4 to redshift z = 0. In voids, the WHIM mass
fraction is < 1% at all epochs and it evolves weakly as a function
of redshift. At redshift 1 < z < 2 the mass fraction of WCGM
peaks, then decreases again. Interestingly, the WCGM fraction in
knots and filaments becomes comparable to that of the WHIM at
z > 2, but this result might be susceptible to our choice for the
density cut between these two phases at high redshift (z > 2).
The mass fraction of the condensed phases (Halo and Star-forming
Gas) constitutes as sub-dominant mass contribution at all redshifts,
being comparable to the diffuse IGM mass fraction only in knots,
but not in the rest of the cosmic structures. At redshift z < 1 the
condensed phases become sub-dominant with respect to the sum of
WHIM and Diffuse IGM in all regions of the Cosmic Web.

From Figure 7 it is evident that the mass of the Diffuse IGM

dominates over that of the WHIM in sheets and voids at all times.
However, in filaments and knots, the WHIM becomes the domi-
nant contribution to the cosmic baryon budget at z < 1. Since the
WHIM is expected to represent the bulk of the missing baryons,
it is extremely important to devise future observational campaigns
and analysis techniques that are sensitive to signals coming from
the shock heated gas in filaments and knots.

3.5 Morphology of Baryonic Filaments

In the previous Subsections we established that most of the bary-
onic mass in the universe at redshift z = 0 is in filaments and
that they mostly contain a mixture of WHIM and Diffuse IGM. It
is not guaranteed for these two gas phases to be contiguous, es-
pecially because the WHIM is expected to be IGM shock heated

MNRAS 000, 000–000 (0000)
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tures the WHIM mass fraction increases by more than a factor of
10 from redshift z = 4 to redshift z = 0. In voids, the WHIM mass
fraction is < 1% at all epochs and it evolves weakly as a function
of redshift. At redshift 1 < z < 2 the mass fraction of WCGM
peaks, then decreases again. Interestingly, the WCGM fraction in
knots and filaments becomes comparable to that of the WHIM at
z > 2, but this result might be susceptible to our choice for the
density cut between these two phases at high redshift (z > 2).
The mass fraction of the condensed phases (Halo and Star-forming
Gas) constitutes as sub-dominant mass contribution at all redshifts,
being comparable to the diffuse IGM mass fraction only in knots,
but not in the rest of the cosmic structures. At redshift z < 1 the
condensed phases become sub-dominant with respect to the sum of
WHIM and Diffuse IGM in all regions of the Cosmic Web.

From Figure 7 it is evident that the mass of the Diffuse IGM

dominates over that of the WHIM in sheets and voids at all times.
However, in filaments and knots, the WHIM becomes the domi-
nant contribution to the cosmic baryon budget at z < 1. Since the
WHIM is expected to represent the bulk of the missing baryons,
it is extremely important to devise future observational campaigns
and analysis techniques that are sensitive to signals coming from
the shock heated gas in filaments and knots.

3.5 Morphology of Baryonic Filaments

In the previous Subsections we established that most of the bary-
onic mass in the universe at redshift z = 0 is in filaments and
that they mostly contain a mixture of WHIM and Diffuse IGM. It
is not guaranteed for these two gas phases to be contiguous, es-
pecially because the WHIM is expected to be IGM shock heated

MNRAS 000, 000–000 (0000)

Martizzi+2019

Courtesy N.Battaglia, N. Aghanim
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• Number counts sensitive to dark 
energy (now ~1000s)

• tSZ flux limit ~ mass limit!

• Complementarity / synergies 
with X-ray and lensing surveys

Cluster cosmology

70

Coma cluster (Planck coll. 2015, Mirakhor+2020)

Bocquet+(2024)

Combined SPT-3G surveys will detect ~10x 
more clusters than previous generation SZ 
surveys and even more than the baseline for 
the future Simon Obs (SO) survey.

In particular, at high-redshifts (1 < z < 2.5), the 
discovered cluster samples will be 
transformative and well-matched to Euclid 
strengths.

First internal data releases (SPT 3G “Main”) 
expected in ~Q3 2024 

Timeline matches Euclid internal DR1 → MoU!

SZ Cluster Surveys

Courtesy SPT 
collaboration
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• Strong cosmological dependency on e.g. dark energy and neutrinos… 
 

• Same applies to higher order statistics (e.g. 1-p PDF, bispectra…)

• Very sensitive to astrophysical modeling and extragalactic foreground subtraction. 

• Work in progress for joint modeling with upcoming lensing surveys

tSZ power spectrum 

71

8 B. Bolliet et al.

Figure 4.Marginalised (1D and 2D) joint posterior probability distributions of the F -parameter (Eq. (11)) and the foreground amplitudes

(CIB, IR, and RS). The black and blue contours show the results with and without trispectrum in the covariance, respectively.
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Figure 5. (Left panel) Best-fitting tSZ (solid black line) and total foreground (dashed line) power spectra. The solid grey line shows

their sum. The open circles show the contribution from resolved clusters. The grey circles show the original data points with error bars

including the trispectrum, whereas the black filled circles show the data points with the foreground spectra marginalised over. (Right

panel) The black line and circles are the same as those in the left panel. See figure 3 for the best-fitting model parameters, and table 4

for the tabulated values. The grey circles show the foreground-marginalised data points obtained by the Planck 2015 SZ analysis. We

also show the ACT and SPT data points for comparison, as well as the simulation results of Dolag et al. (2016) (DKS16, grey dotted

line).
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Bolliet+(2018), Planck coll. (2015)
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ℓ ∝ σ8.1

8 Ω3.2
m B−3.2h−1.7

See also 
Elizabeth’s 
lecture!
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numerical values of our results are presented in Table 2. The
overall agreement between all of the measurements, using
different data sets and estimates of the tSZ signals, supports the
robustness of the observational basis of the cosmic tSZ history.
We will provide a physical interpretation of these results in
Section 6.

5.3.4. Interpreting the Mass Bias

Our results, supported by the agreement with previous
measurements presented in the literature, lead to a best-fitting
mass bias parameter B(z)=(1.33±0.13)×(1+z)0.15±0.25

and � �
�B 1.27 0.04

0.05 in scenarios with and without redshift
dependence in B, respectively (Figure 6). This corresponds to
another commonly used parameter 1− b=B−1=0.79±
0.03 for the nonevolving case. Thus, cluster masses determined
by combining Arnaud et al. (2010) and Planck Collaboration
et al. (2013b) using resolved X-ray and tSZ observations
assuming hydrostatic equilibrium are, on average, about 20%
lower than the true masses.

If nonphysical calibration issues are negligible, the excess of
B from unity can be attributed to nonthermal pressure support
in halos. The magnitude of B we found is consistent with that in
cosmological hydrodynamical simulations and analytic predic-
tions of structure formation where halos are additionally
supported by internal bulk motions and turbulence sourced
by hierarchical mass assembly (Dolag et al. 2005; Vazza et al.
2006, 2009, 2016, 2018; Iapichino & Niemeyer 2008; Lau
et al. 2009; Maier et al. 2009; Shaw et al. 2010; Iapichino et al.
2011; Battaglia et al. 2012b; Nelson et al. 2014; Shi &
Komatsu 2014; Shi et al. 2015, 2016; Angelinelli et al. 2020).
This implies that additional kinetic energy injections from
baryonic feedback, mostly from active galactic nucleus
activities, are either small (because, e.g., they are confined in
the small volume of galaxy cluster cores) or largely
thermalized. Our mass bias parameter is roughly consistent
with those found in the Compton y-galaxy cross-correlation
literature (Pandey et al. 2019; Koukoufilippas et al. 2020;
Makiya et al. 2020), but also note that Makiya et al. (2018)
reported a higher value using low-redshift 2MASS galaxies.
The mass bias parameters obtained via combining the primary
CMB and the tSZ autopower spectrum or cluster counts are
somewhat higher at B∼1.6–1.7 (Planck Collaboration et al.
2014c, 2016d; Hurier & Lacasa 2017; Bolliet et al. 2018, 2020;

Osato et al. 2018, 2020; Salvati et al. 2018, 2019). The
discrepancy in the reported mass bias is not highly significant
at face value but could be appreciable, considering the
measurements are not entirely independent as they are based
on part of the same multifrequency data set. The Plancky maps
were used in all aforementioned measurements, while we show
in Figure 5 that these maps are strongly affected by the CIB at
z>1. This could introduce systematics especially for studies
relying heavily on the projected autopower spectrum of
Compton y if the impact of the CIB is not fully taken into
account.
Finally, we point out that, if in the future B can be precisely

estimated, observational constraints on � §bPe can then become
useful in constraining cosmological parameters; in particular,
the amplitude scales as σ8 (Ωm/B)0.4 h0−0.21, as shown by
Bolliet et al. (2018).

5.3.5. tSZ Sky Monopole

The precision measurement of the sky-averaged, redshift-
integrated monopole Compton y parameter offers a powerful
integral constraint on the thermal history of the universe.
The Far Infrared Absolute Spectrophotometer (FIRAS) on the
Cosmic Background Explorer gave the upper bound on
the monopole y<1.5×10−5 (95%CL; Fixsen et al. 1996).
Theoretical estimates based on halo models and cosmological
hydrodynamic simulations are in the range (1–2)×10−6

(Barbosa et al. 1996; da Silva et al. 2000; Refregier et al.
2000; Nath & Silk 2001; Seljak et al. 2001; Zhang et al. 2004;
Battaglia et al. 2010; Hill et al. 2015; Dolag et al. 2016); thus,
the expected level of the mean y is only one order of magnitude
smaller than the FIRAS upper bound.
It is possible to improve upon the FIRAS limit by several

orders of magnitude with future spectral distortion experiments
based on technology already available (Kogut et al. 2011; André
et al. 2014; Chluba et al. 2019). While an absolutely calibrated
spectrometer is needed to directly measure the monopole
Compton y, one can use the anisotropies of y to constrain its
correlated component with the large-scale structure. Khatri &
Sunyaev (2015) reported a limit of monopole y<2.2×10−6

(95%CL) from the probability density function of Planckʼs
Compton y maps, but the unconstrained map zero-points
(because Planck is not an absolutely calibrated experiment)
make the interpretation ambiguous. In our analysis, we can avoid

Figure 7. Halo bias-weighted mean electron pressure of gas in the universe as a function of redshift. Black and blue data points/limits and the red bands show our
measurements and halo-model fit corresponding to those of the same symbols in Figure 5. Magenta, yellow, and cyan data points show previous measurements
presented in the literature (Vikram et al. 2017; Pandey et al. 2019; Koukoufilippas et al. 2020). All of the data points, limits, and model fit are in agreement within the
uncertainties.
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tSZ cross-correlations with LSS surveys

72

• Statistical measurements of pressure in the LSS, probe of thermal history

• Can inform analysis of weak-lensing data to account for baryonic effects.

