

Reionisation: (some)Observations

Marian Douspis IAS, Orsay

When ? how long ? what sources ?

• e⁻, ν_{CMB}

• e-, ν_{CMB}

• v_{gal}

- e-, ν_{CMB}
- v_{gal}
- HI

- *v*_{CMB}
- v_{gal}
- HI
- HI/HII

• ν_{CMB}

- ν_{gal}
- HI
- HI/HII

• x_e(z) • x_e(z, **n**)

• 7

• ν_{CMB}

OUTLINE

- Probing reionisation with CMB data (milimeter observations)
- Probing reionisation with high redshift galaxy luminosity function (infra-red observations)
- Probing reionisation with quasars observations
- Probing reionisation with 21cm observations

Principles Limitations of the observations Some results

BASIC EQUATIONS

20

$$\tau_e(z) = \int_0^z \frac{c(1+z')^2}{H(z')} Q_{H_{II}}(z') \sigma_T \langle n_H \rangle_0 (1+\eta(z') \frac{Y_p}{\frac{m_{He^4}}{m_{H_I}} X_p}) dz'$$

$$x_e(z) = Q_{H_{II}}(z)(1+\eta(z)\frac{Y_p}{\frac{m_{He^4}}{m_{H_I}}X_p}) = \frac{n_e}{n_H} \qquad Q_{H_{II}} = \frac{n_{H_{II}}}{n_H}$$
$$x_{H_I} = \frac{n_{H_I}}{n_H}$$

$$\langle n_H \rangle_0 = X_p \Omega_b \rho_c / m_H$$
 $z_{reio} = z(x_e = 0.5)$

$$\eta(z) = 1$$
 First He reionisation $z \gtrsim 4$
 $= 2$ Second He reionisation $z \lesssim 4$
 M

$$\equiv 1.5 + 0.5 * tanh((z_{He} - z)/\Delta_{z_{He}})$$

$$Y_p = 0.2448$$

$$X_p \sim 1 - Y_p \sim 0.7552$$

$$\frac{m_{He^4}}{m_{H_I}} = \frac{4.002602}{1.008} \sim 3.9708$$

=

- CMB in a nutshell
- Damping of Angular Power Spectrum (APS)
- Large scale bump in polarisation APS
- Small scales anisotropies in intensity APS: kSZ

CMB IN A NUTSHELL

 Light emitted at the recombination, when Universe become transparent

● $p+e^- \rightarrow H$

©J. Aumont

Spherical Harmonics

$$a_{l,m} = \int_{\theta,\phi} \Delta T(\theta,\phi) Y_{l,m}(\theta,\phi)$$

Angular power spectrum

$$C_l = \sum_{m=-l}^{m=l} \frac{|a_{l,m}|^2}{2\ell + 1}$$

MARIAN DOUSPIS - LES HOUCHES - 2025

CMB IN A NUTSHELL

- CMB is a polarised light
- Polarisation created by quadrupolar anisotropies @ decoupling

• Obs in Intensity and polarisation : TT, EE, TE, BB

More and better during the Advanced CMB lecture

©J.Borril

CMBI: DAMPING

• Probability of photon scattering between initial time t_i and present t_0 is given by $1-e^{-\tau(t_0)}$ with τ the optical depth

$$\tau \equiv \int_{t_i}^{t_0} \sigma_T n_e(t) dt$$
scattered out scattered in
$$\bar{T} + \Delta T \rightarrow (\bar{T} + \Delta T) - (\bar{T} + \Delta T) (1 - e^{-\tau}) + \bar{T} (1 - e^{-\tau})$$

$$\rightarrow \bar{T} + \Delta T e^{-\tau}$$

$$C_l \rightarrow C_l e^{-2\tau}$$

but at large scales damping does not occur
 need anyway a xe(z) to compute the τ(z) thus Cls

CMBI: DAMPING

CMB II: EE LOW L BUMP

- Reionisation creates CMB polarisation anisotropies
- Free electrons exposed to large scale CMB quadrupole
- Peaks at ~horizon at EoR
- \odot signal $\propto au$, bump in EE spectrum $\propto au^2$

