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f(R) family – Hu Sawicki model
Extension of GR: R → R + f(R) 
→ Screening mechanisms

For n = 2  →  HS passes the Solar system tests.
→ HS model can be considered as a small perturbation around 
ΛCDM.
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Growth of Matter Perturbations f

• Study LSS through perturbation theory:
density:          pressure      and
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Growth of Matter Perturbations f

• Study LSS through perturbation theory:
density:          pressure      and
We study the eq:

   (evolution of the matter density perturbations).
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Growth of Matter Perturbations f

• Study LSS through perturbation theory:
density:          pressure      and
We study the eq:

   (evolution of the matter density perturbations).

With a solution (for ΛCDM, Geff = 1): 
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The growth
 fσ8
In galaxy surveys we observe the 
galaxy density fluctuations

The growth in a bias independent 
way
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The growth
 fσ8
In galaxy surveys we observe the 
galaxy density fluctuations

The growth in a bias independent 
way

For ΛCDM, Geff = 1
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Dataset simulation strategy 
fσ8 values w/ uncertainties. 
Cosmological parameters 
varied as: 
ΛCDM

σ8 ∈ [0.7, 0.9]

Ωm ∈ [0.2, 0.4]

Hu Sawicki - f(R)

σ8 ∈ [0.7, 0.9], Ωm ∈ [0.2, 0.4]

b ∈ [10−5 , 5 × 10−5 ]
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(DESI-like Cij)

(16 z-bins)



Machine Learning analysis
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Model independent framework:

Data                 

     Theory 

Source: https://simons.berkeley.edu/
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Interpretable Machine Learning

Source: An Introduction to Interpretable Machine Learning Models: analyticsvidhya.com/
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LIME (Local Interpretability Model 
agnostic Explanations)

Ribeiro, Singh (2018)

Source: Explainable AI, https://bigdatarepublic.nl/
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Feature Importance using LIME

1 8

Hu-SawickiΛCDM



Distribution of LIME feature 
impact
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Hu-SawickiΛCDM



Feature Impact and Redshift for fσ8

2 0

One realization 
of fσ8(z). 

Rainbow color 
code: “feature 
impact” of each 
z-bin according 
to LIME.



The Hu 
Sawicki
model and 
fσ8 
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Angular Power Spectra 
and Planck



Angular Power Spectra 
and Planck



Primordial power spectrum:

Inflation predicts a power law:

As: (from CMB As∼2.1×10−9).

ns​: (ns = 0.965 ± 0.004).

Source: Euclid consortium 2309.17287



Linearly Spaced
feature template:

Primordial features parametrized as 
small deviations,



Linearly Spaced
feature template:

Primordial features parametrized as 
small deviations,

    Feature template with oscillations:



Angular Power Spectra



Dataset simulation 
strategy 

Assumed Planck 
Cosmological
parameters.

CMB

Feature model

vs 

ΛCDM

Ωcdm ∈ [0.05, 0.15]

Alin ∈ [10−2 , 5 × 10−2 ].
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Planck Cij



Machine Learning analysis
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ML architecture and Performance



ML interpretability: 
SHAP (Global)



ML Interpretability:
Feature template vs 
ΛCDM
Temperature 
Angular Power 
Spectrum



ML Interpretability:
Feature template vs 
ΛCDM
Temperature 
Angular Power 
Spectrum

Theoretical Cls



Conclusions
• ML + Interpretability tools are an interesting starting point for 

verifying that the data is sensitive to some particular model, 
before doing the full MCMC sampling of the posterior (thousands 
of chains, computationally expensive).

• In the feature model, when looking at the output of SHAP, the NN 
is able to extract the introduced feature from the Cℓ’s.

• This methodology can be used to test any other beyond ΛCDM 
scenario (i.e. w0 wa)



Thank you
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