Signatures of composite dark matter in the
CMB spectral distortions
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Dark matter signatures as new features In the source spectrum

Searching dark matter through new lines/features in the spectrum of a background source (CMB and quasar/galaxy)

across the full electromagnetic spectrum

| Source |

Multiple states
+ Absorption and (or) emission signal
Weak electromagnetic interactions
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Dark matter model setup



Dark matter as a two-state system

Dark matter comprises of two states which can transition by emitting/absorbing a photon of energy AE:

¥" = Spin 1
NNy AE = kT,

X L Spin 0




Dark matter as a two-state system

Dark matter comprises of two states which can transition by emitting/absorbing a photon of energy AE:
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The excitation temperature 1 ,, characterizes the population of dark matter particles in the two states:
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Transitions In the two-state dark matter

The excitation temperature 1, characterizes the population of dark matter particles in the two states:

he transitions between the two states happens due to:

Collisional transitions Radiative transitions

L. = Ipy e~ Tous
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Interactions between CMB and dark matter



Absorption feature in the CMB spectrum is created when 1, < 1~
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Absorption feature in the CMB spectrum is created when 1, < 1~
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» \When collisional transitions >> radiative transitions and Hubble expansion rate:

I, =~ Tphy < 1Tryp — Dark matter absorbs CMB photons

» As DM number density falls, radiative transitions take over and the absorption signal vanishes



Emission feature in the CMB spectrum is created when 1, > 1,
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» When collisional transition and radiative transition rates << Hubble expansion rate — 1, _ freezes out,

I',. > 1~y — Dark matter emits CMB photons
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Interactions between CMB, dark matter, baryons, and electrons



| eading interactions between CMB, baryons, and electrons

Only photon energy changing process (independent of x):

Compton scattering: e~ +y «— e +vy

Maintains 7, ~ Teyg & (1 +2) tillz ~ 150

lectron



| eading interactions between CMB, baryons, and electrons

Only photon energy changing process (independent of x):

Compton scattering: e~ +y «— e +vy
Maintains 7 jectron = Tomp & (1 +2) tillz ~ 150

_|_

Photon number and energy changing processes o 1/x:

Double Compton scattering: e  +y<«— e +y+y
Bremsstrahlung: e~ + H"/He*/He™ «— e~ + H"/He" + ¥

Important only in the low frequency talil hv
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Kompaneets equation modified In the presence of a monochromatic
source

The photon distribution function n(x.,, t) is described by the modified Kompaneets equation:
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Timeline of CMB spectral distortions caused by dark matter transitions

« Redshift (z)
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Planck spectrum — No distortions |



Timeline of CMB spectral distortions caused by dark matter transitions

« Redshift (z)
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Timeline of CMB spectral distortions caused by dark matter transitions

« Redshift ()
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Timeline of CMB spectral distortions caused by dark matter transitions

122X106 ,

Compton scattering +
Bremsstrahlung + .
double Compton scattering active

Planck spectrum — No distortions |

« Redshift (z)

Only Compton scattering
active

Bose-Einstein spectrum — |

u-distortions

2x 100222105 |

hvy < kgTcyp

Bremsstrahlung + " Al
Inefficient Compton |
| scattering with thermal |
' electrons |

y-distortions
Upto z > 10°

i | byso
‘ ; tra

7 < 10°

hvy 2 kgTeymg

Non-thermal

distortions

ving the rac

standard thermal
processes Inactive

| Final spectrum obtained

lative

nsfer equation



The microwave band of the CMB spectrum

COBE has established CMB to be a perfect
blackbody at the level of ~ 1 part in 10*
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D.J. Fixsen, et al. 1996
COBE
— devp=2.725 K

The microwave band of the CMB spectrum
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Spectral distortion features in the microwave band will be detectable by PIXIE
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Non-thermal distortions in the CMB have distinct shapes from the thermal 1 and y distortions.



\Vlore accurate constraints using the universal distortion parameter u

COBE constrains p and y distortions

iIndependently
u<9%x10™andy < 1.5x 107
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More accurate constraints using the universal distortion parameter u
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Spectral distortion constraints are stronger than the direct detection bounds
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Spectral distortion constraints weaker for larger dark matter mass
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Non-thermal spectral distortions detectable In 21-cm experiments
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Our dark matter model can produce absorption signals consistent with EDGES for AE ~ 100 GHz at z ~ 1000
INn observed frequency band of 50-100 MHz.



Conclusions

> We propose new indirect probes to detect dark matter through lines/ features in the spectrum of a
background source.

> Dark matter can give rise to both thermal and non-thermal spectral distortions in the CMB which
will be detectable in the next-generation PIXIE-like experiments in 30-600 GHz band.

> The radio frequency (50-100 MHz) experiments aiming to measure the 21 cm global signal would
be sensitive to the non-thermal spectral distortion signatures of dark matter.

> The current limits on our model from COBE are much stronger than the current limits from direct
detection experiments.
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