CMB II: EE LOW L BUMP

CMB III: KINETIC SUNYAEV ZEL'DOVICH EFFECT

The bulk velocity of free electrons relative to the CMB introduces a Doppler shift to the scattered photons

Bulk motion in reionised gas in late universe \rightarrow homogeneous kSZ

Bulk motion in reionised bubbles in reionisation era \rightarrow patchy kSZ

$$\frac{\Delta T_{kSZ}}{T_{CMB}}(\hat{\mathbf{n}}) = \sigma_T \int \frac{e^{-\tau(z,\hat{\mathbf{n}})}}{(1+z)H(z)} n_e(z,\hat{\mathbf{n}}) \,\hat{\mathbf{n}} \,.\, \mathbf{v} \, dz$$

 $n_{H}(z,\hat{\mathbf{n}})x_{e}(z,\hat{\mathbf{n}}) = \langle n_{H}(z) \rangle \langle x_{e}(z) \rangle (1 + \delta_{b}(z,\hat{\mathbf{n}}) + \delta_{x}(z,\hat{\mathbf{n}}) + \delta_{b}\delta_{x}(z,\hat{\mathbf{n}}))$

CMB III: KINETIC SZ EFFECT

- Different histories of EoR
 - time and duration

 Different sources of reionisation

morphology

Gorce et al 2020

• Need for:

- Iarge ell coverage TT+EE for Damping
- Large scales for EE bump
- Small scales for kSZ

MARIAN DOUSPIS - LES HOUCHES - 2025

Right ascension (hh:mm)

SPT

MARIAN DOUSPIS - LES HOUCHES - 2025

• Limitation : degeneracy and Cosmic variance

Foregrounds EE

Planck collab. 2014

Planck collab. 2014

- dominate @ low ell
- model fgds, clean and marginalise over residuals

Systematics EE

Planck collab. 2018

- Large scale structures in the maps @ low ell
- → model systematics, clean and marginalise over residuals

• kSZ is one of many foregrounds

→ Mitigation of kSZ thanks to many frequencies

ACT collab. 2025

CMB : CONSTRAINTS ON EOR

Reionisation in one number (TT+EE)

from WMAP TE with residual dust

first use of HFI EE bump

CMB : Constraints on EoR

• Can we learn more than τ ?

 \bullet usual approach 1 or 2 params z_{re} , Δ_z

$$x_{\rm e}(z) \propto \frac{1}{2} \left[1 + \tanh\left(\frac{1}{\Delta z_{\rm re}} \frac{(1+z_{\rm re})^{\gamma} - (1+z)^{\gamma}}{\gamma(1+z_{\rm re})^{\gamma-1}}\right) \right],$$

 $\tau_e \equiv \int_0^{1100} \sigma_T x_e(z) dz$

• more realistic

$$x_{\rm e}(z) = \begin{cases} (1+f_{\rm He}) & \text{for } z \le z_{\rm end}, \\ (1+f_{\rm He}) \left(\frac{z_{\rm beg}-z}{z_{\rm beg}-z_{\rm end}}\right)^{\alpha} & \text{for } z > z_{\rm end}. \end{cases}$$

Douspis et al. 2015 Planck collab 2016

• parametric forms

CMB : **C**ONSTRAINTS ON **E**O**R**

Models

CMB : **C**ONSTRAINTS ON **E**OR

Results

llic et al 2025

CMB : Constraints on EoR

• Need CV limited to gain factor 2 on error bars

llic et al 2025

MARIAN DOUSPIS - LES HOUCHES - 2025

CMB : CONSTRAINTS ON EOR (TT+EE+KSZ)

CMB : CONCLUSIONS

Data

- TT Damping : best data Planck
- EE Damping : Planck+ACT+SPT
- EE Bump : Space needed to go to CV → LiteBIRD
- kSZ : SPT+ACT → SO, S4, …
- Foregrounds/syste: masking, cleaning : ok but continues
- Modelling
 - bibliotheque of $x_e(z)$ ready for new data

Results

- τ constraints stable over years and models: low τ
- if CV on EE and better kSZ, maybe learn on shape of x_e

