GWs for cosmology

GWs for cosmology

Aims:

- how can probe cosmology and the expansion history of the universe at early and late times with GWs
- in practice how one tries to do it
- current status of results
- prospects

GWs for cosmology

Mean expansion rate of universe today: Hubble constant H_0 tension

 $4-6\sigma$ tension between *early* (assuming cosmological model), and *late-time* (local) measurements • Pedro's lectures with EM sources:

Redshifts $z \Rightarrow easy!$ Distances $d_L(z) \Rightarrow hard!$ \longrightarrow Distance ladder: parallax, cepheids, SN... With many difficulties

• GW sources:

Redshifts $z \Rightarrow$ hard! Distances $d_L(z) \Rightarrow easy!$ more straightforward

No need for a distance ladder: $d_L(z)$ comes directly from the observed signal

• Pedro's lectures focused on scalar modes:

Linear and non-linear perturbation theory: breaks down quickly

• GWs: transverse and traceless tensor modes

Linear perturbation theory fine

- Lecture I: Overview on early- and late-time cosmology with GWs; current and future experiments,
 orders of magnitude
- Lecture 2: Late-time cosmology: GWs and $d_L(z)$
 - GWs in theories beyond GR, $d_L^{GW}(z)$
 - standard sirens I: Measuring H_0 with GWs and O3 results of LVK
 - Back to early-time universe: an example of what physics we can probe.
- Lecture 3 (Chiara Caprini):
 - cosmological stochastic GW background: early-universe cosmology with GWs Solutions of the GW propagation equation in FLRW; its calculation for different sources (inflation, topological defects, first order phase transitions)
- Lecture 4 (Nicola Tamanini):

- Standard sirens II: more details, statistical methods, future prospects

- Lecture 5 (Tania Regimbau):
 - astrophysical stochastic GW background: Definition/statistical properties, pulsar timing arrays and background from supermassive BH binaries, LVK results, prospects for the future.

Overview

Individual resolvable astrophysical sources and populations of sources

at cosmological distances

e.g. binary neutron stars (BNS), binary black holes (BBH), neutron star-black-hole binary (NS-BH) Rotating asymmetric neutron stars supernova explosions...

- Expansion rate H(z)

– Hubble constant H_0

 $-\Omega_m$

- beyond ΛCDM , dark energy w(z)
- late-time modified gravity (modified GW propagation)
- astrophysics; eg populations of BBHs

• • • •

late-time universe

ţ

GWI509I4

Individual resolvable astrophysical sources and populations of sources

at cosmological distances

e.g. binary neutron stars (BNS), binary black holes (BBH), neutron star-black-hole binary (NS-BH) Rotating asymmetric neutron stars supernova explosions...

- Expansion rate H(z)

– Hubble constant H_0

 $-\Omega_m$

- beyond ΛCDM , dark energy w(z)
- late-time modified gravity (modified GW propagation)
- astrophysics; eg populations of BBHs

Transient deterministic signal

• • • •

late-time universe

ţ

Individual resolvable astrophysical sources and populations of sources

at cosmological distances

e.g. binary neutron stars (BNS), binary black holes (BBH), neutron star-black-hole binary (NS-BH) Rotating asymmetric neutron stars supernova explosions...

- Expansion rate H(z)

– Hubble constant H_0

 $-\Omega_m$

. . . .

- beyond ΛCDM , dark energy w(z)
- late-time modified gravity (modified GW propagation)
- astrophysics; eg populations of BBHs

 $\uparrow \quad t \gtrsim t_{Pl}$

Very early universe until today

Stochastic GW background

astrophysical and cosmological origin

$$\Omega_{\rm gw}(t_0, f) = \frac{f}{\rho_c} \frac{d\rho_{\rm gw}}{df}(t_0, f)$$

- population of BH, white dwarfs..
- inflationary GWs
- Ist order Phase transitions
- topological defects
- scalar induced GWs
- primordial black holes
- axions
- early modified gravity…

More speculative. Early universe sources beyond standard model of particle physics!

late-time universe

Individual resolvable astrophysical sources and populations of sources

at cosmological distances

e.g. binary neutron stars (BNS), binary black holes (BBH), neutron star-black-hole binary (NS-BH) Rotating asymmetric neutron stars supernova explosions...