Chiang+(2020)
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Fig. 5. Measured angular power spectra of KiDS-1000 cosmic shear (bottom left) and the angular cross-power spectra between KiDS-1000 shear
and the tSZ effect (top right). Shown here is the cross-correlation using the MILCA Planck Compton-y map. The grey bands indicate the 68th and
95th percentile of the posterior predictive distribution (PPD) of the joint-analysis posterior. Coloured lines are samples of the translated posterior
distribution (TPD), with the colour corresponding to the baryon feedback strength. Since the TPD is derived from the full joint-posterior, the
baryon feedback strength only accounts for part of the variance of the shown TPD samples.

improved by a factor of 40% over cosmic shear alone and are
in excellent agreement with the KiDS-1000 3⇥ 2pt analysis of
Heymans et al. (2021). This improvement is driven by the break-
ing of the residual degeneracy between S8 and Wm, since S8 does
not optimally capture the direction orthogonal to the s8–Wm de-
generacy for the estimator considered here. Using instead S0.58

8 ,
as in Asgari et al. (2021), which is better constrained than S8
by the pseudo-C` estimator, we find a 15% improvement of the
constraining power of the shear–tSZ + cosmic shear joint analy-
sis over cosmic shear alone.

The joint analysis also strongly tightens the constraints on
Wm and s8. This is to be expected, however, since the cosmic
shear constraints on these parameters are prior-dominated, and

any breaking of the cosmic banana will yield comparatively tight
constraints compared to cosmic shear alone (see e.g. Tröster
et al. 2021, for examples of this effect in the joint analyses of
KiDS-1000 cosmic shear with CMB lensing or super novae).

The shear–tSZ cross-correlation prefers lower values of s8
than those inferred from the CMB by Planck; the discrepancy be-
tween our inferred value of S0.2

8 and that of Planck Collaboration
VI et al. (2020; using the TTTEEE+lowE likelihood) is 2.2s .
This trend is also seen in the recent shear–tSZ cross-correlation
analysis with DES Y3 data (Gatti et al. 2021), although they im-
pose Planck priors on s8 and Wm, making a direct comparison
with the results in this work difficult. The constraints on S8 and
S0.58

8 inferred from the joint analysis are in 3.4s and 2.9s ten-
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10 7.18e-03 1.42e-03 3.28e-04 2.68e-16 1.52e-16 8.83e-15 4.37e-10 2.31e-10 6.06e-10

13 5.18e-03 7.77e-04 2.65e-04 5.59e-16 1.47e-16 4.32e-15 3.55e-10 2.08e-10 4.03e-10

18 3.84e-03 4.52e-04 2.09e-04 4.32e-16 1.13e-16 2.08e-15 4.34e-10 1.27e-10 2.69e-10

23 2.42e-03 2.39e-04 1.61e-04 3.92e-16 8.12e-17 1.06e-15 3.72e-10 7.94e-11 1.81e-10

30 1.66e-03 1.31e-04 1.21e-04 2.25e-16 3.63e-17 5.49e-16 2.07e-10 3.87e-11 1.21e-10

40 1.27e-03 7.74e-05 8.63e-05 1.34e-16 1.76e-17 2.79e-16 1.59e-10 2.02e-11 7.82e-11

52 9.71e-04 4.85e-05 5.96e-05 1.10e-16 9.90e-18 1.41e-16 1.04e-10 1.26e-11 4.90e-11

68 7.68e-04 3.13e-05 4.05e-05 6.44e-17 5.00e-18 7.28e-17 7.04e-11 6.92e-12 3.02e-11

89 5.15e-04 1.76e-05 2.68e-05 5.05e-17 3.10e-18 3.74e-17 4.95e-11 4.05e-12 1.79e-11

117 3.86e-04 1.14e-05 1.73e-05 4.78e-17 2.17e-18 1.92e-17 3.38e-11 2.77e-12 1.02e-11

152 2.88e-04 7.39e-06 1.10e-05 3.33e-17 1.38e-18 9.89e-18 2.41e-11 1.70e-12 5.64e-12

198 2.04e-04 4.90e-06 6.86e-06 2.32e-17 8.45e-19 5.16e-18 1.59e-11 1.05e-12 3.00e-12

257 1.45e-04 3.26e-06 4.19e-06 1.85e-17 5.73e-19 2.68e-18 9.35e-12 6.91e-13 1.52e-12

335 1.02e-04 2.23e-06 2.52e-06 1.32e-17 4.03e-19 1.38e-18 6.43e-12 4.52e-13 7.23e-13

436 7.41e-05 1.60e-06 1.50e-06 9.29e-18 2.80e-19 7.17e-19 3.56e-12 3.07e-13 3.28e-13

567 5.04e-05 1.15e-06 8.99e-07 5.92e-18 2.09e-19 3.71e-19 2.24e-12 2.05e-13 1.41e-13

738 3.29e-05 8.37e-07 5.41e-07 3.94e-18 1.65e-19 1.91e-19 1.32e-12 1.42e-13 5.73e-14

959 2.40e-05 6.27e-07 3.30e-07 3.00e-18 1.46e-19 9.78e-20 2.47e-13 1.02e-13 2.21e-14

1247 1.66e-05 4.76e-07 2.05e-07 2.06e-18 1.58e-19 4.95e-20 5.64e-13 7.57e-14 8.14e-15

Table 1. The 2MRS auto-, Compton-Y auto- and 2MRS and Compton-Y cross-power spectra. The best-fitting models of the contaminating sources are

subtracted from the tSZ auto. The Gaussian and non-Gaussian errors, σG and σNG, are also shown. See section 4 for details.

radius. To convert mass from one definition to another, we use the

fitting formulae of Hu & Kravtsov (2003) assuming the Navarro-

Frenk-White (NFW) density profile (Navarro et al. 1997) and the

mass-concentration relation of Sánchez-Conde & Prada (2014).

Bolliet et al. (2018) reported that the uncertainty in the model

of the mass-concentration relation has non-negligible effects on the

computed tSZ power spectrum through the mass conversion. To

avoid this uncertainty, we use the mass function for M500c, since

the electron pressure profile is parameterized as a function of M500c

and r500c (see Section 3.1.1). On the other hand, the galaxy power

spectrum is modeled as a function of the virial mass, thus the model

parameters related to the galaxy power spectrum depend on the

model of the mass-concentration relation.

3.1 Halo model

To compute the angular power spectrum, we use the halo model

(Komatsu & Kitayama 1999; Seljak 2000). In this framework the

power spectrum is divided into intra-halo (1-halo) and inter-halo

(2-halo) terms as CAB
l
= CAB,1h

l
+ CAB,2h

l
. The 1-halo term is

defined as

CAB,1h
l

=

∫ zmax

zmin

dz
dV

dzdΩ

∫ Mmax

Mmin

dM
dn

dM
ũA
l (M, z)ũ

B
l (M, z), (10)

where ũA
l
(M, z) and ũB

l
(M, z) are the 2D Fourier transform of the

projected distribution of observables A and B, respectively. For the

model of the dark matter halo mass function, dn/dM, we use the

Magneticum Pathfinder simulation (Bocquet et al. 2016), with the

parameters for “M500c Hydro” which is for M500c and the baryonic

effects are taken into account. For the mass and redshift range of

integration, we find that 1×1010h−1M⊙ < M500c < 1×1016h−1M⊙

and 1 × 10−5 < z < 6 suffice to get the integral to converge (see

Section 3.2 and Figure 3 later).

The 2-halo term is written as

CAB,2h
l

=

∫ zmax

zmin

dz
dV

dzdΩ
bA
l (z)b

B
l (z)Plin(l/χ, z), (11)

where Plin(k, z) is the linear matter power spectrum computed with

CAMB (Lewis et al. 2000; Howlett et al. 2012), and bA
l

and bB
l

are

the scale dependent bias of the observables A and B, which will be

described in Section 3.1.1 and 3.1.2.

3.1.1 tSZ model

The tSZ term in Eq. (10), ũ
y
l
, is given by (Komatsu & Seljak 2002)

ũ
y
l
(M, z) =

4πr500c

l2
500c

∫ xmax

xmin

dxx2
y3D(x)

sin(l x/l500c)

l x/l500c
, (12)

where x ≡ r/r500c, l500c ≡ DA/r500c, and DA is the proper angular

diameter distance. The integral is performed between xmin = 1 ×
10−6 and xmax = 6. The radial distribution of Compton-Y, y3D(x),
is written by an electron pressure profile Pe(x) as

y3D(x) =
σT

mec2
Pe(x). (13)

We use (Arnaud et al. 2010)

Pe(x) = 1.65(h/0.7)2 eV cm−3

× E8/3(z)

[
M500c

3 × 1014(0.7/h)M⊙

]2/3+αp

p(x),
(14)

with E(z) ≡ H(z)/H0. The generalized NFW profile, p(x), is defined

by (Nagai et al. 2007b)

p(x) ≡
P0(0.7/h)3/2

(c500x)γ[1 + (c500x)α](β−γ)/α
. (15)

We use the best-fitting parameter values determined by the analysis

of stacked pressure profiles of Planck tSZ clusters: P0 = 6.41,c500 =

1.81, α = 1.33, β = 4.13, and γ = 0.31 (Planck Collaboration et al.

2013).

The parameterαp represents a deviation from the standard self-

similar solution, i.e. αp = 0 for self-similar. Arnaud et al. (2010)

find αp = 0.12 from their X-ray sample.

As already mentioned in Section 1, the mass-pressure relation
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52 9.71e-04 4.85e-05 5.96e-05 1.10e-16 9.90e-18 1.41e-16 1.04e-10 1.26e-11 4.90e-11
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Table 1. The 2MRS auto-, Compton-Y auto- and 2MRS and Compton-Y cross-power spectra. The best-fitting models of the contaminating sources are

subtracted from the tSZ auto. The Gaussian and non-Gaussian errors, σG and σNG, are also shown. See section 4 for details.

radius. To convert mass from one definition to another, we use the

fitting formulae of Hu & Kravtsov (2003) assuming the Navarro-

Frenk-White (NFW) density profile (Navarro et al. 1997) and the

mass-concentration relation of Sánchez-Conde & Prada (2014).

Bolliet et al. (2018) reported that the uncertainty in the model

of the mass-concentration relation has non-negligible effects on the

computed tSZ power spectrum through the mass conversion. To

avoid this uncertainty, we use the mass function for M500c, since

the electron pressure profile is parameterized as a function of M500c

and r500c (see Section 3.1.1). On the other hand, the galaxy power

spectrum is modeled as a function of the virial mass, thus the model

parameters related to the galaxy power spectrum depend on the

model of the mass-concentration relation.