CMB : **PROSPECTS**

higher orders

- bi-spectrum, trispectrum of kSZ
- reconstruction of patchyness
 - $n_H(z, \hat{\mathbf{n}}) x_e(z, \hat{\mathbf{n}}) = \langle n_H(z) \rangle \langle x_e(z) \rangle (1 + \delta_b(z, \hat{\mathbf{n}}) + \delta_x(z, \hat{\mathbf{n}}) + \delta_b \delta_x(z, \hat{\mathbf{n}}))$
 - $C_{\ell}^{\tau\tau}$
 - informs on the morphology
- Internal cross-correlations
 - $\bullet \ C_{\ell}^{\tau kSZ}$
 - 3pt combinaisons: τ -kSZ-kSZ , τ - τ -kSZ

complement but come with own limitations

OUTLINE

- Probing reionisation with CMB data (milimeter
 ν_{CMB} τ observations)
- Probing reionisation with high redshift galaxy luminosity function (infra-red observations)
- Probing reionisation with quasars observations
- Probing reionisation with 21cm observations

Principles Limitations of the observations Some results

GALAXY LUMINOSITY FUNCTION

- How can we relate the history of reionisation and the galaxy luminosity function?
- Let's focus on the ionizing photons

$$\dot{Q}_{\mathrm{H_{II}}} = rac{\dot{n}_{\mathrm{ion}}}{\langle n_{\mathrm{H}} \rangle} - rac{Q_{\mathrm{H_{II}}}}{t_{\mathrm{rec}}},$$

Source Sink recombination

n_{ion} : production rate of ionizing photons
 <n_H> : mean hydrogen number density

 $Q_{\mbox{\scriptsize HII}}$: ionized hydrogen fraction $t_{\mbox{\scriptsize rec}}$: averaged gas recombination time

GALAXY LUMINOSITY FUNCTION

$$\begin{split} \dot{Q}_{\rm H_{II}} &= \frac{\dot{n}_{\rm ion}}{\langle n_{\rm H} \rangle} - \frac{Q_{\rm H_{II}}}{t_{\rm rec}}, \end{split}$$
Mean Hydrogen number today
$$\langle n_H \rangle_0 &= X_p \Omega_b \rho_c / m_H$$
Recombination time
$$t_{\rm rec} = \frac{1}{C_{\rm H_{II}} \alpha_{\rm B}(T)(1+Y_{\rm p}/4X_{\rm p}) \langle n_{\rm H} \rangle (1+z)^3}, \quad \mathsf{C}_{\rm HII}: \text{clumping factor}$$

Production rate of ionising photons

$$\dot{n}_{\rm ion} = \int_{-\infty}^{M_{\rm trunc}} f_{\rm esc}(M_{\rm UV}) \xi_{\rm ion}(M_{\rm UV}) \Phi(M_{\rm UV}) L(M_{\rm UV}) dM_{\rm UV}$$
$$\equiv \langle f_{\rm esc} \xi_{\rm ion} \rangle \,\rho_{\rm UV}, \qquad (28)$$

$$f_{esc}$$
: escape fraction ξ_{ion} : ionising photon

$$ho_{
m UV}(z) = \int_{-\infty}^{M_{
m trunc}} \Phi(M_{
m UV}) L(M_{
m UV}) dM_{
m UV},$$

 \bigcirc

 \bigcirc

GALAXY LUMINOSITY FUNCTION

$$ho_{
m UV}(z) = \int_{-\infty}^{M_{
m trunc}} \Phi(M_{
m UV}) L(M_{
m UV}) dM_{
m UV},$$

• Galaxy luminosity function Φ at z

• Press&Schechter form: $\Phi(M) = 0.4 \ln 10\phi_{\star} [10^{0.4(M_{\star}-M)}]^{1+\alpha} \exp[-10^{0.4(M_{\star}-M)}]$

• M_{trunc} ? until which magnitude you can extrapolate

Summary

• if you have galaxies, you can measure Φ , you have ρ_{UV} , you have n_{ion} , you can resolve: $\dot{Q}_{H_{II}} = \frac{\dot{n}_{ion}}{\langle n_H \rangle} - \frac{Q_{H_{II}}}{t_{rec}}$, so have τ and $x_e(z)$