Primordial cosmology

Individual resolvable cosmological sources

e.g. cosmic string GW bursts

- Expansion rate H(z)

– Hubble constant H_0

- $-\Omega_m$
- beyond ΛCDM , dark energy w(z)
- late-time modified gravity (modified GW propagation)
- astrophysics; eg populations of BBHs

 $\Omega_{\rm gw}(t_0, f) = \frac{f}{\rho_c} \frac{d\rho_{\rm gw}}{df}(t_0, f)$

Very early universe until today

Stochastic GW background

astrophysical and cosmological

 $t \gtrsim t_{Pl}$

- population of BH, white dwarfs..
- inflationary GWs
- Ist order Phase transitions
- topological defects
- scalar induced GWs
- primordial black holes
- axions

origin

– early modified gravity…

More speculative. Early universe sources beyond standard model of particle physics!

• • • •

An example: Cosmic Strings

- Line-like topological defects, may be formed in a symmetry breaking phase transition, time t_i , temperature T_i . Stable, once formed cannot disappear.

- only one parameter describing physics of strings: their tension

$$G\mu \sim 10^{-6} \left(\frac{T_i}{10^{16} \text{ GeV}}\right)^2$$

T.Kibble 1976) disappear.

[C.Ringeval]

- loops are created for all times $t > t_i$, oscillate relativistically and emit GWs:
 - individual loop, close by, emits a particular short, and periodically repeating, GW burst signal.
 - effect of all loops is to generate a SGWB

– Experiments, current and future, can either put constraints on, or measure $G\mu$. PTAs: $G\mu \lesssim 10^{-10}$

Gravitational waves for cosmology: detectors

late-time universe

Individual resolvable astrophysical sources and populations of sources

at cosmological distances

e.g. binary neutron stars (BNS), binary black holes (BBH), neutron star-black-hole binary (NS-BH) Rotating asymmetric neutron stars supernova explosions...

- Expansion rate H(z)

– Hubble constant H_0

 $-\Omega_m$

- beyond ΛCDM , dark energy w(z)
- late-time modified gravity (modified GW propagation)
- astrophysics; eg populations of BBHs

- flat Λ CDM $ds^2 = -dt^2 + a^2(t)d\vec{x}^2$ - Hubble parameter: $H(t) = \frac{\dot{a}(t)}{a(t)}$ - redshift: $1 + z = \frac{a(t_0)}{a(t)}$

• • • •

Gravitational waves for cosmology: detectors

- beyond ΛCDM , dark energy w(z)
- modified gravity (modified GW propagation)
- astrophysics; eg populations of BBHs

• • • •

[LISA collaboration, LISA Definition Study Report, 2402.07571]

	Characteristic detector	GW frequency to which	$f_{ m GW}L$	$L ext{ vs } \lambda_{ ext{GW}}$
	size (km)	detector sensitive (Hz)		
LVK	~ 1	$10^1 - 10^4$	$f_{\rm GW}L\ll 1$	$L \ll \lambda_{\rm GW}$
LISA	$\sim 10^{6}$	$10^{-4} - 10^{-1}$	$f_{\rm GW}L \sim 1$	$L \sim \lambda_{\rm GW}$
PTA	$\sim 10^{17}$	$10^{-9} - 10^{-7}$	$f_{\rm GW}L \gg 1$	∄ ≫ ∄ _{GW}

LVK

LISA

PTA [Romano+Cornish]

• To detect higher GW frequencies \rightarrow smaller experiments.

[Living Rev.Rel. 24 (2021) 1, 2011.12414]

• LVK is an interferometer **network**

I/ Localisation

Interferometers have bad angular resolution: not pointing instruments

- For <u>late-time</u> GW cosmology accurate localisation useful as e.g.
 - some of the GW sources may also emit EM radiation: to detect that with EM telescopes (which by their very nature are directional) need the localisation.
 - useful to associate GW events with data from galaxy catalogues.
 - ==> Network: localization determined through triangulation, using the observed time delays of the signal at several detectors.

2/ instrumental noise uncorrelated between detectors: any correlated noise between detectors could be attributed to a SGWB.

• LVK is an interferometer **network**

I/ Localisation

Interferometers have bad angular resolution: not pointing instruments

- For <u>late-time</u> GW cosmology accurate localisation useful as e.g.
 - some of the GW sources may also emit EM radiation: to detect that with EM telescopes (which by their very nature are directional) need the localisation.
 - useful to associate GW events with data from galaxy catalogues.
 - ==> Network: localization determined through triangulation, using the observed time delays of the signal at several detectors.
- 2/ instrumental noise uncorrelated between detectors: any correlated noise between detectors could be attributed to a SGWB.
- Plans to build new interferometers on earth beyond LVK (late 2030s?)
 - Einstein Telescope in Europe & Cosmic Explorer in the USA, with $L\sim 10-40~{\rm km}$

few Hz $\lesssim f_{\rm GW} \lesssim 10^4$ Hz

Gravitational waves for cosmology: sources & observations

late-time universe

Individual resolvable astrophysical sources and populations of sources

at cosmological distances

e.g. binary neutron stars (BNS), binary black holes (BBH), neutron star-black-hole binary (NS-BH) Rotating asymmetric neutron stars supernova explosions...

