
Dynamical Cosmological
Constant 
Giuseppe Di Donato 

Università degli Studi dell’Aquila, INFN Laboratori Nazionali del Gran Sasso

Based on: 
G. di Donato & L. Pilo, Dynamical Cosmological Constant, Phys. Rev. D 111, 064081 (2025), 

https://doi.org/10.1103/PhysRevD.111.064081

https://doi.org/10.1103/PhysRevD.111.064081
https://doi.org/10.1103/PhysRevD.111.064081
https://doi.org/10.1103/PhysRevD.111.064081


Universe components and expansion

68.27%
0.01%

26.75%

4.98%

*Planck Surveys

Supernovae Type IA database. 

Luminosity distance vs redshift 

Components of the Universe as perfect fluid with equation of state: 𝒑 = 𝒘 𝝆

Energy Momentum Tensor: 𝑻𝝁𝝂 = 𝝆+ 𝒑 𝒖𝝁𝒖𝝂 + 𝒑𝒈𝝁𝝂

Dark Energy

Dark Matter

Matter

Radiation

1



Dark Energy and Cosmological constant

We build a model for a Dynamical Cosmological Constant (DCC) with equation of state
𝒘 = −𝟏 as a dynamical medium with non-trivial fluctuations. We then study the effects of
these perturbations on the evolution of the matter density contrast and on the
propagation of gravitational waves.

Accelerated Expansion of the Universe

Our Proposal

In ΛCDM Dark Energy is a Cosmological Constant with equation of state 𝒘 = −𝟏 driving the
accelerated expansion. Conservation of the EMT (perfect fluid) implies a constant energy
density 𝝆 = 𝚲. There are no degrees of freedom and everything is frozen.
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Standard Approaches and Limitations

The equation of state 𝒘 = −𝟏 imply a pathological dynamic for the perturbations of the
scalar field since the perturbed EMT reads: 𝜹𝝆 = 𝜹𝒑 = 𝟎.

Consider a Lagrangian 𝐊 𝑿,𝚽 , with a scalar field 𝚽 = 𝝓 𝒕 , 𝑿 = −
𝟏

𝟐
𝒈𝝁𝝂𝝏𝝁𝚽𝝏𝝂𝚽 and an

EMT of a perfect fluid. The scalar field is perturbed around a background value.

To have a non-trivial and stable dynamics for perturbations, additional degrees of
freedom needed to describe the medium.

Pathological Dynamics for perturbations

K-essence scalar Field Theory

Our approach

3



Healty dynamics only by adding a solid component
through the operators 𝝉𝒀, 𝝉𝒛. 𝑩 is the matrix 𝑩𝒂𝒃

Dynamical Model: Basics
A generic perfect fluid has a Lagrangian of the
form 𝑼(𝒃) described by three scalar fields 𝚽𝒂 .
With 𝒘 = −𝟏, no dynamics.

Add a scalar field 𝚽𝟎 to have more operators that
represent a coupled fluid/superfluid 𝑼 𝒃, 𝒚, 𝝌 but
still with 𝒘 = −𝟏 no dynamics.

Summary of all type of medium one
can build starting from four scalar
fields.
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Dynamical Model: Basics 
Fluctuations introduced as 4 scalar fields

Fields minimally coupled with gravity. 𝑈 Lagrangian

Modified Energy Momentum tensor with anisotropic terms and additional velocity.

𝑻𝝁𝝂 = 𝑼− 𝒃𝑼𝒃 𝒈𝝁𝝂 + 𝒚𝑼𝒚 − 𝒃𝑼𝒃 𝒖𝝁𝒖𝝂 +𝝌𝑼𝝌𝒗𝝁𝒗𝝂 +𝑸𝝁𝝂
(𝒚)
𝑼𝝉𝒚 +𝑸𝝁𝝂

(𝒛)
𝑼𝝉𝒛

𝚽𝟎 = 𝒕 + 𝝅𝟎 , 𝚽𝒂 = 𝒙𝒂 +𝝅𝒂 , 𝒂 = 𝟏, 𝟐, 𝟑

Mass parameters defined from derivatives of 𝑈. 𝑴𝟎,𝑴𝟏,𝑴𝟐,𝑴𝟑,𝑴𝟒

𝑺 = න𝒅𝟒𝒙 −𝒈𝑼(𝝏𝚽𝟎 , 𝝏𝚽𝒂)

Perturbations of 𝚽𝒂 decomposed in two transverse vector modes 𝜋𝑇
1,2 and a 

longitudinal scalar mode: 𝝅𝒍

5



Two regions of stability: standard and anomalous.

Stability associated with anisotropic term.  In the 

standard region is impossible to have 𝒘 = −𝟏

Anomalous stability condition with w = −1.

Energy not positive definite. Hamiltonian composed 
of two harmonic oscillators but with opposite sign. 

Dynamical Model: Stability 
Conditions

Catastrophic effect? By studying the evolution of DCC fluctuations and their effects on the 
propagation of Gravitational waves and on structure formation this doesn’t seem to be true.

𝑯 =
𝝎𝟏

𝟐
𝜫𝒄𝟏
𝟐 +𝝋𝒄𝟏

𝟐 −
𝝎𝟐

𝟐
(𝜫𝒄𝟐

𝟐 +𝝋𝒄𝟐
𝟐 )

lim
𝑀2→0

𝝎𝟏,𝟐
𝟐 = −𝒌𝟐
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We studied the dynamic of perturbations of this DCC, analyzing also the effects on the 
evolution of the matter density contrast and on propagation of gravitational waves.

