Signatures of composite dark matter in the CMB spectral distortions

Anoma Ganguly

(with Rishi Khatri and Tuhin S. Roy) (arXiv: 2301.03624, 2407.14480)

Les Houches' 25

Dark matter signatures as new features in the source spectrum

Searching dark matter through new lines/features in the spectrum of a background source (CMB and quasar/galaxy) across the full electromagnetic spectrum

Absorption and (or) emission signal

Dark matter model setup

Dark matter as a two-state system

Dark matter comprises of two states which can transition by emitting/absorbing a photon of energy ΔE :

Dark matter as a two-state system

Dark matter comprises of two states which can transition by emitting/absorbing a photon of energy ΔE :

The excitation temperature T_{ex} characterizes the population of dark matter particles in the two states:

$$\frac{n_0}{n_1} \equiv \frac{g_0}{g_1} \exp\left(\frac{T_{\star}}{T_{ex}}\right)$$

Transitions in the two-state dark matter

The excitation temperature T_{ex} characterizes the population of dark matter particles in the two states:

$$\frac{n_0}{n_1} \equiv \frac{g_0}{g_1} \exp\left(\frac{T_{\star}}{T_{ex}}\right)$$

The transitions between the two states happens due to:

Collisional transitions

Radiative transitions

$$\begin{split} T_{ex} \rightarrow T_{DM} & T_{ex} \rightarrow T_{CMB} \\ \frac{dT_{\rm ex}}{dz} = \frac{T_{\rm ex}^2}{T_*(1+z)} \left(\frac{\tilde{C}_{10}}{H} \left(1 - e^{-T_* \left(\frac{1}{T_{\rm DM}} - \frac{1}{T_{\rm ex}} \right)} \right) + \frac{\tilde{A}_{10}}{H} \left(1 - e^{-T_* \left(\frac{1}{T_{\gamma}} - \frac{1}{T_{\rm ex}} \right)} \right) \right) \end{split}$$

Absorption feature in the CMB spectrum is created when $T_{ex} < T_{CMB}$

Absorption feature in the CMB spectrum is created when $T_{ex} < T_{CMB}$

▶ When collisional transitions >> radiative transitions and Hubble expansion rate:

$$T_{ex}pprox T_{DM} < T_{CMB}
ightarrow$$
 Dark matter absorbs CMB photons

As DM number density falls, radiative transitions take over and the absorption signal vanishes

Emission feature in the CMB spectrum is created when $T_{ex} > T_{\gamma}$

lacktriangle When collisional transition and radiative transition rates << Hubble expansion rate $\longrightarrow T_{ex}$ freezes out,

 $T_{ex} > T_{CMB} \rightarrow$ Dark matter emits CMB photons

Leading interactions between CMB, baryons, and electrons

Only photon energy changing process (independent of x):

Compton scattering: $e^- + \gamma \longleftrightarrow e^- + \gamma$

Maintains $T_{\rm electron} \approx T_{\rm CMB} \propto (1+z)$ till $z \sim 150$

Leading interactions between CMB, baryons, and electrons

Only photon energy changing process (independent of x):

Compton scattering: $e^- + \gamma \longleftrightarrow e^- + \gamma$

Maintains $T_{\rm electron} \approx T_{\rm CMB} \propto (1+z)$ till $z \sim 150$

+

Photon number and energy changing processes $\propto 1/x^2$:

Double Compton scattering : $e^- + \gamma \longleftrightarrow e^- + \gamma + \gamma$ Bremsstrahlung: $e^- + H^+/He^+/He^{++} \longleftrightarrow e^- + H^+/He^+ + \gamma$

Important only in the low frequency tail $(x \ll 1)$

$$x \equiv \frac{h\nu}{k_{\rm B}T_{\rm CMB}}$$

Kompaneets equation modified in the presence of a monochromatic source

The photon distribution function $n(x_e, t)$ is described by the modified Kompaneets equation:

$$\frac{\partial n(x_{\rm e},t)}{\partial t} = K_{\rm C} \frac{1}{x_e^2} \frac{\partial}{\partial x_{\rm e}} x_{\rm e}^4 \left(n + n^2 + \frac{\partial n}{\partial x_{\rm e}}\right) + \left(K_{\rm br} + K_{\rm dC}\right) \frac{e^{-x_{\rm e}}}{x_{\rm e}^3} \left[1 - n(e^{x_{\rm e}} - 1)\right] + \frac{I_2}{b_{\rm R}} \frac{1}{x_{\rm e}^2 T_{\rm e}^3} \dot{N}_{\chi\gamma} \delta(x_{\rm e} - x_0(t))$$

$$x_{\rm e} = \frac{h\nu}{k_{\rm B} T_{\rm electron}}$$
Compton scattering
$$n_{\rm eq} \to \frac{1}{e^{x_{\rm e} + \mu} - 1}$$
Double Compton scattering + bremsstrahlung
$$n_{\rm eq} \to \frac{1}{e^{x_{\rm e}} - 1}$$
Dark matter transitions at ν_0

$$x_0 = \frac{h\nu_0}{k_{\rm B} T_{\rm electron}}$$

$$+\frac{I_2}{b_{\rm R}}\frac{1}{x_{\rm e}^2T_{\rm e}^3}\dot{N}_{\chi\gamma}\delta(x_{\rm e}-x_0(t))$$