Primordial cosmology

Individual resolvable cosmological sources

e.g. cosmic string GW bursts

- Expansion rate H(z)
- Hubble constant H_0
- $-\Omega_m$
- beyond ΛCDM , dark energy w(z)
- modified gravity (modified GW propagation)
- astrophysics; eg populations of BBHs

• • • •

Current LVK observations: only compact binary coalescences,

no cosmic strings, supernovae...!

- OI \circ 3 BBHs
- O2 0 7 BBHs
 0 I BNS with EM counterpart GW170817
- O3 4 events compatible with NSBH masses
 2 events compatible with BNS masses
 ~80 BBHs.
- O4a ; O4b and since end January O4c

Public alerts: <u>https://gracedb.ligo.org/</u> <u>https://emfollow.docs.ligo.org/</u> https://gwosc.org/

For all of these have the SNR and posterior distributions for masses, distances, sky localisation, spins... (at least 17 parameters describe the waveform)

. . . .

 $Modified \ from \ https://ligo.northwestern.edu/media/mass-plot/index.html \\$

 $h(p,\eta) = \frac{1}{d_L^{\text{GW}}(\eta)} h(\eta_s, r - c \int_{\eta_s}^{\eta} (1 + \alpha_T)^{1/2} d\eta)$ BNS-GW170817, $z \sim 0.01$

Individual resolvable astrophysical sources and populations of sources

at cosmological distances

e.g. binary neutron stars (BNS), binary black holes (BBH), neutron star-black-hole binary (NS-BH) Rotating asymmetric neutron stars supernova explosions...

- Expansion rate H(z)

– Hubble constant H_0

 $-\Omega_m$

- beyond ΛCDM , dark energy w(z) and dark matter
- modified gravity (modified GW propagation)
- astrophysics; eg populations of BBHs

Individual resolvable astrophysical sources and populations of sources

at cosmological distances

e.g. binary neutron stars (BNS), binary black holes (BBH), neutron star-black-hole binary (NS-BH) Rotating asymmetric neutron stars supernova explosions...

GW170817 + EM counterpart

- Expansion rate H(z)

– Hubble constant H_0

- $-\Omega_m$
- beyond ΛCDM , dark energy w(z) and dark matter
- modified gravity (modified GW propagation)
- astrophysics; eg populations of BBHs

properties of GW signals

- Transients = short duration signals relative to the observation time-scale (~years)
- Persistent = long duration signals relative to the observation time-scale (~years)
- Coherent/deterministic = well defined phase evolution
- Incoherent/Stochastic = non-predictable/random phase evolution

[Figure inspired by A.Jenkins, PhD]

properties of GW signals

- Transients = short duration signals relative to the observation time-scale (~years)
- Persistent = long duration signals relative to the observation time-scale (~years)
- Coherent/deterministic = well defined phase evolution
- Incoherent/Stochastic = non-predictable/random phase evolution

[Figure inspired by A.Jenkins, PhD]

late-time universe

↓

Individual resolvable astrophysical sources and populations of sources

at cosmological distances

- e.g. binary neutron stars (BNS), binary black holes (BBH), neutron star-black-hole binary (NS-BH) Rotating asymmetric neutron stars supernova explosions...
 - Expansion rate H(z)

```
– Hubble constant H_0
```

 $-\Omega_m$

. . . .

- beyond ΛCDM , dark energy w(z) and dark matter
- modified gravity (modified GW propagation)
- astrophysics; eg populations of BBHs

Individual resolvable cosmological sources

e.g. cosmic string GW bursts

Primordial cosmology

Very early universe until today

$$t \gtrsim t_{Pl}$$

Stochastic GW background

astrophysical and/or cosmological origin

$$\Omega_{\rm gw}(t_0, f) = \frac{f}{\rho_c} \frac{d\rho_{\rm gw}}{df}(t_0, f)$$

- population of BH, white dwarfs.
- inflationary GWs
- Ist order Phase transitions
- topological defects
- scalar induced GWs
- primordial black holes
- ultra light dark matter
- axions...

