How the Cosmic Microwave Background knows about dark radiation

Murali M. Saravanan

Based on: 2503.04671, accepted to JCAP

In collaboration with Marilena Loverde, Zachary J. Weiner, Thejs Brinckmann

Outline

- What is dark radiation?
- How do we isolate the effect of dark radiation on the CMB?
- Constraints with data
- Conclusions

CMB as a probe of Beyond Standard Model

ACDM Radiation

$$C = \frac{7}{8} \left(\frac{4}{11}\right)^{4/3}$$

$$\omega_{\rm r} = \omega_{\gamma} + \omega_{\nu} = \omega_{\gamma} \left[1 + C \cdot N_{\rm fs} \right]$$

Theory: $N_{\rm fs}=3.044$

Planck: $N_{\rm fs} = 3.08 \pm 0.17$

What is meant by free-streaming?

Neutrinos have no self-interaction

What is meant by free-streaming?

Neutrinos have no self-interaction

Fluidlike Radiation

Tightly coupled radiation with sufficient self-interaction

Fluidlike Radiation

Tightly coupled radiation with sufficient self-interaction

BSM Dark Radiation

$$C = \frac{7}{8} \left(\frac{4}{11}\right)^{4/3}$$

$$\omega_{\rm r} = \omega_{\gamma} + \omega_{\nu} + \omega_{\rm BSM} = \omega_{\gamma} \left[1 + C(N_{\rm fs} + \Delta N_{\rm fs} + \Delta N_{\rm fld}) \right]$$

ACDM

$$N_{\mathrm{tot}} = N_{\mathrm{fs}} = 3.044$$

$$\Delta N_{\mathrm{fs}} = 0$$

$$\Delta N_{\mathrm{fld}} = 0$$

New Physics?

$$N_{
m tot} = N_{
m fs}$$
 $+\Delta N_{
m fs}$ $+\Delta N_{
m fd}$

BSM Dark Radiation

$$C = \frac{7}{8} \left(\frac{4}{11}\right)^{4/3}$$

$$\omega_{\rm r} = \omega_{\gamma} + \omega_{\nu} + \omega_{\rm BSM} = \omega_{\gamma} \left[1 + C(N_{\rm fs} + \Delta N_{\rm fs} + \Delta N_{\rm fld}) \right]$$

ACDM

$$N_{\mathrm{tot}} = N_{\mathrm{fs}} = 3.044$$

$$\Delta N_{\mathrm{fs}} = 0$$

$$\Delta N_{\mathrm{fld}} = 0$$

New Physics?

- Axions/Axion-like particles
- BSM Neutrino physics
- Non-Abelian Dark Sector
- Gravitational Waves
- Any light particle produced in the early Universe!
- Self-interacting = fluidlike
- No self-interactions = freestreaming

See: 1306.1536, 1501.04097, 1505.03542, 1708.09406, etc. 10

How do we compute (dark) radiation's effect on the CMB?

Abundance:
$$N_{\rm tot} = N_{\rm fs} + \Delta N_{\rm fs} + \Delta N_{\rm fld}$$
 | Background: Hubble

Composition: $f_{\rm fs} \equiv \omega_{\rm fs}/\omega_r$

L Perturbations (free-streaming fraction)

$$N_{
m tot} = N_{
m fs} = 3.044$$
 $\Delta N_{
m fs} = 0, \ \Delta N_{
m fld} = 0$ $f_{
m fs} \sim 0.41$

$$\Delta N_{\rm fs} = 0, \, \Delta N_{\rm fld} = 0$$

$$f_{\rm fs} \sim 0.41$$

Two sets of variables to think in

$$N_{\mathrm{tot}}, f_{\mathrm{fs}} \implies \Delta N_{\mathrm{fs}}, \Delta N_{\mathrm{fld}}$$

Encodes Cosmology: Abundance, composition

Encodes new physics: changes both **abundance** and **composition**

Outline

- Intro to the CMB
- What is dark radiation?
- How do we isolate the effect of dark radiation on the CMB?
 - Effects of Abundance (background)
 - Effects of Composition (perturbations)
 - Changing both
- Constraints with data
- Conclusions

Isolate effect of varying abundance

- 1. Fix the free-streaming fraction
- 2. Fix baryon density
- 3. Fix matter-radiation equality
- 4. Fix sound horizon
- 5. Fix damping scale