- need to measure the number of galaxies per redshift and magnitude per volume
 - harder at high redshift/low luminosity
 - good z, good L, many galaxies

- need to measure the number of galaxies per redshift and magnitude per volume
 - harder at high redshift/low luminosity
 - good z, good L, many galaxies

Use a telescope... a gravitational telescope

Lensing allows you to see further and fainter galaxies

skip many details of how to measure z and L

need to measure the number of galaxies per redshift and magnitude per volume

harder at high redshift/low luminosity

- good z, good L, many galaxies
- fit Φ and integrate to find ρ_{UV}

need to decide M_{trunc}

need to measure the number of galaxies per redshift and magnitude per volume

harder at high redshift/low luminosity

good z, good L, many galaxies

• fit Φ and integrate to find ρ_{UV}

need to measure the number of galaxies per redshift and magnitude per volume

harder at high redshift/low luminosity

good z, good L, many galaxies

• fit Φ and integrate to find ρ_{UV}

need to decide M_{trunc}

• fit ρ_{UV} and integrate to find Q

• need f_{esc} , ξ_{ion} , C_{HII} and extrapolate ρ_{UV} to z~30

• Resolve Q(z) get τ

Gorce et al. 2018

MARIAN DOUSPIS - LES HOUCHES - 2025

MARIAN DOUSPIS - LES HOUCHES - 2025

Gorce et al. 2018

GLF : **Results**

Gorce et al. 2018

- Reconstructed EoR depends on f_{esc}, ξ_{ion}, C_{HII} fixed, free or redshift dependent
- Reconstructed EoR depends on M_{trunc}, so the number of unseen faint galaxies
- High redshift ionising flux unknown. Combining all constraints : soft upper limit
- Need for high-z low-L galaxies

Harikane et al.. 2025

GLF : **Results JWST**

MARIAN DOUSPIS - LES HOUCHES - 2025

GLF : **R**ESULTS **JWST**

- Hint for too many bright galaxies
 - e mergers, low stats

Harikane et al.. 2025

14

12

8

6

10

Redshift

- high $\rho_{UV} \rightarrow$ high $\tau \rightarrow$ but freedom in models
- still not in tension when marginalised over unknowns

GLF : CONCLUSION

- GLF : potential probe of reionisation
- Need for spectroscopy
 - interlopers at low z in photo-z samples
- Mergers and AGNs may increase luminosity
 - revision of models : higher star formation efficienty
- stochasticity of star formation
 - Iarge datasets
- high ρ_{UV} at high z thus high τ
 - may be compensated by low f_{esc} etc....

OUTLINE

- Probing reionisation with high redshift galaxy luminosity function (infra-red observations)
- Probing reionisation with quasars observations
- Probing reionisation with 21cm observations

Principles Limitations of the observations Some results

MARIAN DOUSPIS - LES HOUCHES - 2025

OUTI INF

- Probing reionisation with CMB data (milimeter $\bigcirc \nu_{\rm CMB}$ observations)
- Probing reionisation with high redshift galaxy luminosity function (infra-red observations)
- Probing reionisation with quasars observations
 - end of reionisation
 - Damping Wings
 - Equivalent Width

Principles Limitations of the observations Some results

 $\odot \tau$

• ν_{gal}

HI

HI/HII

• $\mathbf{x}_{e}(z)$

• Gunn-Peterson effect : Lyman- α absorption by neutral

medium of distant quasar emission

• end of reionisation $2.8 < z_{end} < 7.0$

Different lines of sight

 $x_e(z, \mathbf{\hat{n}}) = \langle x_e(z) \rangle (1 + \delta_{x_e}) = \langle x_e(z) \rangle (1 + \frac{\delta_b}{\delta_b}(z, \mathbf{\hat{n}}) + \frac{\delta_b}{\delta_b}\delta_x(z, \mathbf{\hat{n}}))$

• too large dispersion (not explained by δ_b)

needs to be inhomogeneous end of reionisation

Strong redshift evolution of the fraction of IGM located inside a dark gap of length >30 cMpc

0% at z=5 to >80% at z=6

Zhu, SB+XQR-30 2021

MARIAN DOUSPIS - LES HOUCHES - 2025

• statistical analysis (67 quasars)