More speculative. Early universe sources beyond standard model of particle physics!

From individual signals to the stochastic GW background (SGWB)

- Consider cosmic *population* of sources (astrophysical/cosmological) distributed in the universe
- For each source, amplitude GW signal $\propto d_L^{-1}$:
 - \Rightarrow beyond some distance the signals will be too faint to distinguish from the noise in a detector \Rightarrow detection horizon (dependent on the source and detector);
 - and even in the detection horizon, if the number of sources increases sufficiently, signals may overlap (in time and frequency domains) so can't be detected individually
- The combined GW signal of these is the **SGWB** which can be of astrophysical or cosmological origin.
- SGWB associated with distant sources, and its detection and characterisation can probe the high redshift primordial universe

From individual signals to the stochastic GW background (SGWB)

- Consider cosmic *population* of sources (astrophysical/cosmological) distributed in the universe
- For each source, amplitude GW signal $\propto d_L^{-1}$:
 - \Rightarrow beyond some distance the signals will be too faint to distinguish from the noise in a detector \Rightarrow detection horizon (dependent on the source and detector);
 - and even in the detection horizon, if the number of sources increases sufficiently, signals may overlap (in time and frequency domains) so can't be detected individually
- The combined GW signal of these is the **SGWB** which can be of astrophysical or cosmological origin.
- SGWB associated with distant sources, and its detection and characterisation can probe the high redshift primordial universe
- To access the *cosmological* background, (C.Caprini) crucial to understand the *astrophysical* background (T.Regimbau) which will inevitably be present.

 Note: the cosmological SGWB is expected to be nearly isotropic; unpolarised; gaussian. the astrophysical one may be anisotropic (galaxy distribution anisotropic up to ~100Mpc)

Photons decoupled from $T \sim 3000K$, Gravitons decoupled from t_{Pl}

• particles which decouple from primordial plasma at $t \sim t_{dec}$ or $T \sim T_{dec}$ give snapshot universe at that time.

 $t < t_{dec}$ $T > T_{dec}$ they are coupled and interactions obliterate all information.

• In thermal equilibrium when

$$\begin{aligned} & \underset{\text{equilibrium}}{\text{rate of process}} & \prod_{\substack{n \text{ umber density} \\ n \text{ umber density}}} \Gamma \sim n\sigma |v| > H \\ & \underset{\text{number density}}{\text{ of particles}} & \underset{\text{interaction}}{\text{ vypical velocity}} \end{aligned}$$

$$& \text{and drop out when} \quad \Gamma \sim H \\ & \text{Eg Neutrinos:} \quad \sigma \sim G_F^2 T^2 \quad \left(\frac{\Gamma}{H}\right)_{\text{neutrino}} \sim \left(\frac{T}{1\text{MeV}}\right)^3 \\ & \text{Gravitons} \quad \sigma \sim G_N^2 T^2 \sim \frac{T^2}{M_{\text{Pl}}^4} \quad \left(\frac{\Gamma}{H}\right)_{\text{graviton}} \sim \left(\frac{T}{M_{\text{Pl}}}\right)^3 \end{aligned}$$

For light/massless particles at temperature T $n \sim T^{3}$ $v \sim 1$ $H^{2} \sim T^{4} M_{\rm Pl}^{-2}$

- => retain spectrum/shape/typical frequency & intensity of physics at corresponding high energy scales
- => but making predictions uncertain for such sources,
- => and need to deal with an astrophysical component

Detectors working in different frequency bands:

probe different GW sources with different characteristics. Work individually; as well as *together*

Examples of cosmological SGWB signals: Next generation detectors (SKA, LISA and ET/CE)

[Caprini et al, 2406.02359]

- Models A and B are meant to describe exactly the same physics!
- If Model B is the unique source of the SGWB signal in PTA $\log_{10}(G\mu) = -10.63^{+0.24}_{-0.22}$. then LVK constraints actually already exclude it! $G\mu \gtrsim (4.0 - 6.3) \times 10^{-15}$
- Model A would lead to an extremely loud signal in ET, with SNR $\sim 10^3$
- Different spectral shapes, depending amongst other things on the properties of the source. Is the source producing GWs at t_* "short/long" duration relative to the Hubble time $H^{-1}(t_*)$?

Characteristic frequency today?

Consider a source of GWs operating at a time $t = t_*$, for order one Hubble time.