Dark matter transitions at ν_0

$$x_0 = \frac{h\nu_0}{k_{\rm B}T_{\rm electron}}$$

\leftarrow Redshift (z)				
$z \gtrsim 2 \times 10^6$	$2 \times 10^6 \gtrsim z \gtrsim 10^5$	$z \lesssim 10^5$		

Compton scattering +
Bremsstrahlung +
double Compton scattering active

Planck spectrum → No distortions

\leftarrow Redshift (z)				
$z \gtrsim 2 \times 10^6$	$2 \times 10^6 \gtrsim z \gtrsim 10^5$	$z \lesssim 10^5$		
Compton scattering + Bremsstrahlung + double Compton scattering active lanck spectrum → No distortions	Only Compton scattering active			
	Bose-Einstein spectrum \rightarrow μ -distortions			

\leftarrow Redshift (z)					
$z \gtrsim 2 \times 10^6$	$2 \times 10^6 \gtrsim z \gtrsim 10^5$	$z\lesssim$	10^5		
Compton scattering + Bremsstrahlung + double Compton scattering active Planck spectrum → No distortions	Only Compton scattering active Bose-Einstein spectrum →	Low frequency transition $h\nu_0 \ll k_{\rm B}T_{\rm CMB}$ Bremsstrahlung + Inefficient Compton scattering with thermal electrons y -distortions Upto $z \gtrsim 10^3$			

\leftarrow Redshift (z)						
$z \gtrsim 2 \times 10^6$	$2 \times 10^6 \gtrsim z \gtrsim 10^5$	$z \lesssim 10^5$				
Compton scattering + Bremsstrahlung + double Compton scattering active	remsstrahlung + active active $\operatorname{Bose-Einstein} \operatorname{spectrum} \to \mu \operatorname{-distortions}$	Low frequency transition $h\nu_0 \ll k_{\rm B}T_{\rm CMB}$	High frequency transition $h\nu_0 \gtrsim k_{\rm B}T_{\rm CMB}$			
		Bremsstrahlung + Inefficient Compton scattering with thermal electrons $y\text{-distortions}$ Upto $z \gtrsim 10^3$	All standard thermal processes inactive			
Planck spectrum → No distortions			Non-thermal distortions			
			Final spectrum obtained by solving the radiative transfer equation			

The microwave band of the CMB spectrum

COBE has established CMB to be a perfect blackbody at the level of ~ 1 part in 10^4

The microwave band of the CMB spectrum

COBE has established CMB to be a perfect blackbody at the level of ~ 1 part in 10^4

In future, PIXIE will probe the deviations from a blackbody at the level of ~ 1 part in 10^8 !

Spectral distortion features in the microwave band will be detectable by PIXIE

Non-thermal distortions in the CMB have distinct shapes from the thermal μ and y distortions.

More accurate constraints using the universal distortion parameter u

COBE constrains μ and y distortions

independently

$$\mu < 9 \times 10^{-5}$$
 and $y < 1.5 \times 10^{-5}$

Universal distortion measure

$$u \equiv \frac{\mu}{1.4} + 4y$$

$$\mu = 1.4 \left(\frac{\Delta \mathscr{E}}{\mathscr{E}} - \frac{4}{3} \frac{\Delta \mathscr{N}}{\mathscr{N}} \right)$$

$$y = \frac{1}{4} \frac{\Delta \mathcal{E}}{\mathcal{E}}$$

Fractional change in the energy density of CMB photons

Fractional change in the number density of CMB photons

More accurate constraints using the universal distortion parameter u

$$u \equiv \frac{\mu}{1.4} + 4y$$

$$\mu = 1.4 \left(\frac{\Delta \mathscr{E}}{\mathscr{E}} - \frac{4 \Delta \mathscr{N}}{3 \mathscr{N}} \right)$$

$$y = \frac{1}{4} \frac{\Delta \mathcal{E}}{\mathcal{E}}$$

Fractional change in the energy density of CMB photons

Fractional change in the number density of CMB photons

Transition energy

Photon transition $e^2 \Delta E^3$ rate

 m_{χ}^2

Spectral distortion constraints are stronger than the direct detection bounds

$$u \equiv \frac{\mu}{1.4} + 4y$$

2- σ limit from COBE: $u \le 6 \times 10^{-5}$

 $2-\sigma$ limit from PIXIE: $u \le 10^{-8}$

Transition energy

Spectral distortion constraints weaker for larger dark matter mass

 $m_{\chi} = 100 \; \mathrm{MeV}$ 10^{-3} Electric charge of constituent 10^{-5} 10^{-4} 10^{-9} 10^{-5} Halo DM (DD) 10^{-6} L 10^{-7} 10^{-8} $\frac{1}{10^{-4}}$ 10^{2} 10^{0} $\Delta E \text{ (eV)}$

Transition energy

Non-thermal spectral distortions detectable in 21-cm experiments

Our dark matter model can produce absorption signals consistent with EDGES for $\Delta E \sim 100$ GHz at z ~ 1000 in observed frequency band of 50-100 MHz.

Conclusions

- We propose new indirect probes to detect dark matter through lines/ features in the spectrum of a background source.
- Dark matter can give rise to both thermal and non-thermal spectral distortions in the CMB which will be detectable in the next-generation PIXIE-like experiments in 30-600 GHz band.
- The radio frequency (50-100 MHz) experiments aiming to measure the 21 cm global signal would be sensitive to the non-thermal spectral distortion signatures of dark matter.
- The current limits on our model from COBE are much stronger than the current limits from direct detection experiments.

Thank you!