QUASARS : END OF REIONISATION: TEMPERATURE

QUASARS : END OF REIONISATION: CONCLUSION

- Excess scatter in effective optical depths at z>5.3
- Existence of long coherent absorption at z>5.3
- IGM has been heated fairly recently at z=5.7

- UV light does not percolate the Universe until z=5.3 (+- 0.1)
- Only possible if reionisation is
 - very late: midpoint of reionisation at $z \sim 7$ is most likely
 - e patchy

OTHER REIONISATION PROBES

Same idea of interaction photons-HI

- the damping wing absorption from neutral IGM in quasar (et al.)
- Ly- α equivalent width
- The distribution of dark gaps in quasar spectra Greig et al.
- It the size and evolution of the proximity zone around quasars
- the number density and clustering of Ly- α emitters

Umeda et al. 2025

OTHERS: **D**AMPING WINGS

- If enough HI, the absorption profile is dominated by the natural line broadening described by the Lorentzian component of the Voigt profile (Meiksin 2009) → damping wing.
- Strength of the damping wing is proportional to the optical depth of the diffuse IGM and hence the volume-averaged neutral fraction
- Constraints on the reionization history from individual bright objects

OTHERS: DAMPING WINGS

Ďurovčíková et al 2024

MARIAN DOUSPIS - LES HOUCHES - 2025

OTHERS: **D**AMPING WINGS

OTHERS: **D**AMPING WINGS

Limitations

- proximity zone effect ↔ average quasar lifetime ↔ DW
- need continuum reconstruction
- simulation dependent
- high LOS variation
- Results:
 - Iate reionisation

Ďurovčíková et al 2024

-8

Others: Ly- α Equivalent Width

- Ly-α Equivalent Width (EW) is defined by a Ly-α flux relative to a UV continuum flux
 - it reflects the intensity of the Ly- α emission
 - it is sensitive to x_{HI} as the flux is damped by the amount of HI

$$p(EW_i|x_{HI}) = \int_0^\infty dEW \frac{e^{-\frac{(EW-EW_i)^2}{2\sigma_i^2}}}{\sqrt{2\pi}\sigma_i} p(EW|x_{HI}),$$

Nakane et al 2024

Others: Ly- α Equivalent Width

MARIAN DOUSPIS - LES HOUCHES - 2025

Others: Ly- α Equivalent Width

Consistent with other probes

Favors late reionisation

- CMB gives you τ , more or less time, and duration (morphology)
- Gal. Lum. Functions gives you history $x_e(z)$
- Quasars give you information on the end of reionisation and intermediate redshifts
- 21cm should give you tomography and morphology $x_e(z, \mathbf{n})$

➡ a chance to have many probes !

CONCLUSIONS: WHAT DO WE KNOW ?

- CMB: *τ* = 0.056 ± 0.0045
 - Iate and fast end (z~7.7)
- GLF

- Iate and fast, need to adjust high z gal. from JWST
- End of reionisation
 - Iater than z=6 (z~5.3), patchy
- DW and EW
 - Iate reionisation
- each probe is (more or less) limited by systematics but they all converge towards late reionisation
- approch should be global combination of probes

CONCLUSIONS: WHAT DO WE DON'T KNOW ?

Exact shape of x_e(z)

- Improvement of CMB factor 2 on EE may (or not) help make difference between all shapes
 - LiteBIRD* 2030+ for large scales
- GLF to fainter and higher-z galaxies
 - years of JWST, and using lenses, for higher stats, but limited by environment (f_{esc}, ...)
- More quasars and better sims
 - JWST spectra
- 21cm data ! SKA

Morphology

- if kSZ(reio) is measured
 - SO, CMB-S4**, adv-SO, ...
 - trick to remove late time kSZ by cross-correl
 - Cl(τ)
- 21cm !! SKA
 - big challenge on systematics, calibration...
 - big challenge with foregrounds
 - statistical analyses (3pt,...) will come first

Sources

 full picture is needed to undestand the contribution of galaxies, quasars at each z

** cancelled on the 10/07/25 by DOE/NSF

Still some work to do !!