- Characteristic frequency today depends on:
 - production mechanism (model-dependent)
 - kinematical (depending on the redshift from the production era)

• GWs produced with frequency f_* at $t = t_*$ have characteristic frequency today of

$$f = \frac{a_*}{a_0} f_* = 1.65 \times 10^3 \text{ Hz} \left(\frac{T_*}{10^{10} \text{ GeV}}\right) \left(\frac{g_*}{100}\right)^{\frac{1}{6}} \left[\frac{f_*}{H_*}\right]$$
(assuming standard thermal history and radiation era)
temperature (energy density) of the universe at the source time
• But expect by causality that $f_* \sim \ell_*^{-1} \ge H(t_*)$ so $\left[\frac{f_*}{H}\right] \ge 1$, with value depending on production mech.

 $|H_*|$

$$f = \frac{a_*}{a_0} f_* \sim 1.65 \times 10^3 \,\mathrm{Hz} \,\left(\frac{T_*}{10^{10} \,\mathrm{GeV}}\right)$$

• GWs produced with frequency f_* at $t = t_*$ have characteristic frequency today of

$$f = \frac{a_*}{a_0} f_* \sim 1.65 \times 10^3 \,\mathrm{Hz} \,\left(\frac{T_*}{10^{10} \,\mathrm{GeV}}\right)$$

==> ground based interferometers (LVK, ET, CS..) correspond to scales $10^6 \text{ GeV} \leq T_* \leq 10^{10} \text{ GeV}$

==> GWs in the GHz band would correspond to GUT scales cosmological sources. (No known astrophysical sources are known)

==> LISA frequencies included energy scale of EW symmetry breaking $T_* \sim 100 \text{ GeV}$

==> nHz frequencies of PTAs coincide with chiral symmetry breaking and quark-gluon confinement (QCDPT), $T_* \sim 150 \text{ MeV}$

SKA. (Assuming 50 ms pulsars, $T_{obs} = 15$ yrs – assumed a SMBHB background with amplitude and spectrum obtained from simulations

ET (CE).

– weak signals from unresolved compact Binary mergers, SNR $\simeq 50~(72)$

- Lecture I: Overview on early- and late-time cosmology with GWs; current and future experiments,
 orders of magnitude
- Lecture 2: Late-time cosmology: GWs and $d_L(z)$
 - GWs in theories beyond GR, $d_L^{GW}(z)$
 - standard sirens I: Measuring H_0 with GWs and O3 results of LVK
 - Back to early-time universe: an example of what physics we can probe.
- Lecture 3 (Chiara Caprini):
 - cosmological stochastic GW background: early-universe cosmology with GWs Solutions of the GW propagation equation in FLRW; its calculation for different sources (inflation, topological defects, first order phase transitions)
- Lecture 4 (Nicola Tamanini):

- Standard sirens II: more details, statistical methods, future prospects

- Lecture 5 (Tania Regimbau):
 - astrophysical stochastic GW background: Definition/statistical properties, pulsar timing arrays and background from supermassive BH binaries, LVK results, prospects for the future.
Late time cosmology with binaries: characteristic scales and orders of magnitude.

LISA: $10^{-4} \text{ Hz} \lesssim f_{\text{GW}} \lesssim 1 \text{ Hz}$

$$R = d = d(z, H_0, \ldots)$$

 $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} + \dots$

 $v/c \ll 1$

- The *merger phase* generally requires numerical relativity other other techniques such as effective one-body techniques, see e.g. (Deruelle and Uzan 2018) for an introduction.
- The *ringdown phase* can also be approached with perturbative methods, namely BH perturbation theory, see e.g. (Kokkotas and Schmidt 1999; Santoni 2024).

very basics on GW

[see Maggiore, Poisson and Will, Speziale and Steer...]

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

NEXT 6 SLIDES NOT DONE IN LECTURES

 $\sim 10^{-43} \text{ kg}^{-1} \text{m}^{-1} \text{s}^{-1}$ space-time is elastic but very rigid (need massive energetic objects to produce detectible GWs)

- perturbative treatment of Einstein's equations
- background metric $\bar{g}_{\mu\nu}$ & perturb $g_{\mu\nu}=\bar{g}_{\mu\nu}+h_{\mu\nu}+h_{\mu\nu}^{(2)}+\ldots$

Assumption: in some coordinate system $|h_{\mu\nu}| \ll 1$

-And then attempt to solve Einstein's equations order by order.