Isolate effect of varying abundance

- 1. Fix the free-streaming fraction
- 2. Fix baryon density
- 3. Fix matter-radiation equality
- 4. Fix sound horizon
- 5. Fix damping scale

Isolate effect of varying abundance

- 1. Fix the free-streaming fraction
- 2. Fix baryon density
- 3. Fix matter-radiation equality
- 4. Fix sound horizon
- 5. Fix damping scale

Decreasing ω_b/ω_{cb}

Pressure supported matter fraction ω_b/ω_{cb}

Fixed: $f_{\rm fs}, \, \theta_s, \, \omega_b, \, a_{\rm eq}, \, r_D$

Hou et al (2011), Ge et al (2022)

Outline

- Intro to the CMB
- What is dark radiation?
- How do we isolate the effect of dark radiation on the CMB?
 - Effects of Abundance (background)
 - Effects of Composition (perturbations)
 - Changing both
- Constraints with data
- Conclusions

Changing the free-streaming fraction

Changing the free-streaming fraction

Decrease amplitude

Move power to larger scales

Changing the free-streaming fraction

Decrease amplitude

$$\frac{\Delta \mathcal{D}_{\ell}(f_{\mathrm{fs}})}{\mathcal{D}_{\ell}(f_{\mathrm{fs}})} = -0.246 \frac{\Delta f_{\mathrm{fs}}}{f_{\mathrm{fs}}}$$

Move power to larger scales

$$\delta \ell \approx -0.19 f_{\rm fs} \Delta \ell$$

Decrease amplitude

$$\frac{\Delta \mathcal{D}_{\ell}(f_{\mathrm{fs}})}{\mathcal{D}_{\ell}(f_{\mathrm{fs}})} = -0.246 \frac{\Delta f_{\mathrm{fs}}}{f_{\mathrm{fs}}}$$

Phase Shift

$$\delta \ell \approx -0.19 f_{\rm fs} \Delta \ell$$

Outline

- Intro to the CMB
- What is dark radiation?
- How do we isolate the effect of dark radiation on the CMB?
 - Effects of Abundance (background)
 - Effects of Composition (perturbations)
 - Changing both
- · Constraints with data
- Future work
- Other work
- Conclusions

Free-streaming vs fluidlike radiation

Free-streaming vs fluidlike radiation

Differential impact on free-streaming fraction

$$\Delta N_{\mathrm{fs}}$$
: N_{tot} f_{fs}

$$\Delta N_{\mathrm{fld}}:N_{\mathrm{tot}}$$
 f_{fs}

What is the physical effect in the CMB?

Free-streaming vs fluidlike radiation

Fixed: θ_s , ω_b , $a_{\rm eq}$, r_D

Pressure supported matter fraction and free-streaming fraction

Fixed: θ_s , ω_b , $a_{\rm eq}$, r_D

Effects combine Roughly: solid = dashed + dotted

Fixed: θ_s , ω_b , $a_{\rm eq}$, r_D

Effects combine Roughly: solid = dashed + dotted

Fixed: θ_s , ω_b , $a_{\rm eq}$, r_D

Outline

- Intro to the CMB
- What is dark radiation?
- How do we isolate the effect of dark radiation on the CMB?
- Constraints with data
 - CMB only
 - BAO Data
- Conclusions

Free-streaming vs fluid radiation

- Place upper bounds on contribution to energy budget
- Planck PR4 data
- $Y_{\rm He}$ free

Free-streaming vs fluid radiation

- Constraints on free-streaming radiation are tighter than fluidlike radiation
- Interpretation: the phase shift induced by changes to both free-streaming fraction and pressure-supported matter fraction are incompatible with the data
- Other parameters are compensating for scale dependent feature of fluidlike radiation

Outline

- Intro to the CMB
- What is dark radiation?
- How do we isolate the effect of dark radiation on the CMB?
- Constraints with data
 - CMB only
 - BAO Data
- Future work
- Conclusions

Constraints with BAO data

MMS, Loverde, Brinckmann, Weiner (2025)

Interpreting BAO Data

 The precision of the measurement of the angular sound horizon requires:

$$\Omega_m|_{ heta_s} \propto \left(\omega_{cb} r_s^2\right)^5$$

Interpreting BAO Data

 The precision of the measurement of the angular sound horizon requires:

$$\Omega_m|_{\theta_s} \propto \left(\omega_{cb} r_s^2\right)^5$$

Interpreting BAO Data

 The precision of the measurement of the angular sound horizon requires:

$$\Omega_m|_{\theta_s} \propto \left(\omega_{cb}r_s^2\right)^5$$

Why does increasing radiation move along the degeneracy direction?