3.1 Halo model

To compute the angular power spectrum, we use the halo model

(Komatsu & Kitayama 1999; Seljak 2000). In this framework the
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(M, z) are the 2D Fourier transform of the

projected distribution of observables A and B, respectively. For the

model of the dark matter halo mass function, dn/dM, we use the

Magneticum Pathfinder simulation (Bocquet et al. 2016), with the

parameters for “M500c Hydro” which is for M500c and the baryonic

effects are taken into account. For the mass and redshift range of

integration, we find that 1×1010h−1M⊙ < M500c < 1×1016h−1M⊙

and 1 × 10−5 < z < 6 suffice to get the integral to converge (see

Section 3.2 and Figure 3 later).
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where Plin(k, z) is the linear matter power spectrum computed with

CAMB (Lewis et al. 2000; Howlett et al. 2012), and bA
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are

the scale dependent bias of the observables A and B, which will be

described in Section 3.1.1 and 3.1.2.
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ũ
y
l
(M, z) =

4πr500c

l2
500c

∫ xmax

xmin

dxx2
y3D(x)

sin(l x/l500c)

l x/l500c
, (12)

where x ≡ r/r500c, l500c ≡ DA/r500c, and DA is the proper angular

diameter distance. The integral is performed between xmin = 1 ×
10−6 and xmax = 6. The radial distribution of Compton-Y, y3D(x),
is written by an electron pressure profile Pe(x) as

y3D(x) =
σT

mec2
Pe(x). (13)

We use (Arnaud et al. 2010)

Pe(x) = 1.65(h/0.7)2 eV cm−3

× E8/3(z)

[
M500c

3 × 1014(0.7/h)M⊙

]2/3+αp

p(x),
(14)

with E(z) ≡ H(z)/H0. The generalized NFW profile, p(x), is defined

by (Nagai et al. 2007b)

p(x) ≡
P0(0.7/h)3/2

(c500x)γ[1 + (c500x)α](β−γ)/α
. (15)

We use the best-fitting parameter values determined by the analysis

of stacked pressure profiles of Planck tSZ clusters: P0 = 6.41,c500 =

1.81, α = 1.33, β = 4.13, and γ = 0.31 (Planck Collaboration et al.

2013).

The parameterαp represents a deviation from the standard self-

similar solution, i.e. αp = 0 for self-similar. Arnaud et al. (2010)

find αp = 0.12 from their X-ray sample.

As already mentioned in Section 1, the mass-pressure relation
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Table 1. The 2MRS auto-, Compton-Y auto- and 2MRS and Compton-Y cross-power spectra. The best-fitting models of the contaminating sources are

subtracted from the tSZ auto. The Gaussian and non-Gaussian errors, σG and σNG, are also shown. See section 4 for details.

radius. To convert mass from one definition to another, we use the

fitting formulae of Hu & Kravtsov (2003) assuming the Navarro-

Frenk-White (NFW) density profile (Navarro et al. 1997) and the

mass-concentration relation of Sánchez-Conde & Prada (2014).

Bolliet et al. (2018) reported that the uncertainty in the model

of the mass-concentration relation has non-negligible effects on the

computed tSZ power spectrum through the mass conversion. To

avoid this uncertainty, we use the mass function for M500c, since

the electron pressure profile is parameterized as a function of M500c

and r500c (see Section 3.1.1). On the other hand, the galaxy power

spectrum is modeled as a function of the virial mass, thus the model

parameters related to the galaxy power spectrum depend on the

model of the mass-concentration relation.

3.1 Halo model

To compute the angular power spectrum, we use the halo model

(Komatsu & Kitayama 1999; Seljak 2000). In this framework the

power spectrum is divided into intra-halo (1-halo) and inter-halo

(2-halo) terms as CAB
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. The 1-halo term is

defined as
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where ũA
l
(M, z) and ũB

l
(M, z) are the 2D Fourier transform of the

projected distribution of observables A and B, respectively. For the

model of the dark matter halo mass function, dn/dM, we use the

Magneticum Pathfinder simulation (Bocquet et al. 2016), with the

parameters for “M500c Hydro” which is for M500c and the baryonic

effects are taken into account. For the mass and redshift range of

integration, we find that 1×1010h−1M⊙ < M500c < 1×1016h−1M⊙

and 1 × 10−5 < z < 6 suffice to get the integral to converge (see

Section 3.2 and Figure 3 later).

The 2-halo term is written as
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where Plin(k, z) is the linear matter power spectrum computed with

CAMB (Lewis et al. 2000; Howlett et al. 2012), and bA
l

and bB
l

are

the scale dependent bias of the observables A and B, which will be

described in Section 3.1.1 and 3.1.2.

3.1.1 tSZ model

The tSZ term in Eq. (10), ũ
y
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, is given by (Komatsu & Seljak 2002)
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where x ≡ r/r500c, l500c ≡ DA/r500c, and DA is the proper angular

diameter distance. The integral is performed between xmin = 1 ×
10−6 and xmax = 6. The radial distribution of Compton-Y, y3D(x),
is written by an electron pressure profile Pe(x) as

y3D(x) =
σT

mec2
Pe(x). (13)

We use (Arnaud et al. 2010)

Pe(x) = 1.65(h/0.7)2 eV cm−3

× E8/3(z)

[
M500c

3 × 1014(0.7/h)M⊙

]2/3+αp

p(x),
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with E(z) ≡ H(z)/H0. The generalized NFW profile, p(x), is defined

by (Nagai et al. 2007b)

p(x) ≡
P0(0.7/h)3/2

(c500x)γ[1 + (c500x)α](β−γ)/α
. (15)

We use the best-fitting parameter values determined by the analysis

of stacked pressure profiles of Planck tSZ clusters: P0 = 6.41,c500 =

1.81, α = 1.33, β = 4.13, and γ = 0.31 (Planck Collaboration et al.

2013).

The parameterαp represents a deviation from the standard self-

similar solution, i.e. αp = 0 for self-similar. Arnaud et al. (2010)

find αp = 0.12 from their X-ray sample.

As already mentioned in Section 1, the mass-pressure relation
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Figure 3. Redshift (Left) and mass (Right) distributions of the 2MRS auto- (Top), the tSZ auto- (Middle) and the 2MRS-tSZ cross power spectrum (Bottom)

at multipoles of l =10, 100 and 1000.

Since we apply different masks to the 2MRS map and tSZ

map, fsky differs depending on the combinations of observables.

As already mentioned in Section 2, fsky becomes f
gg
sky
= 0.877 for

the 2MRS auto and f
yy
sky
= 0.494 for the tSZ auto. We approximate

a fsky of the cross power spectrum as f
gy
sky
=

√
f

gg
sky

f
yy
sky

following

Page et al. (2007). We also assume that fsky of the cross covariance

is written in the same way, i.e., f
gg,gy
sky

=

√
f

gg
sky

f
gy
sky

.

The estimated cross-correlation coefficient matrix is shown

in Figure 5. As already pointed out by the previous work (e.g,

Komatsu & Seljak 2002; Bolliet et al. 2018), different multipole

bins of the tSZ power spectrum are strongly correlated. The co-

variance of the 2MRS auto and the 2MRS–tSZ cross also shows

strong mode coupling. It may be due to nearby massive clusters,

which add a power at all multipole ranges (see Ando et al. 2018 for

more details).

We also estimate the covariance matrix by using the Jackknife

technique and obtain roughly consistent results with the covariance

presented above. See Appendix B for more details.

4.2 Parameter fitting

To compute the posterior probability distribution of the model pa-

rameters ϑ given the data set d, P(ϑ |d), we use Bayes’ theorem:

P(ϑ |d) ∝ P(ϑ)L(d |ϑ), (31)

where L(d |ϑ) is the likelihood of the data given a model with ϑ.

For the cosmological parameters, we consider a multivariate Gaus-

sian prior taking into account the constraints from the Planck CMB

observations, as described in detail below. For the other parame-

ters, we assume flat priors, i.e., P(ϑ) = constant within the range

presented in Table 3 and P(ϑ) = 0 otherwise. In order to explore

the parameter space efficiently, we use the Markov-Chain Monte

Carlo (MCMC) technique. To this end we use the CosmoMC package

(Lewis & Bridle 2002).

There are several free parameters in our model. For the galaxy

term, the HOD parameters M0, M1 and αg, and the parameters

for the radial distribution of satellite galaxies, rs,g and rmax,g, are

treated as free. For the tSZ term, the mass bias B, its redshift evolu-

tion parameter ρ, and the index of the mass-pressure relation αp are

MNRAS 000, 1–14 (2017)
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Figure 3. Redshift (Left) and mass (Right) distributions of the 2MRS auto- (Top), the tSZ auto- (Middle) and the 2MRS-tSZ cross power spectrum (Bottom)

at multipoles of l =10, 100 and 1000.

Since we apply different masks to the 2MRS map and tSZ

map, fsky differs depending on the combinations of observables.

As already mentioned in Section 2, fsky becomes f
gg
sky
= 0.877 for

the 2MRS auto and f
yy
sky
= 0.494 for the tSZ auto. We approximate

a fsky of the cross power spectrum as f
gy
sky
=

√
f

gg
sky

f
yy
sky

following

Page et al. (2007). We also assume that fsky of the cross covariance

is written in the same way, i.e., f
gg,gy
sky

=

√
f

gg
sky

f
gy
sky

.

The estimated cross-correlation coefficient matrix is shown

in Figure 5. As already pointed out by the previous work (e.g,

Komatsu & Seljak 2002; Bolliet et al. 2018), different multipole

bins of the tSZ power spectrum are strongly correlated. The co-

variance of the 2MRS auto and the 2MRS–tSZ cross also shows

strong mode coupling. It may be due to nearby massive clusters,

which add a power at all multipole ranges (see Ando et al. 2018 for

more details).

We also estimate the covariance matrix by using the Jackknife

technique and obtain roughly consistent results with the covariance

presented above. See Appendix B for more details.

4.2 Parameter fitting

To compute the posterior probability distribution of the model pa-

rameters ϑ given the data set d, P(ϑ |d), we use Bayes’ theorem:

P(ϑ |d) ∝ P(ϑ)L(d |ϑ), (31)

where L(d |ϑ) is the likelihood of the data given a model with ϑ.

For the cosmological parameters, we consider a multivariate Gaus-

sian prior taking into account the constraints from the Planck CMB

observations, as described in detail below. For the other parame-

ters, we assume flat priors, i.e., P(ϑ) = constant within the range

presented in Table 3 and P(ϑ) = 0 otherwise. In order to explore

the parameter space efficiently, we use the Markov-Chain Monte

Carlo (MCMC) technique. To this end we use the CosmoMC package

(Lewis & Bridle 2002).

There are several free parameters in our model. For the galaxy

term, the HOD parameters M0, M1 and αg, and the parameters

for the radial distribution of satellite galaxies, rs,g and rmax,g, are

treated as free. For the tSZ term, the mass bias B, its redshift evolu-

tion parameter ρ, and the index of the mass-pressure relation αp are

MNRAS 000, 1–14 (2017)
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• The Cosmic Infrared Background is the most important, critical tSZ contaminant.