To first order $G_{\mu\nu}^{(1)}(h) = \frac{8\pi G}{c^4} T_{\mu\nu}^{(1)}.$ To 2nd order. $G_{\mu\nu}^{(1)}(h^{(2)}) = \frac{8\pi G}{c^4} \left(T_{\mu\nu}^{(2)} + t_{\mu\nu}^G\right), \qquad t_{\mu\nu}^G := -\frac{c^4}{8\pi G} G_{\mu\nu}^{(2)}(h).$

first order solution feeds back as a source for the second order solution (standard from perturbatively solving non-linear equations) **Minkowski background** (solar system or sub-Hubble scales) $\bar{g}_{\mu\nu} = \bar{\eta}_{\mu\nu}$

- Weak field, Post-Minkowskian expansion: $h^{(n)} \sim G^n$
- If further impose the non-relativistic approximation $v/c \ll 1$ **Post-Newtonian** expansion

-The 2 propagating d of f are obtained by (1) solving $\Box h_{ij} = -\frac{16\pi G}{c^4}T_{ij}^{(1)}$

(2) and imposing the transverse and traceless conditions: $h_i^i = 0 \ \partial_i h^{ij} = 0$

$$h_{ij}^{TT}(t,\vec{x}) = \Lambda_{ij,kl}(\hat{k})h_{kl}(t,\vec{x})$$

$$\Lambda_{cd}^{ab}(\hat{k}) = = \delta_{(c}^{a}\delta_{d)}^{b} - \frac{1}{2}\delta^{ab}\delta_{cd} - \delta_{(c}^{a}\hat{k}^{b}\hat{k}_{d)} - \hat{k}^{a}\hat{k}_{(c}\delta_{d)}^{b} + \frac{1}{2}(\delta^{ab}\hat{k}_{c}\hat{k}_{d} + \hat{k}^{a}\hat{k}^{b}\delta_{cd} + \hat{k}^{a}\hat{k}^{b}\hat{k}_{c}\hat{k}_{d}).$$

- Stress energy conservation reduces to $\partial^{\mu}T^{(1)}_{\mu\nu} = 0$: matter does not interact with the gravitational field. Sources follow geodesics in flat spacetime

Vacuum solutions:

 $\Box h_{ii} = 0$

 $h_i^i = 0 \ \partial_i h^{ij} = 0$

• Wave propagating in \hat{z} direction

$$\begin{split} h_{ij}(t,z) &= e^{2\pi i f(t-z)} \begin{pmatrix} h_{+} & h_{\times} & 0 \\ h_{\times} & -h_{+} & 0 \\ 0 & 0 & 0 \end{pmatrix} = \sum_{P=+,\times} e^{2\pi i f(t-z)} \epsilon_{ij}^{P} h_{P}, \\ \text{polarisation tensors} \ e_{ij}^{+} &= \hat{x}_{i} \hat{x}_{j} - \hat{y}_{i} \hat{y}_{j}, \ e_{ij}^{\times} &= 2 \hat{x}_{(i} \hat{y}_{j)}, \end{split}$$

• Resulting perturbed metric:

 $ds^{2} = -dt^{2} + (1 + h_{+}\cos k \cdot x)dx^{2} + (1 - h_{+}\cos k \cdot x)dy^{2} + 2h_{\times}\cos k \cdot x\,dxdy + dz^{2}.$

• Taking a ring of particles in the (x, y) plane and $\lambda_{GW} \gg L_0$ (ignore space dependence of h_{ii})

Vacuum solutions:

$$\Box h_{ij} = (\partial_t^2 - \nabla^2) h_{ij} = \mathbf{0}_i^i = 0 \ \partial_i h^{ij} = 0$$

• Wave propagating in \hat{z} direction

$$h_{ij}(t,z) = e^{2\pi i f(t-z)} \begin{pmatrix} h_{+} & h_{\times} & 0 \\ h_{\times} & -h_{+} & 0 \\ 0 & 0 & 0 \end{pmatrix} = \sum_{P=+,\times} e^{2\pi i f(t-z)} \epsilon_{ij}^{P} h_{P},$$
polarisation tensors $e_{ij}^{+} = \hat{x}_{i} \hat{x}_{j} - \hat{y}_{i} \hat{y}_{j}, e_{ij}^{\times} = 2\hat{x}_{(i} \hat{y}_{j}),$

• Resulting perturbed metric:

$$ds^{2} = -dt^{2} + (1 + h_{+}\cos k \cdot x)dx^{2} + (1 - h_{+}\cos k \cdot x)dy^{2} + 2h_{\times}\cos k \cdot x\,dxdy + dz^{2}.$$