We got the evolution equations for DCC perturbations 𝝅𝟎, 𝝅𝒍 and for the matter density 
contrast 𝜹𝒎 from Einstein equations starting from a perturbed FRW metric.

Cosmological Perturbations

Due to the coupling of the scalar fields, it was possible to solve analytically the equations 

only in certain limits such as the Large Scale 𝒌
𝑯𝒐
≪ 𝟏 or Small scale 𝒌

𝑯𝟎
≫ 𝟏

We worked in conformal time 𝜏, using a DeSitter scale factor 𝒂 𝝉 = −
𝟏

𝝉 𝑯𝟎
where 𝑯𝟎 is the  

today Hubble constant . We also used Newtonian Gauge.
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In ΛCDM 𝜹 remain constant at all scales

Result: Matter Density Contrast

Matter density contrast at 𝒌

𝑯𝟎
= 𝟏𝟎−𝟑

𝜹 grows as a power law at large scales.

Matter density contrast at 𝑘

𝐻0
= 100

Oscillations induced by DCC at small
scales.

𝛿𝑔𝑖 = 𝛿 − 3ℋ 𝑣𝑚
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𝜹 intermediate case. Incomplete
oscillations

Result: Matter Density Contrast

Matter density contrast at 𝒌

𝑯𝟎
= 𝟏𝟎
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𝜹 Small scale case. Growth when 𝜏 → 0

due to the scale factor: 𝒂 𝝉 = −
𝟏

𝝉 𝑯𝟎

Matter density contrast at 𝒌

𝑯𝟎
= 𝟏𝟎𝟎



The equation of motion for Gravitational 
Waves in this DCC dominated Universe is:

Result: Gravitational Waves
𝝌𝒊𝒋
′′ + 𝟐𝓗𝝌𝒊𝒋

′ + 𝒌𝟐 + 𝒂𝟐𝑴𝟐 𝝌𝒊𝒋 = 𝟎

At small scales oscillatory behavior with amplitude ∝ 𝒂−𝟏 as in the cosmological constant 
case.

The solution in De Sitter is combination of 
Bessel functions 𝑱𝝂𝑻 and 𝒀𝝂𝑻 :

𝝌𝒊𝒋 𝝉 = 𝒂−
𝟑

𝟐𝝐𝒊𝒋 𝝌𝟎𝑱𝝂𝑻 −𝒌𝝉 + 𝝌𝟏𝒀𝝂𝑻 −𝒌𝝉

At large scales, with 𝑴𝟐 > 𝟎, the amplitude grows logarithmically 𝝌𝒊𝒋 ~ 𝝐𝒊𝒋𝒂
−
𝟑

𝟐
+
𝝂𝑻
𝟐

𝝂𝑻 = (𝟗 − 𝟒
𝑴𝟐

𝓗𝟎
)
𝟏
𝟐
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Extra Slides
The Dynamical Cosmological Constant model 
has the following characteristic:

● The medium has an equation of state 
with 𝒘 = −𝟏.

● Four scalar fields to have non-trivial 
dynamics for its perturbations.

● The presence of anisotropic stress is 
crucial for stability of the system.

● Stability of the model with 𝒘 = −𝟏 is 
reached in an anomalous region where 
the Hamiltonian is non positive definite

1

2

Implications

The matter density contrast 
grows at large scales.
Instead shows induced 
oscillations at small scales.

Amplitude of gravitational 
waves grows logarithmically in 
the large scales limit.
Standard evolution in the 
small scales limit.
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We found solution of this kind:  𝝋𝟏,𝟐 ∝ 𝒆−𝒊 𝝎𝟏,𝟐 𝒕 𝜽𝟏,𝟐
Linear stability with 𝝎𝟏,𝟐 real and 𝝎𝟏,𝟐 > 𝟎 and leads 
to a condition on the parameters. 

Extra Slides

Lagrangian of a gyroscopic system

In canonical form Kinetic matrix diagonal, the other 
two matrices linked to three parameters
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Extra Slides

Mass Parameters
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With 𝑤 = −1 masses are time independent
and related.



𝑺 = ∫𝒅𝒙𝟒 −𝒈
𝟏

𝟐
𝑹+𝑼 𝒃, 𝒚, 𝝌, 𝝉𝒚, 𝝉𝒛

𝝌𝒊𝒋𝜹
𝒊𝒋 = 𝝏𝒋𝝌𝒊𝒋 = 𝟎

𝒅𝒔𝟐 = 𝒂𝟐(𝜼𝝁𝝂𝒅𝒙
𝝁𝒅𝒙𝝂 +𝝌𝒊𝒋𝒅𝒙

𝒊𝒅𝒙𝒋)Perturbation corresponding to gravitational
waves (traceless and transverse):

Gravitational waves from the action

Extra Slides

Matter density contrast equation
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Relation between Bardeen Potentials 𝟐 𝐚𝟐𝐌𝟐𝛑𝐥 −𝚽+𝚿 = 𝟎



Extra Slides
Vector Modes equation of propagation

Vector Modes: Small Scales

Vector Modes: Large Scales

No growing modes for vector degrees of freedom, only oscillations at small scales and
decreasing modes at large scales
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