• Highly correlated greybody  with large SED uncertainties.

• More important effects as the noise goes down… 

∝ vβB(ν, TCIB)

The CIB challenge

74
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FIG. 6: Our needlet ILC maps, visualized in orthographic projection in equatorial coordinates. In all cases, the northern
hemisphere is on the right and the southern on the left. We also show, on the top left, the o�cial Planck 2015 NILC tSZ
map [24]. In all cases we have masked out the Galaxy with the Planck Galactic plane mask, which covers 20% of the sky.
Note that for these visualizations, we show Gaussian-beam-convolved maps, which have FWHM = 100. We note that the
Planck y-map has deprojected the CMB; we do not show our CMB-deprojected map here but it is indistinguishable by eye
from the no-deprojection, CIB-deprojected, and CIB+CMB-deprojected maps. Indeed, it is only when we deproject �� that
adding the CMB deprojection makes a visible di↵erence (as seen in the third row). Note the increased ranges on the color bars
in the bottom four plots, due to their significantly increased variances.

In Figure 8, and in all subsequent plots with auto-power spectra, we include a theoretical calculation of the tSZ
power spectrum, calculated using class sz

11 [60–62], which is an extension of the cosmological Boltzmann solver
class

12 [63]. This signal is computed in the halo model using the pressure-mass relation of Ref. [64]. We refer the
reader to [28] for a detailed discussion of the modeling of this signal.

11 https://github.com/borisbolliet/class_sz
12 https://lesgourg.github.io/class_public/class.html
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FIG. 15. Simplified measurement of the electron tempera-
ture around LOWZ galaxies (Eq. (15)). In comparison, the
horizontal dashed line shows the virial temperature estimate
for LOWZ halos, whose order of magnitude is consistent with
the data. The vertical solid gray line shows the virial radius
of the LOWZ galaxies (3.10 at z = 0.55), added in quadrature
with the beam standard deviation (� = FWHM/

p
8 ln 2 =

1.00) of the ILC map with deprojected CIB. The dotted lines
simply connect the data points.
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FIG. 16. Same as Fig. 11, for LOWZ instead of CMASS. The
kSZ SNR is lower than for CMASS, and the dust emission,
filling in the tSZ decrement near the center, is visible both in
f150 and f90.
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A brief thermal history of the universe

75

• z >> 106 Compton scattering and 
brehmsstralung establish thermal equilibrium 
and perfect BB spectrum. 

• After z~ 106 energy injection in the plasma will 
not thermalize anymore and leave imprint in 
the CMB spectrum.  

• µ distortions monopole will constraint energy 
releases, particle decays and small scale 
perturbations in the early universe. 

• y distortions will probe reionization and 
structure formation from e.g. SZ power 
spectra.

2 x 106

5 x 104

z

1100
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Constraints on spectral distortions

76

• Limited improvements after FIRAS (~1996) 

• ARCADE, TRIS: improved at ν < 10 GHz, questions on foreground/systematics remain.

 
 

|⟨μ⟩ | ≲ 90 × 10−6

|⟨y⟩ | ≲ 15 × 10−6 → (−1 ± 6 × 10−6 stat.) × 10−6

Mather+94, Fixsen+96, +03
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Why do we care?

77

• y distortions are dominated by late time gas physics: unique probe of feedback. 
 

• … and also reionization (subdominant) or primordial P(k) k ~ 1-10 h/Mpc.

3

Figure 2. Illustration of the halo mass and redshift contribu-
tions to the y distortion observables. Plotted is the normal-
ized integrand in Eq. (4), using the fitting formulae described
in Sec. IV B.

the CMB spectrum has not yet been detected. Only
an upper limit on the non-relativistic y distortion ex-
ists from the COBE FIRAS experiment, which yielded
|hyi| < 15 ⇥ 10�6 (95 % cl) [27], which is about one order
of magnitude above the expected ⇤CDM signal [15]. We
thus anticipate significant detections with future CMB
spectroscopy [28–31].

A monopole measurement would be complementary to
the existing higher-moment tSZ analyses [e.g., 32–46],
since it features very different systematics and would also
yield the relativistic component at high significance [8].
Furthermore, in contrast to cluster-stacking and power
spectrum [47–49] approaches, the hyi measurement is
more sensitive to lower-mass objects, as illustrated in
Fig. 2.

The hyi and hTei signals constitute unique probes of
baryonic physics in galaxy clusters and groups. Since hyi
probes thermal energy, it is subject to the energy conser-
vation equation

E
th,tot

e| {z }
Total

= E
coll

e|{z}
Collapse

+ E
inj

e|{z}
Injected

� E
cool

e| {z }
Cooling

. (3)

The most uncertain term in the above equation is E
inj

e

which can largely be attributed to feedback processes
from massive stars, supernovae (SNe), and active galactic
nuclei (AGN). These processes inject additional energy
into the interstellar, intergalactic, and intracluster media
(ISM, IGM, and ICM, respectively). Such feedback pro-
cesses are standard ingredients in any theoretical models
of galaxy formation, both semi-analytic [e.g., 50, 51] and
simulation-based models [e.g., 52–57].

The most reliable way to explore how feedback mod-
els influence the y-distortions is by analyzing hydrody-

namical simulations with qualitatively and quantitatively
different subgrid prescriptions. Such an approach is com-
plicated by the fact that, owing to their bias towards rare
high-density peaks, the distortion signals are heavily in-
fluenced by sample variance. Furthermore, the parame-
ter space of subgrid models is vast and poorly explored,
meaning that ideally we would need many large-volume
hydrodynamical simulations, which is currently not feasi-
ble. We will demonstrate later that these problems can be
overcome by utilizing machine learning methods as well
as analytical corrections using the halo model.

Since the y-distortions are predominantly sourced by
galaxy groups and clusters [15], an analytical description
based on the halo model [58–60] is a natural first ap-
proximation. In the halo model formalism, we assume
spherically symmetric halos described only by mass M

and redshift z, yielding

hyihm =
�T

me

Z
dzdM

(1 + z)2

4⇡H(z)

dn

dM

Z
d~r Pe(|~r|;M, z) ,

(4)
where dn/dM is the halo mass function and ~r denotes
position within a given halo, and the expression assumes
a flat universe. The expression for hTeihm is analogous.
Note that the halo model neglects the IGM contribution
discussed in Appendix D.

In the following, it will be useful to think of the ob-
servables xi ⌘ {hyi, hTei} in terms of the approximate
factorization

xi ⇠ f
c

i
(�8,⌦m, ...)f b

i
({Aj})fCV

i
(�) , (5)

where f
c

i
describe the dependence on cosmological pa-

rameters, f
b

i
are functions of a set of feedback parame-

ters Aj , and f
CV

i
depends on the initial conditions and

thus encapsulates sample variance. Such factorizations
are frequently-used and good approximations to observ-
ables that are well-described by the halo model. Nonethe-
less, our results typically only weakly depend on the va-
lidity of this approximation.

It should be noted that we group all our uncertainty on
the simulation sub-grid model in the feedback parame-
ters Aj . These supernova and AGN feedback parameters,
further elaborated on in Sec. IIA, predominantly affect
the ICM contribution to the distortion signals. There
is a non-negligible IGM contribution, however, which in
Appendix D we show is a ⇠ 10 % effect with ⇠ 40 % the-
oretical uncertainty.

The rest of this paper is structured as follows. In
Sec. II we describe the CAMELS simulations as well as
the larger reference boxes. Sec. III provides a short sum-
mary of the assumed experimental setup used for forecast-
ing. In Sec. IV we describe how we interpolate through

Thiele+
(2022)

⟨y⟩ ≡ ⟨y(n̂)⟩n̂ = ∫ d ̂n
4π

σT

me ∫ Pe(n̂, l)dl

⟨Te⟩ ≡ ⟨Te(n̂)⟩n̂ = ⟨y⟩−1 ∫ d ̂n
4π

σT

me ∫ [TePe](n̂, l)dl
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Richness of feedback models

78

3x better 
upper limit

 
Courtesy F. Villaescusa Navarro
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Constraining galaxy formation models 

79

• Reanalysis of archival data with modern 
component separation techniques brought 
improvements after ~30 years.

• 2-3x better upper limit

• Feedback models from hydro simulations 
can be ruled out, too soon for constraints.

Fabbian+ (in prep.)

Bianchini & Fabbian (2022),  
Sabyr, GF+(in prep.) 
Fabbian+(in prep.)
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Experimental prospects

80

• Several instruments are being built, deployed or in phase A: transformational potential!

• FOSSIL: ESA M8 mission proposal (PI N. Aghanim, B. Maffei+), get in touch!

Maffei+ (2021, BISOU), 
Aghanim+ (FOSSIL),  
Masi+(2021, COSMO), 
Rubiño-Martin+(2020, TMS) 
Sabyr+(2024)

2. Mission configuration

To achieve the ambitious science goals outlined
above while matching the requirements of the ESA
M-mission call, a careful trade-off analysis among the
technology options was performed, with most of the
considered subsystems at TRL≥ 6. Pathfinder ground-
based and balloon-borne projects, e.g., BISOU [4],
COSMO [5] and TMS [6], are planned to increase the
maturity of some sub-systems. FOSSIL’s baseline de-
sign fulfills the science requirements with an instru-
ment mapping the sky through a continuous scanning
strategy, spinning around its axis while performing
spectroscopic measurements at 30-2000 GHz with a
Fourier Transform Spectrometer (FTS). Figure 2.1: Expected CMB spectral distortion signals and

total foreground emissions (grey) compared with noise lev-
els from COBE/FIRAS and FOSSIL. Dashed curves repre-
sent negative values.

2.1 Instrument concept
The FOSSIL concept (Fig.2.2 right) is based on a 2-inputs - 2-outputs absolute FTS. Both sky inputs go indepen-
dently through identical off-axis telescopes with a primary diameter of 60 cm, giving an equivalent Gaussian
beamwidth of ≃ 1.4◦. The optical inputs for the two arms of the FTS are two co-aligned telescopes in adjacent
double-barrel baffles. A rotating wheel, with holes and mirrors directing either of the input beams towards
a calibrator, permits three observing modes. In modes 1 and 2, only one input beam sees the sky, the other
the calibrator, so that the difference between the sky and the reference blackbody is recorded. The FTS input
beams are switched with the mirror, ensuring that these alternate measurements are limiting the telescope’s
optical systematic effects. The Fourier Transforms of the time domain interferograms of the detector outputs
provide a set of modulated spectra, the combination of which will yield spectra of the desired source. The third
mode, used only for optics calibration purpose, allows for both FTS input beams to be directed to the sky.
The two outputs are focused onto multimoded feedhorn-coupled detectors cooled down to sub-K temperature
(typically 100 to 300 mK). To achieve the sensitivity required by the primary science goals, each FTS output
is split into two bands, thus reducing the photon noise, notably for the low-frequency (LF) band. A dichroic at
each FTS output divides the beam onto two focal plane units (FPUs): one low frequency (LF, 30 - 200 GHz) and
one high frequency (HF, 200 - 2000 GHz). While the exact frequency split can be between 100 and 200 GHz,
the baseline is 200 GHz.
In order to limit systematics in the measured spectral distortions, the whole instrument (telescopes, FTS mirrors,
calibrator, FPUs) will be placed within an absorbing Enclosure maintained within 0.1 K of the CMB temper-
ature (2.73 K). The calibrator temperature will be controlled over the temperature range 2.5–2.9 K, while the
four FPUs (two bands for each of the two FTS outputs) will be cooled down to sub-K temperature.