Taking a ring of particles in the (x, y) plane and $\lambda_{GW} \gg L_0$ (ignore space dependence of h_{ij})

$$\begin{split} \ddot{h}_{ij} + 3H\dot{h}_{ij} - \frac{\nabla^2}{a^2}h_{ij} &= 0 \\ h_{ij} \sim a^{-1} \text{ on sub Hubble scales } \lambda \ll H^{-1} \\ f &= \frac{f_e}{1+z}, \ dt = (1+z)dt_e \end{split}$$

• For a source localised in space, of characteristic size d and at distance $|\vec{x}| = R \gg d$

$$h_{ij}(t,\vec{x}) = \frac{4G}{c^4} \int_{source} d^3y \, \frac{T_{ij}(t-\frac{1}{c} | \vec{x} - \vec{y} |, \vec{y})}{| \vec{x} - \vec{y} |}.$$
 In general no analytic solution.

Approx I: consider distances $R = |\vec{x}| \gg d$ large compared to the size of the source:

$$h_{ij}(t,\vec{x}) \sim \frac{4G}{c^4 R} \int_{source} d^3 y \, T_{ij}(t - \frac{R}{c} - \frac{\vec{y} \cdot \vec{N}}{c}, \vec{y}) \qquad \vec{x} = R \vec{N}$$

Approx 2: typical velocities $v/c \ll 1$. On using $\partial_{\mu}T^{\mu\nu} = 0$ leads to

$$h_{ij}(t,\vec{x}) \sim \frac{2G}{c^4 R} \ddot{Q}_{ij}(t-R/c) \qquad \qquad Q_{ij} = \frac{1}{c^2} \int d^3 y T^{00}(t,\vec{y})(y_i y_j - \frac{1}{3}y^2 \delta_{ij})$$

from which one can extract $h_{+,\times}$

• GWs carry energy momentum and angular momentum from the source

$$\frac{dE_{GW}}{dt} = \frac{c^3}{32\pi G} \oint_{S_2} \dot{h}_{ab}^{TT} \dot{h}_{ab}^{ab} dS \qquad \qquad \frac{J_{GW}^a}{dt} = \frac{v \ll c}{5c^5} e^{abc} \ddot{Q}_{bd} \ddot{Q}_c^{\ d}|_{t_R}.$$

$$v \ll c = -\frac{G}{8c^5} \ddot{Q}_{ab} \ddot{Q}^{ab}$$

Example: Binary systems

— assume source in the (x, y) plane satisfies Newtonian equations $(v/c \ll 1)$ ie. Keplers orbits, eccentricity e,

semi-latus rectum p total energy $E\propto e^2-1$ angular momentum L

Circular orbits: e = 0, bound elliptical orbits: e < 1unbound hyperbolic orbits: e > 1

— Straightforward to calculate Q_{ij} as well as GW energy and angular momentum radiation

— use conservation of energy and angular momentum

$$\frac{dE}{dt} = -\frac{dE_{GW}}{dt}, \qquad \frac{dL}{dt} = -\frac{dJ_{GW}^z}{dt}$$

To determine e(t), p(t) and $h_{+,\times}(t, \overline{N})$

$$\begin{split} h_{ij}(t,\vec{x}) &\sim \frac{2G}{c^4 R} \ddot{Q}_{ij}(t-R/c) \\ Q_{ij} &= \frac{1}{c^2} \int d^3 y T^{00}(t,\vec{y}) (y_i y_j - \frac{1}{3} y^2 \delta_{ij}) \\ &\frac{J_{GW}^a}{dt} \stackrel{v \ll c}{=} \frac{2G}{5c^5} \epsilon^{abc} \ddot{Q}_{bd} \ddot{Q}_c{}^d|_{t_R}. \end{split}$$

---- e(t_i)=0.3

For circular orbits, the solutions are analytical

From [Speziale and Steer]

FIG. 14: Four waveforms, in the lowest order PN expansion, with initial values of eccentricity given by e = 0, 0.3, 0.5 and 0.7. Most GW power is emitted near the pericenter where the orbital velocity is the largest. Also since more GW radiation is emitted as e increases, the merger occurs earlier.