• Fixing equality requires: $\omega_{cb} \propto \omega_r$

• Fixing θ_s requires: $r_s \propto 1/\sqrt{\omega_r}$

$$\Omega_m|_{\theta_s} \propto \left(\omega_{cb}r_s^2\right)^5$$

Fixing equality vs fixing the pressuresupported matter fraction

Interpreting BAO Data

Easier to add fluid radiation!

Also in the paper

- Numerical degeneracy with LCDM parameters
- Breaking degeneracies with large scale structure data
- Differences between 2018 and 2020 analysis of Planck data
- Interplay with inflationary parameters (running of the tilt)
- Impact of CMB lensing and SDSS BAO data
- Constraints from different multipole ranges
- S4 forecasts

Outline

- Intro to the CMB
- What is dark radiation?
- How do we isolate the effect of dark radiation on the CMB?
- Constraints with data
 - CMB only
 - BAO Data
- Conclusions

Conclusions

- CMB constraints on fluidlike radiation are weaker. The data is incompatible with the phase shift induced by free-streaming radiation.
 - Phase shift induced by **both** free-streaming fraction and pressuresupported matter fraction effects
- DESI BAO data prefers more radiation due to a preference for lower matter fraction

Conclusions (contd.)

- Must look for new physics in sufficient generality
- Even a simple model has many complex, nuanced features!
 Rich interplay between the 'old' and 'new' physics
- Need to interpret constraints carefully in the data space.

Thanks! Questions?

The sound horizon

Multipole moment, ℓ

Diffusion Damping

 Anisotropies with size below the mean free path of photons are damped

$$r_D^2 \propto \frac{H}{n_e \sigma_T} \propto \frac{H}{(1 - Y_{\rm He}) \sigma_T}$$

 n_e Free electron number density

 σ_T Thompson cross-section

 $Y_{
m He}$ Fraction of baryonic mass in Helium

Credit: Wayne Hu

Fixing
$$heta_s \implies H \propto \sqrt{\omega_r}$$

Isolate effect of varying abundance

- 1. Fix the free-streaming fraction
- 2. Fix baryon density
- 3. Fix matter-radiation equality
- 4. Fix sound horizon

Varying radiation density causes more diffusion damping!

$$r_D/r_s \propto \frac{\omega_r^{0.134}}{(1-Y_{\rm He})^{0.238}}$$

Pressure supported matter fraction ω_b/ω_{cb}

Large Scales

Less radiation driving

Fixed: $f_{\rm fs}, \, \theta_s, \, \omega_b, \, a_{\rm eq}, \, r_D$

Hou et al (2011), Ge et al (2022)

Tilt Degeneracy

Tilt Degeneracy

PR4 vs PR3

• Think in $\omega_r,\,f_{\mathrm{fs}}$ space

PR4 vs PR3

Increasing the number density of electrons prolongs recombination, generating more polarization

Also incurs more damping

BAO Plot

Lensing Plot

CMB-S4 Forecasts

CMB-S4 Forecasts

Full Constraints

Full Constraints

Parameter degeneracy with $f_{\rm fs}$

- What parameters are degenerate with the free-streaming fraction? And why?
- Fit a model where the composition varies at fixed abundance
- BSM (ignoring SM neutrino physics)

Shift degeneracy

- Degeneracy with other LCDM parameters
- ullet Study at fixed $N_{
 m tot}$

Shift Degeneracy

 n_s , ω_b can (partly) compensate for remaining differences at large scales

Shift Degeneracy – So what?

- Interplay between parameters will affect constraints
- Isolate which parameters care about each other and why at the level of the data

Interpreting Lensing Data

- Lensing requires higher values of A_s , which disfavors lower values of $f_{\rm fs}$
- Lensing Anomaly