2.1.1 Fourier Transform Spectrometer
The FTS (Fig. 2.2, right) is based on a scanning roof-top mirror which requires less demanding stroke and path
sampling than that based on the Herschel/SPIRE FTS mechanism [7], given the comparably reduced spectral
resolution (15 GHz) and maximum frequency (2 THz) required to achieve the science goals. Having to operate
down to low frequencies, the optical components will be larger, leading to an FTS size of about 1.2 m.

2.1.2 Detectors
Using multimoded feedhorns in order to maximise the sensitivity, implies large pixels, especially for the LF
band. The estimated optical power (Sec. 1.3) and associated Noise Equivalent Power (NEP - Table 2.1) show
that the required sensitivity can easily be reached with detectors at 100 to 300 mK. For the HF FPUs, several
technologies could be used. On the one hand, KIDs technology [8] coupled to an FTS is already used for
ground-based instruments CONCERTO and KISS (Institut Néel - Grenoble & Aix Marseille Univ.) and for the
OLIMPO [9] balloon-borne instrument (Roma) for instance. R&D programmes have increased to TRL5 the
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• Compton-scattering of CMB photons off free 
electrons with non-zero line-of-sight bulk velocity.

• Direct probe of gas momentum and gas 
abundance!

• Cosmological information through velocity field, gas 
properties through optical depth.

What is this 

81

τe = ∫ dlneσT

ΔTkSZ ∼ − τe
vlos

c
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• You cannot make a map but you can see it in

• Internally in CMB data

• kSZ contribution to CMB  

• In combination with LSS catalogues!

• Direct detection in galaxy clusters (hard, needs very high-resolution data).

• Pairwise-velocity estimators (hard, needs very good redshift measurements).

• Projected field estimators.

• Stacking estimators.

• kSZ velocity reconstruction.

What is kSZ used for and how can we measure it?

82

See 
Marian’s 
lecture
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Projected field kSZ

83

• Doesn’t need accurate redshifts, avoids  cancellation but requires modeling of 
bispectrum  

•  detection, can accurate probe gas with future CMB and LSS measurements.  

vlos

∼ 5σ 11

FIG. 5: Cross-power spectra of the real-space product of the cleaned, filtered LGMCA map and the filtered SMICA map with each of
the unWISE galaxy density maps: blue, green, and red (data points in respective colors). The thin dashed curves show the best-fit
CMB lensing contribution (including the lensing-galaxy and lensing-magnification bias terms), the black dotted shows the best-fit kSZ
contribution (including the kSZ-galaxy and kSZ-magnification bias terms), and the pink stars show the lensing-subtracted residuals for
illustration. The yellow solid curves in each plot show the total best-fit curves, which are the sum of best-fit lensing and best-fit kSZ
contributions. The best-fit values for each of the free parameters in the theory model (the kSZ2 amplitude AkSZ2 , the galaxy bias bg , and
the magnification response s) are presented in the plot titles. Our fiducial model assumes AkSZ2 = 1. The kSZ signal is detected at 1.4�,
5.0�, and 2.5� significance, respectively, for the three unWISE subsamples.

bias, where AkSZ
2 is the amplitude of the kSZ2 signal, bg

is the galaxy bias (an overall amplitude of the �g field in
Eq. 2), and s is the magnification response. The total
model is then:

C
T 2⇥�g
` = AkSZ

2bgC
kSZ

2⇥�g
` + AkSZ

2(5s � 2)C
kSZ

2⇥µg

`

+ bg�C
T 2⇥�g
` + (5s � 2)�C

T 2⇥µg

`
(21)

The fiducial model (where the cosmic baryon abun-
dance is taken to be ⌦b/⌦m = 0.158) assumes that the
kSZ2 amplitude is equal to unity, AkSZ

2 = 1, and is shown
in Fig. 6. In these plots, we assume the values derived
in [34] for the galaxy bias bg and for the magnification
response s. They are summarized in Table IV. We note
that our model includes the first calculation of the kSZ2

⇥ magnification bias contribution and the CMB lensing
⇥ magnification bias contribution to the T

2 ⇥ �g estima-
tor (these terms were neglected in H16 and F16). For the
blue sample, which is most similar to the original WISE

sample used in H16 and F16, these terms are negligible,

which indicates that the results in those papers were not
biased by neglecting these terms. However, for the green
and red samples, the magnification bias terms are non-
negligible. For the red sample in particular, the fiducial
kSZ2 ⇥ magnification bias term is nearly equal to the
fiducial kSZ2 ⇥ galaxy term.

unWISE bg �bg s �s

blue 1.56 0.0276 0.455 0.046

green 2.23 0.0352 0.648 0.065

red 3.29 0.0352 0.842 0.084

TABLE IV: Prior values for the galaxy bias bg and the magnifica-
tion response s for each of the unWISE samples, taken from [34].
We take �s to be 0.1s.

To fit the (LGMCAclean·SMICA) ⇥ unWISE measure-
ments using the theory model in Eq. 21, we assume a
multivariate Gaussian likelihood for the data with three
free parameters, AkSZ

2 , bg, and s. We adopt a flat prior
on AkSZ

2 > 0, and Gaussian priors on bg and s, so that bg
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interpretation, we convert the G and H axis into proper distance
and CAP-filtered optical depth (gCAP = )kSZ/)CMB 2/Erms),
respectively, calculated at the mean redshift, I ⇡ 0.7. We
note that the optical depth measures the integrated gas density
along the line-of-sight,

g(I) ⌘

π
=4 (jn̂, I)f)

dj
1 + I

, (5)

where f) is the Thomson scattering cross section, j is the
comoving distance to redshift I, and =4 is the free electron
physical number density.

In Table I, we show the significance of detection and corre-
sponding SNR and chi-squared values for each of the four bins
as well as the combination of all four bins. We define the SNR
with respect to null4 as SNRnull ⌘ (j

2
null � j

2
bf)

1
2 , with best-

fit coming from the Illustris-1 simulation5 curve at I = 0.5
(see Fig. 2 for more details) with a freed up parameter for the
amplitude, and the SNR with respect to the dark matter dis-
tribution (with amplitude fixed by the theory best fit), defined
as SNRDM ⌘ (j

2
DM � j

2
bf)

1
2 . We detect the signal at ⇠13f

and find the profiles to differ from the dark matter ones by
⇠40f. The dark matter profiles are obtained by stacking on
dark-matter-only maps computed using the TNG300-1-Dark
simulation (dark-matter-only counterpart to TNG300-1), and
we have tested that other dark-matter-only simulations (e.g.,
Illustris-1-Dark) yield fully consistent results, as expected for
pure #-body simulations. The j

2 metric is defined in the
standard way using the covariance matrix ⇠ from Fig. 5:

j
2
model ⌘ (⇡ � ")

)
⇠

�1
(⇡ � ") , (6)

where ⇡ is our stacked kSZ measurementfrom the data, and
" is the model we are comparing against (if null, " = 0).

To take advantage of the larger number of objects in DR9 and
their relatively smaller photometric I errors at low I (compared
with high I), we quote the DR9 results for bin 1 and 2 and the
DR10 results for bin 3 and 4. For the combined ‘DR9+10
all,’ we use DR10 reconstructed velocities where available
and otherwise DR9 ones in order to maximize the signal.
We provide detailed comparison between DR9 and DR10 in
Tables II and III finding a high level of congruence between the
two. Compared with the previous measurement using CMASS
LRGs and ACT DR4 [33], j2

null ⇡ 86 (same number of radial
bins), we see that the total chi-squared for our Extended and
Main samples is j

2
null ⇡ 200 and 170, respectively, or about

twice higher. In App. A, we find our curves to be in excellent
agreement with [33].

Intuitively, one can think of these curves as showing roughly
the cumulative gas density distribution. At large radii, we
expect the profiles to become shallower as more and more of
the gas is enclosed. We see that the gas profiles are steep
beyond the virial radius, suggesting that a significant fraction

4 Corresponding to the inverse of the fractional error on the fit of a single am-
plitude parameter to the data. This often called the “detection significance”
in number of Gaussian standard deviations f.

5 https://www.tng-project.org/data/
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FIG. 2. Comparison between the kSZ signal from the combined Main
sample from all redshift bins (red error bars) and the modeled kSZ sig-
nal from the TNG and Illustris simulations. These curves approximate
the cumulative gas profiles at large radii. The right y axis converts the
kSZ signal into a measure of the optical depth g, i.e., the integrated
gas density along the line-of-sight, via g = )kSZ/)CMB2/Erms. The
top x axis shows the gas profiles as a function of comoving distance
from the center of DESI groups. We find at a significance of 40f
that the gas is much more extended than the dark matter (red dot-
ted curve). The large gap between the data and the TNG curve (blue
dashed curve) indicates that the data disfavor strongly prescriptions of
weak baryonic feedback in simulations. In contrast with TNG, the old
Illustris model (green dash-dotted curve) appears much more consis-
tent with the data, implying that models with large baryonic feedback
are preferred. The simulation curves are multiplied by O(1) to match
the data at high radius factor for visual purposes (see the text). The
vertical line shows the mean virial radius for this sample. The thin
blue band around the TNG curve represents the range of alternative
scenarios considered (see the text). We show the full covariance of
the data in App. IV E.

of the gas resides beyond it (see discussion of Fig. 2, where
we test this conjecture). The decline in amplitude at large
apertures of bin 3 is due to noise from the primary CMB and
the larger fraction of photometric I outliers in that bin (see
App. B).

B. Comparison with simulations

In Fig. 2, we study the comparison between the state-
of-the-art hydrodynamical simulations IllustrisTNG-300-1
(TNG300-1) [41] and the measured gas profiles from the
data. We also show a comparison with the older model of
the Illustris-1 simulation [42], which has known shortcom-
ings with predicting observations such as galaxy morpholo-
gies and colors, various cluster properties, and gas fractions
[41, 43, 44]. We select LRG-like galaxies in the two simu-
lations via an abundance matching approach and stack them
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FIG. 6. 2D maps of the stacked kSZ signal around DESI DR9 LRGs
in the Main sample for all four photometric bins. For visual purposes
only, we high-pass filter the CMB temperature map before performing
the stacking, as the fluctuations of the primary CMB are dominant in
the ⇠10 arcmin regime. Thus, we can clearly see the gas envelope of
the DESI LRGs, which as expected, extends for several arcmin, i.e.,
is of the same order of magnitude as the mean halo virial radius at
that redshift.

