with Yan-Chuan Cai University of Edinburgh

Turning dispersion into signal: density-split measurements of pairwise velocities

Aritra Gon

Les Houches July 2025

arXiv: 2505.00608

Sourced by inhomogeneities

In Fourier space:

The kinetic SZ effect

$$\frac{\Delta T}{T_{\text{CMB}}}(\hat{\mathbf{n}}) = \tau_{\text{eff}} \left(\mathbf{v}(\mathbf{x}) \cdot \hat{\mathbf{n}} \right) \equiv \mathscr{T}(\hat{\mathbf{n}})$$

$$\tau_{\text{eff}} \sim 10^{-4} \qquad \frac{\Delta T}{T_{\text{CMB}}} \sim 0.1 \ \mu K$$
$$v_r \sim 10^{-3} \qquad T_{\text{CMB}}$$

1. The pairwise kSZ effect Two galaxy clusters falling towards each other will induce a kSZ effect of opposite signs

i

Pairwise kSZ estimator

 $\hat{T}_{\text{pairwise}} = \sum \tau_{eff}^{i} w_{i} \left(\mathbf{v}_{i1} - \mathbf{v}_{i2} \right) \cdot \hat{n}_{i}$

Pairwise velocity statistics

Theory

$$\bar{v}^p(r) = \left\langle \left(\mathbf{v}_1(\mathbf{r}_1) - \mathbf{v}_2(\mathbf{r}_2) \right) \cdot \left(\frac{\mathbf{r}_1 - \mathbf{r}_2}{|\mathbf{r}_1 - \mathbf{r}_2|} \right) \right\rangle$$

$$\bar{v}^{p}(r) = \frac{\left\langle \left(\mathbf{v}_{1} - \mathbf{v}_{2} \right) \cdot \hat{\mathbf{r}} \left(1 + \delta_{1} \right) (1 + \delta_{2}) \right\rangle}{\left\langle (1 + \delta_{1}) (1 + \delta_{2}) \right\rangle}$$

$\bar{v}^p(r) = -\frac{2 \, [afH](z) \, \bar{\xi}(r)}{3 \, 1 + \xi(r)}$

 \bar{v}^p

Theory

$$\bar{v}^p(r) = \left\langle \left(\mathbf{v}_1(\mathbf{r}_1) - \mathbf{v}_2(\mathbf{r}_2) \right) \cdot \left(\frac{\mathbf{r}_1 - \mathbf{r}_2}{|\mathbf{r}_1 - \mathbf{r}_2|} \right) \right\rangle$$

Observation

Pairwise velocity statistics $\bar{v}^{p}(r) = \frac{\left\langle \left(\mathbf{v}_{1} - \mathbf{v}_{2}\right) \cdot \hat{\mathbf{r}} \left(1 + \delta_{1}\right) (1 + \delta_{2}) \right\rangle}{\left\langle (1 + \delta_{1})(1 + \delta_{2}) \right\rangle}$ $\bar{v}^p(r) = -\frac{2}{3} \frac{[afH](z)\bar{\xi}(r)}{1+\xi(r)}$

$$r_{i} = \sum_{i} \left[\left(\mathbf{v}_{1}(\mathbf{r}_{1}) - \mathbf{v}_{2}(\mathbf{r}_{2}) \right) \cdot \left(\frac{\mathbf{r}_{1} - \mathbf{r}_{2}}{|\mathbf{r}_{1} - \mathbf{r}_{2}|} \right) \right]_{i}$$

Pairwise separation distance

Detection of pairwise kSZ effect

Mueller et al 2014 Soergel et al 2016 Schiappucci et al 2022 Gong et al 2024, 2025

Pairwise separation distance

Detection of pairwise kSZ effect

Mueller et al 2014 Soergel et al 2016 Schiappucci et al 2022 Gong et al 2024, 2025

Can we do something better ?

Density field consists of both clusters and voids

9

- Halo density field pdf
- Smoothing scale = 25 Mpc/h
- Constructed by smoothing at halo centres

3

z = 0 Using Quijote halos

Density field consists of both clusters and voids

Splitting into different density bins

 $-1.0 \leq \delta_h < -0.8$ $-0.6 \leq \delta_h < -0.4$ $0.0 \leq \delta_h < 0.2$ $1.4 \leq \delta_h < 1.6$ $2.6 \leq \delta_h < 2.8$ $3.0 \leq \delta_h < 3.2$

9

3

Gaussian distribution

Pairwise velocity for overdense and underdense regions

 $\chi^2 = \bar{v}^p \, C^{-1} \, (\bar{v}^p)^T$

Better S/N ratio!!!

 $\chi^2 = \bar{v}^p \, C^{-1} \, (\bar{v}^p)^T$

At large scales the improvement is stronger

Conclusions

- between the low and high dense regions, yielding a large dispersion.
- velocities.
- closer to Gaussian.
- split technique suggests great potential for improving the measurement of pairwise kSZ.

arXiv: 2505.00608

• Averaging the global distribution yields a single coherent streaming velocity corresponding to the global clustering, or 2PCF – at the cost of canceling the positive and negative streaming velocities

• By splitting, we recover the multiple components of outflows and infalls. We are effectively turning the noise – the global velocity dispersion, into signal – the local means of positive or negative

• The gain of information with the DS-technique on large scales suggests that non-Gaussianity is not a necessary condition for the DS-method to be effective, as the PVD on such large scales is much

• The significant increase of the signal-to-noise for the pairwise velocities measured using the density

Thank You

