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Searching dark matter through new lines/features in the spectrum of a background source (CMB and quasar/galaxy) 
across the full electromagnetic spectrum

Dark matter signatures as new features in the source spectrum

Source
Dark  

Matter

Absorption and (or) emission signal
Multiple states 

+ 
Weak electromagnetic interactions



Dark matter model setup
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Dark matter comprises of two states which can transition by emitting/absorbing a photon of energy :  
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Dark matter comprises of two states which can transition by emitting/absorbing a photon of energy :  
 
 
 
 

The excitation temperature  characterizes the population of dark matter particles in the two states:
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The excitation temperature  characterizes the population of dark matter particles in the two states: 

The transitions between the two states happens due to:

Tex

Transitions in the two-state dark matter

0

1

ΔE = kBT⋆

χ*

χ

n0

n1
≡

g0

g1
exp( T⋆

Tex )

dTex

dz
=

T2
ex

T*(1 + z) ( C̃10

H (1 − e−T*( 1
TDM

− 1
Tex )) +
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Interactions between CMB and dark matter



Absorption feature in the CMB spectrum is created when Tex < TCMB
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‣  When collisional transitions >> radiative transitions and Hubble expansion rate:                                      
Dark matter absorbs CMB photons  

‣ As DM number density falls, radiative transitions take over and the absorption signal vanishes 

‣

Tex ≈ TDM < TCMB →
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Absorption feature in the CMB spectrum is created when Tex < TCMB
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‣  When collisional transitions >> radiative transitions and Hubble expansion rate:                                      
Dark matter absorbs CMB photons  

‣ As DM number density falls, radiative transitions take over and the absorption signal vanishes 

‣

Tex ≈ TDM < TCMB →
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‣ When collisional transition and radiative transition rates << Hubble expansion rate          freezes out,                                           

Dark matter emits CMB photons  

‣

Tex

Tex > TCMB →



Interactions between CMB, dark matter, baryons, and electrons



Only photon energy changing process (independent of ):    
 
Compton scattering:  

x

e− + γ ⟷ e− + γ
Maintains  till  Telectron ≈ TCMB ∝ (1 + z) z ∼ 150

Leading interactions between CMB, baryons, and electrons



Maintains  till  Telectron ≈ TCMB ∝ (1 + z) z ∼ 150

Leading interactions between CMB, baryons, and electrons

Photon number and energy changing processes :  
 
Double Compton scattering :     
Bremsstrahlung:   

∝ 1/x2

e− + γ ⟷ e− + γ + γ
e− + H+/He+/He++ ⟷ e− + H+/He+ + γ

+

Only photon energy changing process (independent of ):    
 
Compton scattering:  

x

e− + γ ⟷ e− + γ

Important only in the low frequency tail 
 ( )x ≪ 1

x ≡
hν

kBTCMB



xe =
hν

kBTelectron

Kompaneets equation modified in the presence of a monochromatic 
source
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∂xe ) + (Kbr + KdC) e−xe

x3
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bR
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e T3
e

·Nχγδ(xe − x0(t))

The photon distribution function  is described by the modified Kompaneets equation:n(xe, t)

neq →
1

exe+μ − 1
x0 =

hν0

kBTelectron
neq →

1
exe − 1

Compton scattering Double Compton scattering + 
bremsstrahlung

Dark matter transitions 
at  ν0
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The microwave band of the CMB spectrum 

COBE has established CMB to be a perfect 
blackbody at the level of   part in ∼ 1 104

μ < 9 × 10−5,  y < 1.5 × 10−5

D.J. Fixsen, et al. 1996
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The microwave band of the CMB spectrum 

COBE has established CMB to be a perfect 
blackbody at the level of   part in ∼ 1 104

In future, PIXIE will probe the deviations from 
a blackbody at the level of   part in  !∼ 1 108

μ < 9 × 10−5,  y < 1.5 × 10−5

D.J. Fixsen, et al. 1996
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Spectral distortion features in the microwave band will be detectable by PIXIE
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Non-thermal distortions in the CMB have distinct shapes from the thermal  and  distortions.μ y
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Spectral distortion constraints are stronger than the direct detection bounds
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Spectral distortion constraints weaker for larger dark matter mass
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Non-thermal spectral distortions detectable in 21-cm experiments
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Conclusions
‣ We propose new indirect probes to detect dark matter through lines/ features in the spectrum of a

background source.

‣ Dark matter can give rise to both thermal and non-thermal spectral distortions in the CMB which
will be detectable in the next-generation PIXIE-like experiments in 30-600 GHz band.

‣ The radio frequency (50-100 MHz) experiments aiming to measure the 21 cm global signal would
be sensitive to the non-thermal spectral distortion signatures of dark matter.

‣ The current limits on our model from COBE are much stronger than the current limits from direct
detection experiments.
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