On characteristic scales for binary systems, and detector reach

LISA: $10^{-4} \text{ Hz} \lesssim f_{\text{GW}} \lesssim 1 \text{ Hz}$

$$R = d = d(z, H_0, \ldots)$$

Binaries on Circular orbits: orders of magnitude to obtain d_L

- Inspiral phase:
$$f_{\rm GW} = \frac{1}{\pi} \left(\frac{G\mathcal{M}}{c^3}\right)^{-5/8} \left(\frac{5}{256\tau}\right)^{3/8}$$

⇒

time to coalescence $\tau = t - t_c$

-Assuming merger at ISCO
$$a = \frac{6Gm}{c^2}$$
 with $m = m_1 + m_2$
=> Merger frequency:

$$f_{\rm merger} = \frac{1}{6^{3/2}} \left(\frac{c^3}{Gm}\right)$$

• BNS, $m_{1,2} \sim 1.4 M_{\odot}$ $f_{\text{merger}} \sim 1.5 \text{ kHz}$ • stellar mass BHs, $m_{1,2} \sim 35 M_{\odot}$ $f_{\text{merger}} \sim 60 \text{ Hz}$

G

6

Time (s)

Binaries on Circular orbits: orders of magnitude to obtain d_L

- Inspiral phase:
$$f_{\rm GW} = \frac{1}{\pi} \left(\frac{G\mathcal{M}}{c^3}\right)^{-5/8} \left(\frac{5}{256\tau}\right)^{3/8}$$

⇒

time to coalescence $\tau = t - t_c$

-Assuming merger at ISCO
$$a = \frac{6Gm}{c^2}$$
 with $m = m_1 + m_2$
=> Merger frequency:

$$f_{\text{merger}} = \frac{1}{6^{3/2}} \left(\frac{c^3}{Gm}\right)$$

• BNS, $m_{1,2} \sim 1.4 M_\odot$ $f_{
m merger} \sim 1.5\,
m kHz$

• stellar mass BHs, $m_{1,2}\sim 35 M_\odot~f_{
m merger}\sim 60\,{
m Hz}$

• Supermassive BBHs,
$$m_{1,2} \sim 10^6 M_\odot~f_{
m merger} \sim 10^{-3}\,{
m Hz}$$

– nHz frequencies (PTA) do **not** correspond to of SMBHB coalescence, but emitted by binaries with masses $10^7 - 10^{10} M_{\odot}$, on broad orbit (period ~ year(s))

UÌ

.

• <u>Time to merger</u>

If GWs enter frequency band of a detector at observed frequency $f_{\rm low}$

$$T \sim 10^{-3} f_{\rm low}^{-8/3} \left(\frac{c^3}{G\mathcal{M}}\right)^{5/3} \qquad f_{\rm merger} \gg f_{\rm low}$$

• BNS, entering LIGO-Virgo detector window at observed frequency $f_{\rm low} \sim 20 \,{\rm Hz}$ $T \sim 4 \,{\rm min}$ $m_{1,2} \sim 1.4 M_{\odot} ~f_{\rm merger} \sim 1.5 \,{\rm kHz}$

• BNS, entering ET detector window at observed frequency $f_{
m low} \sim 1\,{
m Hz}$ $T\sim 5\,{
m days}$

=> cannot neglect the rotation of the earth

=>Given the merger rates for BNS, BBH and BH-NS, expect a typical BNS signal will be overlapped by a number of BBH signals, which may merge at similar times

• stellar mass BHs entering LIGO-Virgo detector window

 $m_{1,2} \sim 35 M_{\odot}$ $T \sim 0.1 \,\mathrm{s}$ $f_{\mathrm{merger}} \sim 60 \,\mathrm{Hz}$

• Supermassive BBHs,

 $m_{1,2} \sim 10^6 M_{\odot}$ $T \sim 1 \,\mathrm{month}$

• stellar mass BHs entering LISA detector window

 $f_{\rm low} \sim 10^{-2} \,\mathrm{Hz}$ $T \sim 20 \,\mathrm{yrs}$ • <u>Amplitude/distance</u>

 $h \sim \frac{4}{R} \left(\frac{G\mathcal{M}}{c^2}\right)^{5/3} \left(\frac{\pi f_{\rm GW}}{c}\right)^{2/3}$

• stellar mass BHs in LIGO-Virgo

 $m_{1,2} \sim 35 M_{\odot}$ $f_{\rm merger} \sim 60 \,{\rm Hz}$ $h \sim 10^{-21}$ gives $R \sim 400 \,{\rm Mpc}$

converted to a redshift assuming the Planck values of cosmological parameters $~~dH_0 \sim c\,z$

Horizon redshift as a function of total source frame mass for an SNR detection threshold of rho=8. For LISA assumes 4 yrs obsv.

z>20; dark era preceding birth of first stars: any detected BHs must be primordial

Conclusions:

I/ LVK,ET ==> BNS+ stellar mass and intermediate mass BHs
2/ LISA ==> merger of supermassive BHs
3/ cannot neglect expansion of the universe