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Boltzmann Equation

Baryons are collisional. They are described by Boltzmann equation: 

. 

Collision time: . 

Maxwell-Boltzmann distribution: . 

Velocity dispersion: . 

Hard sphere model: . 

.

∂f
∂t

+ v ⋅
∂f
∂x

+ g ⋅
∂f
∂v

= ∫4π ∫ℝ3
(f′￼1 f′￼2 − f1 f2) σ v1 − v2 dΩ d3v2

Ccoll = ∫ℝ3 ∫ℝ3 ∫4π
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ρ
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kBT
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≃ nσ0
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kBT
m
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Moments of Boltzmann Equation

We define zero-order, first order and second-order moments as: 

. 

Non-LTE equations: 

 

 

 

Thermal particle velocity:  

Pressure tensor:            Heat flux: 

ρ(x, t) = ∫ℝ3

mfdv3 ρ(x, t)u(x, t) = ∫ℝ3

mvfdv3 E(x, t) = ∫ℝ3

1
2

mv2fdv3

∂
∂t

ρ + ∇ ⋅ (ρu) = 0

∂
∂t

(ρ u) + ∇ ⋅ (ρ u ⊗ u + ℙ) = ρ g

∂E
∂t

+ ∇ ⋅ (E u + ℙu + Q) = ρ g ⋅ u

w = v − u(x, t)

Pij = ∫ℝ3

mwiwj fd3v Q = ∫ℝ3

m
1
2

w2wf d3v

Total energy: 

 

Internal energy: 

E =
1
2

ρu2 + e

e
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The Euler-Poisson Equations

 

 

 with  

Chapman-Enskog theory (not too far from LTE): 

Pressure tensor:  

Heat flux:  

Viscosity coefficient:  

Conduction coefficient: 

∂
∂t

ρ + ∇ ⋅ (ρu) = 0

∂
∂t

(ρ u) + ∇ ⋅ (ρ u ⊗ u + P𝕀) = ρ g

∂E
∂t

+ ∇ ⋅ (E + P)u = ρg ⋅ u P =
ρkBT

m

ℙ = P𝕀 − μ (𝔾 + 𝔾T −
2
3

(∇ ⋅ u)𝕀) with Gij =
∂ui

∂xj

Q = − κ∇T

μ = ρλcoll
kBT
m

= ρνcoll

κ = ρλcoll
kBT
m

kB

m
= ρ

kB

m
νcoll

Under strict LTE conditions: 

HP = P ( ∂P
∂x )

−1

≫ λcoll

Microscopic diffusion: 

νcoll = λcoll
kBT
m
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Finite Volume Scheme

We discretize 1D space with finite volumes . 

We define the vector of conservative variables . 

The Euler equations have a conservative form: ,  

with the vector of flux functions . 

Integrating both in space between  and   and  

in time between  and , we get the discrete integral form: 

  

where  and . 

Question: how do we compute the numerical flux  ?

Vi = [xi−1/2, xi+1/2]

U = (ρ, ρu, E)
∂U
∂t

+
∂F
∂x

= 0

F = (ρu, ρu2 + P, u(E + P))
xi−1/2 xi+1/2 = xi−1/2 + Δx

tn tn+1 = tn + Δt

Un+1
i = Un

i −
Δt
Δx (Fn+1/2

i+1/2 − Fn+1/2
i−1/2 )

Un
i =

1
Δx ∫

xi+1/2

xi−1/2

U(x, tn)dx Fn+1/2
i+1/2 =

1
Δt ∫

tn+1

tn

F(xi+1/2, t)dt

Fn+1/2
i+1/2
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Godunov Method

The flux  is defined at the interface between 2 piecewise contant states: 
 and . This is called a Riemann problem.  

Godunov’s idea: solve the Riemann problem (even approximately) and evaluate 
the flux at the interface . This flux is constant in time. 

. 

The key component is the Riemann solver: 

- Exact Riemann solver 

- Harten-Lax-van Leer (HLL) Riemann solver 

- HLLC (Toro) Riemann solver 

- Lax-Friedrich Riemann solver: 

 where 

Fn+1/2
i+1/2

UL = Un
i UR = Un

i+1

xi+1/2

Fn+1/2
i+1/2 = RP(UL, UR)

Fn+1/2
i+1/2 =

1
2 (FL + FR) −

cmax

2 (UR − UL) cmax = max
L,R

( |u | + cs)
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Advection Equation

We use as an example the advection equation with velocity  constant. 

.  

Conservative update: . 

We use the upwind flux (solution to the Riemann problem): 

. 

. 

For , we get: . The new solution is a convex 
combination of the old solution: monotonicity, positivity, stability. 

Courant-Friedrich-Levy stability condition: .

u = a
∂ρ
∂t

+ a
∂ρ
∂x

= 0

ρn+1
i = ρn

i −
Δt
Δx (f n+1/2

i+1/2 − f n+1/2
i−1/2 )

f n+1/2
i+1/2 = aρn

i if a > 0

f n+1/2
i+1/2 = aρn

i+1 if a < 0

a > 0 ρn+1
i = ρn

i (1 − C) + ρn
i−1C

C = a
Δt
Δx

< 1
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Modified Equation

We have the numerical update for :       . 

We perform a Taylor expansion both in space and time: 

 

 

We get .  

We use:  and get the modified equation: 

. 