V. SUMMARY AND IMPLICATIONS

In this paper, we present the highest SNR measurement of
the gas profiles around galaxy groups using the kSZ effect: we
detect the signal at 13f and find that it deviates from the dark
matter at 40f (see Fig. 1 and Table I). Such strong baryonic
feedback exceeds predictions from state-of-the-art hydrody-
namical simulations such as IllustrisTNG (TNG300-1). It also
suggests that baryons might play a more significant role than
assumed in many cosmological analyses and alleviate tensions
such as ‘Lensing is low’ and ‘Low (8.’ Properly accounting
for baryonic feedback is critical to placing robust constraints
on many open questions, including the mass of neutrinos and
the nature of dark matter – questions that will be crucial to
future cosmological surveys such as Roman, Euclid, and the
Vera Rubin Observatory. Our measurements of the gas profiles
can be used to calibrate the subgrid models of hydrodynamical
simulations, a task typically complicated by the low detection
sensitivity to gas on the outskirts of halos (i.e., the ‘missing
baryon’ problem). Combining kSZ measurements with tSZ
and X-ray measurements, which provide access to additional
quantities such as the temperature and cooling rate around
galaxies [53, 54], will enable us to fully solve the gas thermo-
dynamics of groups and clusters and shed light on the role of
feedback in galaxy evolution.

To put our findings into perspective in relation to the (8 ten-
sion, we offer a back-of-the-envelope calculation. The value

of the (8 parameter as measured by cosmic shear surveys
is about 10% lower than the Planck values [14], suggest-
ing a ⇠20% suppression to the matter power spectrum rela-
tive to a dark-matter-only universe across a range of scales
: = 0.1 ⇠ 10⌘/Mpc. Let’s consider a point halfway between
these values, at : = 1⌘/Mpc. Assuming that the gas and dark
matter follow a Gaussian profile [33], : ⇠ 1⌘/Mpc corre-
sponds to ' ⇠ 1Mpc/⌘. As seen from Fig. 2, at ' ⇠ 1Mpc/⌘
about half of the gas is missing relative to the dark matter at a
significance of ⇠6f, which would manifest itself in the matter
power spectrum as a 16% suppression with an uncertainty of
⇠3% (assuming that baryons make up 16% of the total mat-
ter). This is roughly the effect of baryons needed to explain
the (8 tension, as suggested in Fig. 6 in Ref. [45] and Fig.
6 in Ref. [55], and ball-park matches the 20% suppression
on the matter power corresponding to the measured (8 value
in cosmic shear experiments. Additionally, we note that our
13f detection of the gas can be converted into a ⇠2.5% mod-
eling error on the matter power spectrum (assuming a single
fitting parameter for the amplitude), which is well beyond the
required accuracy for future experiments (e.g., the Vera Rubin
Observatory). As such, weak lensing studies taking into ac-
count kSZ measurements to model the effect of baryons will
be especially powerful for future cosmic shear analyses [56].

To make the kSZ measurement, we use the ACT tempera-
ture map and the DESI photometric galaxy sample of LRGs,
which we split into four redshift bins. We detect the signal
with respect to the dark matter in each of them at &10f (see
Table I). This allows us to study for the first time the redshift
evolution of the baryonic feedback through kSZ stacking and
place tighter constraints on the allowed astrophysical feedback
models. The fact that we see little evolution of the signal sug-
gests that the population of red galaxies probed by DESI is
fairly stable and that the AGN feedback is of similar magni-
tude across I = 0.4 ⇠ 1. A major advantage of the gas profiles
obtained using the kSZ is that they are practically systematics-
free, as the velocity-weighted stacking we perform cancels
additive contaminants such as the tSZ and CIB (see Fig. 3 and
Schaan et al. [12]). Importantly, unlike many other astrophys-
ical probes, the signal is directly proportional to the amount of
gas and independent of other properties such as temperature.
To put our findings into perspective, we compare the observed
gas density profiles with mock measurements extracted from
the state-of-the-art hydrodynamical simulation TNG300-1 and
its predecessor Illustris-1. In particular, we mimic the stack-
ing and LRG selection process of the observational analysis
and test various scenarios related to the simulation targeting
choices (satellite fraction, number density, halo mass, velocity
uncertainty) to quantify the allowed variations (see Fig. 2). We
find that the baryonic feedback in the TNG300-1 simulation
is not sufficiently strong to push enough of the gas out of the
halo virial radius, whereas Illustris-1 accomplishes that more
successfully. Future work examining the origin of this is in-
strumental to reconciling the theory and observations of the
gas-dark matter link.

As the first study of the kSZ signal measured around a pho-
tometric sample of galaxies with reconstructed velocities, this
work opens the door for an exciting new line of research with
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mass and is well-suited to probe the low density and low
temperature outskirts of lower mass galaxies and groups.
Furthermore, its interpretation is particularly straight-
forward, as the kSZ e↵ect simply counts the number of
free electrons, independent of electron temperature or
clumping. On the other hand, the tSZ signal is propor-
tional to the integrated pressure (Pe / neTe). Because
the electron temperature is higher in more massive halos,
the tSZ signal e↵ectively scales as a higher power of halo
mass (/ M

5/3), and therefore receives most of its contri-
bution from the most massive objects in the sample. The
tSZ and kSZ thus provide complementary information on
the electron density and temperature in galaxies and clus-
ters. In principle, by combining the kSZ, tSZ and lensing
mass measurements from the same galaxies or clusters,
we can fully determine the thermodynamic properties of
the sample, including the amount of energy injected by
feedback or the fraction of non-thermal pressure support
[34–36]. In the absence of kSZ measurements, this ap-
proach would be limited by the modeling of the gas tem-
perature (for tSZ) and clumping (X-rays) [37, 38]. This
joint tSZ and kSZ measurement also informs the “lensing
is low” tension, where the galaxy-galaxy lensing signal of
BOSS galaxies is found to be anomalously low, compared
to the expected signal based on their clustering [39–41].
This paper and companion paper [36] are a first step in
constraining the gas thermodynamics in galaxy groups
and directly measuring the baryonic e↵ects in weak lens-
ing. Refs. [42, 43] present complementary kSZ and tSZ
measurements using the same microwave temperature
maps, but consider di↵erent galaxy samples, and instead
focus on the luminosity dependence of the signals and the
velocity correlation function, which contains information
on neutrino masses [44], dark energy and modifications to
General Relativity [45] and primordial non-Gaussianity
[46]. To do so, they use a pairwise di↵erence estimator
instead of the velocity reconstruction from the density
field used here. The results of both studies are thus com-
plementary [47], and the relationship between the two
estimators has been investigated in [47].

In this paper, we combine data from the Baryon Os-
cillation Spectroscopic Survey (BOSS [48–50]), the At-
acama Cosmology Telescope (ACT [51–54]) and Planck
[55]. We use spectroscopic galaxy catalogs from BOSS
and stack the CMB temperature maps from ACT at the
positions of these galaxies as illustrated in Fig. 1. The
tSZ signal is detected by its characteristic spectral signa-
ture in our multifrequency CMB data, in which it yields
a temperature decrement (increment) at frequencies be-
low (above) 217 GHz. Thermal emission from dust inside
the galaxy groups produces a smaller and more concen-
trated temperature excess, which we also measure and
correct for in several ways [36]. This tSZ stacking pro-
cedure nulls the kSZ signal, which changes sign depend-
ing on the galaxy group’s bulk velocity, and thus cancels
on average. To measure the kSZ signal, we perform a
weighted stack, where each galaxy group’s temperature
signal is multiplied by an estimate of the group’s line-

of-sight (LOS) velocity [22, 56–59]. The estimated LOS
velocity is obtained through “linear reconstruction from
the density field” [60, 61]: using the galaxy redshifts, the
spectroscopic galaxy catalog can be placed on a 3D grid,
yielding an estimate of the 3D density field, which is then
converted to velocities via the Zel’dovich approximation
[62]. This velocity-weighted stacking has the added ben-
efit of suppressing the tSZ and dust contamination to
kSZ, as well as any other foreground uncorrelated with
the galaxy velocities [22, 47].

CMB

BOSS

(you are here)

z

0.15

0.7 1100
�

0.6 Gpc

2.5 Gpc

14 Gpc

FIG. 1. In this visualization, the BOSS galaxies are color
coded based on their LOS peculiar velocity (blue towards us,
red away from us), estimated from their 3D number den-
sity. As the CMB photons travel towards us, they are Comp-
ton scattered by the free electrons associated with the BOSS
galaxies, producing the tSZ and kSZ signals. We detect the
tSZ by stacking the CMB map at the position of the BOSS
galaxies. For the kSZ, we weight the stack by the estimated
LOS velocity. In this fixed declination slice, the radial direc-
tion corresponds to the galaxy comoving distances, estimated
from their redshifts, and the angular position corresponds to
right ascension. Axes indicate redshift (right) and comoving
radial distance (left). The CMB position and image are not
to scale. The large-scale velocity structure apparent in this
visualization is signal-dominated.

The remainder of this paper is organized as follows.
In Section II, we review the origin of the kSZ and tSZ
e↵ects. Section III presents our microwave temperature
maps and galaxy catalogs, and Section IV describes the
analysis techniques to extract both tSZ and kSZ. The
results are in Section IV F, followed by a discussion of
systematics and null tests. Finally, our conclusions are
found in Section V. The interpretation of the measure-
ments is presented in detail in [36].

II. THEORY: KSZ AND TSZ EFFECTS

The kSZ e↵ect is the Doppler shift of CMB photons
due to the bulk motion of the ionized gas in and around
galaxies and clusters. It preserves the blackbody fre-
quency spectrum of the CMB and shifts its thermody-

The kSZ effect
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FIG. 11. Stacked map cutouts showing the kSZ (top),
tSZ+dust and tSZ (middle and bottom): the resolution and
sensitivity of ACT allow to image the gas density, pressure,
and the dust emission from CMASS objects. In every cutout,
the inner dotted circle has a diameter equal to the beam
FWHM, and the outer dotted circle has a radius equal to
the Virial radius. No spatial filtering was applied (other than
the beam convolution). In all cases, the profiles are resolved
(wider than the beam) and detectable by eye. The dust emis-
sion fills in the tSZ decrement in f150 and in the tSZ ILC,
but is not as visible in f90 and appears absent by eye in the
tSZ no CIB ILC. The dust emission profile is visibly narrower
than the gas pressure and density profiles.

The tSZ + dust measurements from f90 and f150 are
shown in Fig. 14.

