Smooth sailing or ragged climb? -Increasing the robustness of power spectrum de-wiggling and ShapeFit parameter compression

Katayoon Ghaemi

Co-authors: Nils Schöneberg, Licia Verde

PhD advisor: Alice Pisani

Les Houches - Dark Universe

14 July 2025

Outline

- Matter power spectrum
- Extracting information
 from power spectrum
- Goals of the project
- Results
- Conclusion
- Few words on cosmic voids

Matter Power Spectrum

Matter Power Spectrum Fourier transform of the correlation function from galaxy surveys. Amplitude Baryonic Acoustic Oscillations (BAO) Arise from the primordial sound waves. Shape

Extracting information from power spectrum

Classic approach (BAO + RSD):

BAO + RSD, extracting $\alpha_{\parallel}, \alpha_{\perp}$, f σ_8 in a model independent way.

Full shape

Fits the whole power spectrum with EFT.

ShapeFit

It is an extension of the classic approach. Compresses the broadband information in a scale-dependent slope, m. The slope is senstive to matter-radiation equality and baryon suppression.

Classic Approach

- BAO, RSD,
- Template based,
- Uses BAO + amplitude of the power spectrum,
- Provides only latetime dependent physical observables.

Classic Approach

- BAO, RSD,
- Template based,
- Uses BAO + amplitude of the power spectrum,
- Provides only latetime dependent physical observables.

Full Shape

- Uses the whole power spectrum,
- Provides early and late-time information,
- Cosmological model needs to be chosen a priori,
- Needs to be refitted for each model

Classic Approach

- BAO, RSD,
- Template based,
- Uses BAO + amplitude of the power spectrum,
- Provides only latetime dependent physical observables.

Full Shape

- Uses the whole power spectrum,
- Provides early and late-time information,
- Cosmological model needs to be chosen a priori,
- Needs to be refitted for each model

ghaemi@cppm.in2p3.fr

ShapeFit

- Compresses the broadband information in a scale-dependent slope, m.
- More model agnostic
- The constraints are almost as tight as full modelling.

Goals of the project

Extracting the shape of the power spectrum relies on two crucial steps:

- 1. Smoothing the power spectrum (thirteen different methods),
- 2. Calculating the derivative at a given wavenumber k_p.

Goal 1

Compare and refine the robustness of methods for steps 1 and 2, Goal 2

Compute the systematic error, and compare to statistical error of Dark Energy Spectroscopic Instrument (DESI).

The golden sample

Six of the de-wiggling methods which perform better for recovering the broadband shape in the full wavenumber range.

ghaemi@cppm.in2p3.fr

9

ghaemi@cppm.in2p3.fr

Post Processing filters

Differences between the smoothing methods are 1-5%.

Methods of further smoothing the de-wiggled power spectrum ratios were developed to obtain more consistent slope values.

Slope, m

The ShapeFit parameter m can be computed as:

$$\mu = rac{\partial ln(rac{P_{lin}^{no-wiggle}(k/s)}{P_{lin}^{ref,no-wiggle}(k)})}{\partial lnk}ert_{k=k_p} \equiv rac{\partial ln}{\partial lnk}
onumber \ n = rac{\partial ln\left(rac{P_{prim}(k/s)}{P_{prim}^{ref}(k)}
ight)}{\partial lnk}ert_k
onumber \ n = rac{\partial lnk}{\partial lnk}ert_k$$

 $nR\left(k,s
ight)$ $k = k_p$ ∂lnk

 $=k_p$

Calculating the slope

Testing for different cosmological models

Null tests

- Varying A_s
- Varying n_s
- Varying Ω_k
- Evolving dark energy

- Varying $\Omega_{\rm m}h^2$, with fixed $\Omega_{\rm b}/\Omega_{\rm cdm}$
- Varying $\Omega_m h^2$, with fixed Ω_b
- Varying Σm_{ν}
- Varying N_{eff}
- Early dark energy

ghaemi@cppm.in2p3.fr

Different cosmological models

0.0010-0.0005-Slope m0.0000. -0.0005 $\frac{10}{10^{-1}} + 1.2 + 0.8 + 0.72 + 0.01 + 0.00 + 1.2 + 0.4 + 0.$ -0.0010100

ghaemi@cppm.in2p3.fr

Evolving dark energy

The resulting slope m should be identically zero in null tests.

Systematic error

Systematic uncertainty: $\sigma_{m,syst} = 0.023 |m| + 0.001$

If the slope is obtained through the suggested steps described in the paper:

 $\overline{\sigma_{m,syst}}=0.011|m|+0.001|$

ghaemi@cppm.in2p3.fr

15

Conclusions

- There is a roughly 1-2% level difference between different de-wiggling methods to be considered an inherent uncertainty.
- As long as the theory pipeline is consistent with the data analysis pipeline, there is no bias on the cosmological parameters.
- The systematic uncertainty $\sigma_{m,syst}$, is much smaller than current statistical uncertainties.

ghaemi@cppm.in2p3.fr

Read the paper!

16

regions in the universe.

neutrino masses.

mysteries.

ghaemi@cppm.in2p3.fr

Cosmic Voids

- Cosmic voids are large under-dense
- They are sensitive to structure growth, dark energy, modified gravity, sum of
- Therefore, they are promising to answer some of the cosmological

Credit: Hammaus et al 2020

Void-galaxy crosscorrelation function

Measures the probability of finding a galaxy at comoving distance r from the void center.

Current project in DESI: Cosmological constraints from DESI Y3 void-galaxy cross-correlation function measurements in redshift space, first author.

ghaemi@cppm.in2p3.fr

STAY TUNED!

Thank you for your attention!

		Í
	_	

m_{true} is set to the median of tanh (fixed) method.

This method is robust to dewiggling methods and suitable for cosmological inference.

Method	$\Delta m/m$	$\Delta m/m$	$\Delta m/m$
	(no post-proc.)	(moving average)	(Savitzky-Golay)
Gradient	0.197 ± 0.118	-0.053 ± 0.021	$\textbf{0.006} \pm \textbf{0.023}$
Global spline	-0.118 ± 0.010	-0.167 ± 0.009	-0.126 ± 0.010
Local spline	0.185 ± 0.099	-0.054 ± 0.021	0.006 ± 0.023
Polynomial (degree 2)	0.011 ± 0.032	-0.104 ± 0.017	-0.052 ± 0.019
Polynomial (degree 3)	0.140 ± 0.067	-0.055 ± 0.021	0.005 ± 0.023
Polynomial (degree 5)	0.178 ± 0.096	-0.055 ± 0.021	0.006 ± 0.023
Steps $\Delta \ln k = 0.6$	0.132 ± 0.061	-0.058 ± 0.020	0.000 ± 0.022
Steps $\Delta \ln k = 1.4$	0.068 ± 0.044	-0.080 ± 0.019	-0.024 ± 0.021
Steps $\Delta \ln k = 2.2$	-0.028 ± 0.027	-0.119 ± 0.017	-0.069 ± 0.018
Tanh (fixed)	-0.004 ± 0.011	-0.063 ± 0.010	-0.017 ± 0.011
Tanh (fit)	-0.039 ± 0.013	-0.120 ± 0.010	-0.068 ± 0.012

Relative m deviation with respect to m_{true}, and its scatter across the different dewiggling algorithms.

ghaemi@cppm.in2p3.fr

Back-up slides alculating the stematic error