Numerical diffusion:  compared to .

a > 0 ρn+1
i = ρn

i (1 − C) + ρn
i−1C

ρn
i−1 = ρn
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∂ρ
∂x

+
Δx2

2
∂2ρ
∂x2

+ 𝒪(Δx3)
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∂ρ
∂t

+
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2
∂2ρ
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∂ρ
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+
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∂t2

= − a
∂ρ
∂x

+ a
Δx
2
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∂x2
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∂t2
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∂ρ
∂x
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2
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νnum ≃ aΔx νcoll = λcoll
kBT
m
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Sod test with first order Godunov scheme 

128 cells
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Sod test with second order Godunov scheme 

128 cells
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Sod test with 2nd order Godunov + AMR 

153 cells
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Shock Heating and Hydrostatic Equilibrium
In the spherical collapse model, gas infall will be halted by an accretion shock. 

We can write in the frame of the shock the Rankine-Hugoniot relations: 

 

In case of a strong shock , we find in the virialized region : 

. 

In practice, gas infall is more complex that the spherical collapse model so we have 
non-uniform density and temperature profiles.

ρ1u1 = ρ2u2

ρ1u2
1 + P1 = ρ2u2

2 + P2

( 1
2

ρ1u2
1 +

γ
γ − 1

P1) u1 = ( 1
2

ρ2u2
2 +

γ
γ − 1

P2) u2

P2 ≪ ρ2u2
2 P1 ≫ ρ1u2

1

kBTvir

m
≃ u2

vir with u2
vir ≃

GM
Rvir

≃ V2
circ
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Non-Radiative Cosmological Simulations

Projected gas density (left) and temperature (right) in the halo (500kpc across).
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Hydrostatic Equilibrium Model

We solve the hydrostatic equation, assuming NFW and a polytropic relation: 

. 

We find the Komatsu & Seljak (2001) solution: 

. 

We have . 

The profile are adjusted with only one free parameter  in most non-
radiative cosmological simulation across a wide range of masses.

1
ρ

∂P
∂r

= −
GMtot(r)

r2
and P(r) = P0 ( ρ(r)

ρ0 )
Γ

T(r) = T0
ln 1 + x

x
and ρ(r) = ρ0 ( ln 1 + x

x )
1

Γ − 1

with x =
r
rs

kBT0

m
= 4πGρsr2

s
Γ − 1

Γ
and ρ0 ≃ 0.2ρs

Γ ≃ 1.19
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Hydrostatic Equilibrium Model

Spherical density (left) and temperature (right) profiles of the halo.
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Radiative Cooling

In the previous collision integral, we only considered elastic collisions. 

Some of these collisions are in fact inelastic. 

Electrons and protons collide and emit a recombination photon with a small 
probability . 

 with photon energy . 

Assuming a simple hard sphere model, we compute the emission rate: 

 where  is the cooling function. 

We find:  but it drops to zero for .  

We can now estimate the cooling time of a halo of mass : 

. 

  

Prec

e− + H+ → H0 + γ hνrec ≃ 13.6 eV

Qrec ≃ ne−nH+σ0
kBT
m

Prechνrec = n2
HΛ(T ) Λ(T )

Λ(T ) ≃ 10−22 T
104 K

erg s−1cm3 T < 104 K

Mvir

tcool =
3
2 nHkBTvir

Qrec(Tvir)
≃ 100 ( Tvir

104 K )
1/2

( nH

10−5 cm−3 )
−1

Myr
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Cooling function for astrophysical plasmas
Collisional Ionization Equilibrium: depends only on T

Radiation is emitted or 
absorbed when electrons 
make transitions between 
different states: 

Bound-bound: electrons 
moves between 2 bound 
states in an atom or an ion. 
A photon is emitted or 
absorbed. 

Bound-free: electrons move 
to the continuum (ionization) 
or a absorbed from the 
continuum to a bound state 
(recombination) 

Free-free: electrons in the 
continuum gain or loose 
energy (a photon) when 
orbiting around ions 
(Bremsstrahlung).
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Centrifugal Equilibrium and Disk Formation

For halos with  and , we get: 

. 

Hydrostatic equilibrium and pressure support are broken and the gas collapses 
until a new equilibrium is reached: centrifugal equilibrium. 

. 

The origin of the final disk size is poorly understood.  

Empirical relation:   (Kravtsov 2013) 

104 < Tvir < 106 K 109 < Mvir < 1012 M⊙

tcool < tdyn =
Rvir

Vvir
≃ 1 Gyr

v2
θ

r
=

GMtot(r)
r2

or v2
θ =

GMtot(r)
r

≃ V2
circ

rdisk ≃ 0.015 Rvir
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Simple Star Formation Recipe

Empirical relation for nearby galaxies: Kennicutt relation. 

.ΣSFR = (2.5 ± 0.7) × 10−4 (
Σgas

M⊙pc−2 )
1,4

[M⊙yr−1kpc−2]

Star formation recipe: Schmidt law: 

 

Free-fall time: . 

Density threshold:  

Choose for each simulation the 2 
parameters  and  to fit Kennicutt’s 
relation (calibration). 

Typical values:  and 

·ρ* = ϵff
ρ
tff

1
tff

= 4πGρ

ρ > ρ*

ρ* ϵff

ϵff ≃ 0.01
ρ* ≃ 0.1 to 10 H/cc .
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Cooling and Star Formation Simulations

Projected gas density (left), temperature (middle) and star particles (500kpc).
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Projected gas density (left), temperature (middle) and star particles (50kpc).

Cooling and Star Formation Simulations
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Simulation Michael Kretschmer

Cooling and Star Formation Simulations
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Using abundance matching with dark 
halos, one can relate the stellar mass 
to the halo mass. 

Berhoozi et al. (2013) Mhalo=1012 Msol 
for the Milky Way and 25% SFE. 

Our simulation suggests Mhalo=1012 
Msol but 80% SFE. 

Low baryon fraction in MW models 
requires very efficient feedback. 

Key missing ingredient.

 from Simon White Ringberg 2010 talk

The stellar mass problem