As we did for CMASS, we show a simplified measure-
ment of the electron temperature in Fig. 15. The data is
consistent with the order of magnitude of the expected
virial temperature.

Finally, we also show the stacked 2d map cutouts
around LOWZ objects in Fig. 16. Again, the gas den-
sity and pressure profiles are resolved. Here, dust emis-
sion is clearly visible not only in f150 and the Compton-y
ILC, but also in f90, suggesting that the dust emission is
brighter.

We expect a 1.6 times higher dust luminosity for

FIG. 12. LOWZ kSZ profiles from the coadded maps f150
and f90. The dotted lines simply connect the points to guide
the eye. The no-kSZ hypothesis is rejected at 2.9� (see Ta-
ble I). The vertical lines show the halo virial radius (3.10 at
z = 0.31) added in quadrature with the beam standard de-
viations (� = FWHM/

p
8 ln 2 = 0.550 in f150 and 0.89’ in

f90). To guide the eye, the gray lines correspond to Gaus-
sian profiles with FWHM = 1.30 (f150 beam), FWHM = 2.10

(f90 beam) and FWHM = 60 (similar to the measured profile)
from left to right. They are normalized to match the largest
aperture at 150 GHz. Null tests are shown in Figs. 23 and 24.
The y-axis on the right converts the measured kSZ signal into
the CAP optical depth to Thomson scattering, which counts
the number of free electrons within the CAP filter. The cor-
relation matrix for the di↵erent CAP filters and frequencies
is identical to Fig. 7.

LOWZ than CMASS, due to the 1.6 times more massive
host halo. This e↵ect should be compensated by the 1.5
times higher noise, due to the 1.52 times smaller sample
size. LOWZ galaxies are closer though, with a typical
squared luminosity distance smaller than CMASS by a
factor 4.6, which translates into a 4.6 higher dust bright-
ness. One would expect the intrinsic dust luminosity to
increase with redshift, due to the higher star formation
rate [89], compensating this e↵ect. The fact that the dust
is more visible in LOWZ than CMASS suggests that this
intrinsic evolution between LOWZ and CMASS does not
compensate the di↵erence in luminosity distances. Fi-
nally, the tSZ signal scales approximately as / M

5/3,
and is independent of redshift, making it 1.65/3 ' 2
times larger for LOWZ than CMASS. Since the tSZ pro-
file varies on larger scales than the dust profile, it may
not be the main limiting factor in our ability to detect
the dust.

V. DISCUSSION AND CONCLUSIONS

We have measured the gas density using kSZ and pres-
sure using tSZ around the CMASS galaxies in CAP filters
of varying sizes, thus tracing the gas profile out to several
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⟨δg
·τ⟩

3σ − 7σ

Velocity reconstruction as a quadratic estimator

88

ΔTkSZ(n̂) = − ∫ dχ ·τ(n̂, χ) vlos

c
(n̂, χ) ⟨δgΔTkSZ⟩ ∼ ∫ dχ⟨δg

·τv⟩ ∼ ∫ dχ⟨δg
·τ⟩v

̂v ∼
δgΔTkSZ

∫ dχ⟨δg
·τ⟩

8 F. McCarthy et al.

0 10 20 30 40 50
L

�2

0

2

4

6

L
2 C

vv L

�10�7
Template - kSZ velocity cross power, bin 1

Best-fit theory model ACvv
L , A = 0.623

Measurement

0 10 20 30 40 50
L

�0.4

�0.2

0.0

0.2

0.4

0.6

0.8

1.0

L
2 C

vv L

�10�6
Template - kSZ velocity cross power, bin 2

Best-fit theory model ACvv
L , A = 0.623

Measurement

0 10 20 30 40 50
L

�4

�2

0

2

4

6

L
2 C

vv L

�10�7
Template - kSZ velocity cross power, bin 3

Best-fit theory model ACvv
L , A = 0.623

Measurement

0 10 20 30 40 50
L

�0.5

0.0

0.5

1.0

1.5

L
2 C

vv L

�10�6
Template - kSZ velocity cross power, bin 4

Best-fit theory model ACvv
L , A = 0.623

Measurement

Figure 8. The measured cross power spectra of the four velocity templates and reconstructions, along with the best-fit models.

with respect to the electrons, is not obtained from the data and re-
quires a model. We describe the model we use in Appendix A. An
incorrect model will lead to a biased (mis-normalized) estimator—
this is the “optical depth bias” such that

Ê8A !" = 18!E
8
A !" . (18)

where 18! is the bias in question. 18! can be expressed in terms of
the model error on ⇠6g

✓ and is scale-independent on the scales ! of
interest, so there are in principle only 8 optical-depth-bias parameters.
In practice, we will reduce this to one parameter (which we will
label �), as we do not have the signal-to-noise to detect any redshift
evolution in our model.

The filters used are presented in more detail in Appendix B.

3.1.5 Results of the reconstruction: radial velocity maps

We show the reconstructed velocity fields in Figure 5. As small-scale
noise fluctuations dominate, we show the maps filtered to preserve
only the ! < 20 information. We show in Appendix D the same plots
but with only the ! < 10 and ! < 50 information shown.

3.2 Cross-correlation with an external velocity template

3.2.1 Velocity power spectrum measurement

After creating estimates of Ê8A we then estimate the velocity power
spectrum⇠EE

✓ by cross-correlating the kSZ-reconstructed ÊkSZ,8
A with

the velocity templates created by performing continuity-equation ve-
locity reconstruction on the BOSS galaxies Êtemplate,�

A . We refer to

our estimate as⇠ ÊkSZ,8
A Êtemplate,�

A
✓ . We perform the power spectrum mea-

surements with pymaster (Alonso et al. 2019).2 This is a python im-
plementation of the MASTER algorithm (Hivon et al. 2002), which
estimates a multipole-binned mask-decoupled power spectrum of
two masked Gaussian fields. We note that this is suboptimal to, say,
a quadratic maximum likelihood approach (Tegmark & de Oliveira-
Costa 2001), which we leave for future work.

While there are 16 independent cross-correlations (as 8 = 1, 2, 3, 4
and � = 1, 2, 3, 4), we only measure the four “intra-bin” power spec-
tra where 8 = �. This avoids bias from modelling uncertainties, in
particular in the tails of the redshift distributions.

2
https://namaster.readthedocs.io
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ISW effect

90

• Photons pick up a net blue or redshift while propagating through time-varying potentials 
 

• Effect dominated by onset of dark energy at late time but same potential cause lensing…

• Limited precision (large scale cosmic variance) but unique constraints on e.g. 
generalized EFT of dark energy.

3

FIG. 2. Per redshift contribution to C
�TISW
` within ⇤CDM, for the

amplitudes bins shown in the legend.

these differences. Using a fixed fiducial CTT,fid
` spectrum for

the filtering may be slightly sub-optimal, but this resulting
‘quadratic maximum likelihood’ (QML) estimator [21] can
still be used to construct an unbiased Gaussian likelihood.

In Sec. II A we first discuss the construction of the Ĉ
TT
`

and Ĉ
�T
` data vectors and the modelling of their predictions.

Their variances and covariances (also to Ĉ
��
` ) are discussed

in Sec. II B. Plots of the relevant covariance matrices are rel-
egated to the end of the paper. We do not discuss the Ĉ

��
`

data vector, which is exactly the same as in PL4; it is built
using the most precise, inhomogeneously-filtered, -filtered
[22] lensing maps. For simplicity of the modelling, when
building Ĉ

�T
` we instead use the PL4 lensing maps built with

the 2018 Planck lensing pipeline, which uses homogeneous
noise filtering at a slight cost in signal to noise. We use
the minimum variance (MV) quadratic estimator (QE) recon-
structions, that combine the temperature and polarization QEs
in a way that is approximately optimal. Our new Ĉ

�T
` data

points can be seen on the lowest panel of Fig. 1, and formally
give a 4� detection of a non-zero signal consistent with our
fiducial Planck FFP101 cosmology (shown as the black solid
line). Fig. 2 shows how the signal in each bin depends on
redshift.

A. Data vectors

The public Planck temperature-based likelihoods at 2 
`  29 are built differently from those at higher multipoles,
and on different sky areas. A large fraction of the signal to
noise on Ĉ

�T
` comes from this low-` range, but some part of

1
https://github.com/carronj/plancklens/blob/

master/plancklens/data/cls/FFP10_wdipole_params.

ini

signal extends at higher multipoles (about 50% of the SN is
located below ` = 10, and 5% above ` = 75). In order to
model more accurately the covariances with Ĉ

TT
` , we use two

temperature maps to build our bandpowers. For 2  `  29,
we use temperature maps built on the same mask as the low-
` Planck TT likelihood, with fsky ⇠ 86%. Above ` = 30,
we construct all bandpowers on the Planck PR4 lensing mask,
which covers 67% of the sky (the lensing masks differ to a
very minimal extent between the PL3 or PL4 analyses). In this
latter case, we neglect the slight differences in sky area and
methodology used for the high-` TT likelihoods (described
below). The differences are expected to be small, with the TT
signal to noise on the range 30  `  100 matching to percent
level that of the PR4 high-` TT that we use (67.8 compared to
68.9). In any case, our TT -bandpowers only serve to model
the small covariance to Ĉ

�T
` , which is at most 0.1 for ` � 30.

The approximations we make on the higher multipole range
are therefore not critical (in fact, none of this `-range has any
impact on the results on the internal constraint on the CMB
temperature shown in this paper). On the low multipole range,
our construction of the TT -likelihood matches the public like-
lihood very well (at least for our usage later on, as can be seen
from the black lines in Fig. 4). On the entire multipole range,
the lensing maps are built on the lensing mask.

The first step of our analysis pipeline is to build Wiener-
filtered CMB maps (TWF

`m , E
WF
`m , B

WF
`m ). These maps are

used for the construction of the lensing map and spectrum,
and the filtered temperature is also directly used for the ISW-
lensing cross-correlation with the large-scale lensing map, and
to build the covariance to the TT auto-spectrum. On PR3 data
we use the official foreground-cleaned SMICA maps, and for
PR4 data the same SMICA maps that were built for PL4, to
which we refer for details on their construction. The same
Wiener-filtering procedure is applied to PL3 and PL4, using
conjugate gradient descent. In the case of temperature-only,
and using the notation of those papers, the equation to be
solved is

T
WF = C

TT,fidT †Cov�1
T

dat
. (2.3)

The fiducial covariance model Cov always uses a fiducial
transfer function model T built out of an isotropic beam of 50
together with the pixel window function, and an homogeneous
noise level of 32µK-amin across the unmasked area, with the
exception of the maps used to construct Ĉ��

` which are built
as described in PL4 and account for noise inhomogeneity.

1. TT -data

From the T
WF
`m filtered maps, we first build fiducial ampli-

tude estimates. Using the available FFP10 noise-only simula-
tions of our foreground-cleaned maps (for PR4, these also in-
clude large-scale foregrounds residuals), we estimate a noise
contribution N̂` to the auto-spectrum of the filtered data map
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We present a new Planck CMB lensing-CMB temperature cross-correlation likelihood that can be used to
constrain cosmology via the Integrated Sachs-Wolfe (ISW) effect. CMB lensing is an excellent tracer of ISW,
and we use the latest PR4 Planck data maps and lensing reconstruction to produce the first public Planck likeli-
hood to constrain this signal. We demonstrate the likelihood by constraining the CMB background temperature
from Planck data alone, where the ISW-lensing cross-correlation is a powerful way to break the geometric
degeneracy, substantially improving constraints from the CMB and lensing power spectra alone.

I. INTRODUCTION

The integrated Sachs-Wolfe effect (ISW, [1]) describes
how photons pick up a net blue or redshift while propagating
through time-varying potentials between last scattering and
when we observe them today. In terms of the Weyl potential
 , ISW imprints a temperature perturbation

�T (n̂)ISW ⇡ 2

Z �⇤

0
d� ̇(�n̂, ⌘0 � �), (1.1)

where a dot denotes conformal time derivative, ⌘0 is the con-
formal time today, and the integral is along the line of sight
in direction n̂ between us and last scattering at comoving dis-
tance �⇤. In a standard cold matter-dominated universe, lin-
ear gravitational potentials are constant because there is an
exact compensation between decay due to expansion (the sep-
aration between comoving masses gets larger), and growth of
the density perturbations (density perturbations grow propor-
tional to the scale factor during matter domination). In the
late universe, dark energy relatively increases the expansion
rate, leading to a net decay in the amplitude of potentials with
time, and hence a net ISW effect. The ISW is therefore a
probe of the late-time density perturbations, with amplitude
that depends on the dark-energy evolution [2], any modifica-
tion of gravity [e.g. 3], or other beyond flat-⇤CDM perturba-
tion growth (for example curvature, dark matter interactions,
massive neutrinos, etc. [e.g. 4]).

The CMB lensing potential is correlated to ISW because
the same gravitational potentials cause both effects. This is
dominated by the late-time ISW signal from the dark energy
era, which has significant contributions to distances about 1/3
of the way to last scattering. The early-ISW signal from po-
tentials near recombination (due to the radiation density) is
not significantly correlated to the lensing signal because it is
produced very close to the last-scattering surface. The lensing
potential-ISW correlation is therefore a probe of dark energy.

Unfortunately, the ISW signal cannot be measured inde-
pendently as we only have access to the total temperature
anisotropies including the sources from recombination. In
practice, the primordial fluctuations dominate in most cos-
mologies, so that their cosmic variance acts as an irreducible
source of noise for the temperature-lensing cross-correlation
signal. In principle, this can be improved slightly by also us-

ing polarization to constrain the primordial anisotropies, but
even with perfect observations the total signal remains rela-
tively low. This is because the signal is limited to large scales:
for small-scale perturbations there are many density perturba-
tions along the line of sight, leading to most of the signal can-
celling between over- and under-densities. On small-scales
there can be additional ISW contributions even in matter dom-
ination from non-linear growth of structure (the Rees-Sciama
effect [5]), however these are very small [6–8], so we focus
on the linear contribution.

The correlation between the lensing potential and
�T (n̂)ISW is very high (& 0.9), potentially making CMB
lensing an excellent probe of the ISW signal. A detection of
the Planck lensing-ISW bispectrum was given in [9], and us-
ing temperature lensing cross-correlation in [10]. The ISW
can also be seen in cross-correlation with other large-scale
structure probes, as first detected by Ref. [11] (see Ref. [12]
for a review of subsequent results). CMB lensing has the nice
property that for a given cosmology the amplitude and redshift
kernel are accurately predicted (no bias or source redshift un-
certainty), and the signal can be reconstructed over most of
the sky. Since the correlation is so high, CMB lensing also
has most of the signal. For the foreseeable future, Planck

observations are the only ones that can reconstruct lensing
over the full sky [13, hereafter PL2018], so the Planck lensing
map will remain the best lensing probe of the large-scale ISW
cross-correlation for some time. It is therefore worth trying to
get the best reconstruction, and constructing a likelihood that
can be used in cosmological parameter analysis of extended
models. There has been no previously-published Planck ISW
likelihood, so this is a new (if admittedly not very powerful)
Planck product.

Previous Planck ISW cross-correlations results are exten-
sively discussed in Ref. [12]. Planck lensing-temperature
cross-correlation spectrum results were given in [10], and
recently updated in the PR4 lensing analysis [14, hereafter
PL4]. The PR4 lensing analysis uses more optimal filtering
to improve the lensing signal recovery, and also uses the new
NPIPE (PR4) Planck CMB maps [15] (which include more
data from satellite repointing periods and improve many parts
of the data processing). In this paper we use lensing maps
from PL4 to construct an ISW likelihood, which we then use
to constrain the monopole CMB temperature independently of
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FIG. 1. Linear theory predictions for C
T�
` in the MG

model while fixing the standard 6 cosmological parameters

and (w0, wa) to their best-fit values obtained in the CMB

(PR3)+DESI+PantheonPlus analysis of ref. [6]. Black line

represents the w0waCDM prediction for the same best-fit cos-

mology, where the dark energy perturbations are computed

using the parametrized post-Friedmann approach. Blue error

bars represent the ISW lensing bispectrum estimate in the

range 2 < ` < 84 from the Planck PR4 maps [16].

III. RESULTS AND DISCUSSIONS

A. ISW lensing bispectrum

In this section, we examine the sensitivity of the ISW
lensing bispectrum to modifications of gravity within the
EFT of DE framework.

We begin by exploring the dependence of CT�
` on the

choice of EFT parameters. To that end, we fix the stan-
dard 6 cosmological parameters, as well as w0 and wa, to
that of the best-fit MG model posterior obtained in the
CMB (PR3)+DESI+PantheonPlus analysis of [6]. We
vary the remaining EFT parameters cM and cB , which
control the dynamics of linear perturbations associated
with a scalar degree of freedom.

Fig. 1 shows the linear theory predictions for CT�
` for

various representative values of cM and cB . Modified
gravity models tend to suppress the power of the ISW
lensing signal compared to that in w0waCDM (cM =
cB = 0). This result is attributed to moderate ki-
netic gravity braiding, which reduces the late ISW ef-
fect [25, 36]. Positive values of the Planck mass run rate
counteract this suppression by enhancing C

T�
` on large

scales. This opens up a new degeneracy direction be-
tween cM and cB . Importantly, the ISW lensing mea-
surement disfavors models with large positive cB . This
highlights the potential of ISW lensing cross-correlations
as a probe of modified gravity.

Other cosmological measurements are sensitive to
modifications of gravity. The ISW-induced change to
the gravitational potentials a↵ects low multipoles of the
CMB TT spectrum. This can also have an impact on
the peak of the CMB lensing power spectrum, where
it is somewhat sensitive to low redshifts. To determine
whether the ISW-lensing signal provides additional infor-
mation gain, we take into account constraints from the
full set of cosmological data.

For this purpose, we define a set of reference MG
models as follows. We select five distinct values of
cM , approximately uniformly distributed in the range
[�0.6, 1.2]. For each selected cM , we randomly choose
points from the MCMC chains obtained in the CMB
(PR3)+DESI+PantheonPlus MG analysis of ref. [6], en-
suring that the �

2 values lie within the 95% confidence
limit of the best-fit value. This selection guarantees that
the reference MG models remain consistent with the cos-
mological data. We emphasize that we do not fix any
parameters; instead, we sample all parameters to achieve
a good fit to the data.

Fig. 2 compares the predicted C
T�
` and C

TT
` spectra

for the randomly chosen models with the Planck mea-
surements. For cB . 1, the modified gravity models lead
to very similar ISW lensing signals, which lie below the
data on large scales. In particular, the statistical signifi-
cance of the di↵erence between the best-fit MG model (in
gray) and the data is 2.8�. This illustrates that the ISW
lensing bispectrum has an extra sensitivity to modified
gravity beyond what is captured by CMB, BAO, and SN
Ia data. For a moderate braiding parameter, the C

T�
`

data requires high values of the Planck mass run rate,
cM & 1, while still maintaining a good fit to the low-`
C

TT
` data. This behavior is attributed to the degeneracy

direction introduced by the CMB ISW lensing data.

Our results suggest that adding the ISW lensing cross-
correlations into the analysis can significantly tighten
constraints on the modified gravity parameters. The CT�

`

probe is particularly sensitive to kinetic gravity braid-
ing, by excluding scenarios with cB ⇠ 1. Addition-
ally, the ISW lensing data necessitates somewhat higher
values of cM , which can be important when including
additional external probes, e.g. the galaxy-CMB cross-
correlations [37, 38] and the weak lensing and galaxy clus-
tering data [39]. The addition of ISW lensing data can
also improve the bound on cM due to the correlation in
the cM � cB plane.

Chudaykin+(2025)
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CIB cross-correlations
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• CIB: sourced by dusty star-forming 
galaxies since the epoch of 
reionisation

• Maps can be extracted from CMB 
frequencies through component 
separation 

• also IR bands from e.g. Euclid or 
others…

• Cross-correlation allows to link SFR 
and matter distribution 

Jego+2022
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Figure 9. Star formation rate density as a function of redshift. The points with error bars correspond to the direct measurements from the infrared luminosity
function by various authors (see legend and main text). The solid black line shows the best-fit prediction from the CIB analysis of Maniyar et al. (2021).
Our constraints from the cross-correlation between the CIB and cosmic shear data is shown as a red shaded band. Adding to these the measurements of the
bias-weighted SFR density h1dSFR i of J22 yields the blue shaded band (both bands show the 68% confidence intervals).
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Figure 10. Robustness tests of our main results. The left panel shows the constraints on the SFR halo model parameters found using our full data vector of
cross-correlations (solid black lines), while the red and blue contours show the results of considering only the cross correlations with DES or KiDS respectively.
The right panel shows the dependence of the final results on the choice of CIB map. Our fiducial results from the coadded map are shown as solid black lines,
while the results using the 353, 545, and 857 GHz maps are shown in gray, red, and blue, respectively.
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Cross-correlation with cosmic birefringence
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• Presence of axion like coupling  can generate cosmic birefringence

•  can be reconstructed with quadratic estimators and correlated with matter tracers.α(n̂)
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Conclusions
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• Exciting times ahead with CMB experiments and LSS surveys

• More than the sum of the two.

• CMB - LSS cross-correlations are booming!

• CMB lensing will be the new high precision/high accuracy cosmological probe. 

• More precise and robust cosmology / fundamental physics and astrophysics.

• Your new ideas and input here…

• Probe combination / CMB secondaries require cross-disciplinary expertise.

• Have fun with data!

• Think about new theory probes and applications out of the box (rotation, bispectra, 
birefringence, spectral distortions…)


