GDR CoPhy - IAP

November 20, 2024

s2scat : a software in JAX for generative models on the sphere using Scattering Transforms

Louise Mousset E. Allys, M. Price, J. Aumont, J.M. Delouis, L. Montier, J. McEwen

Non Gaussianities in astrophysics

Common difficulty : non-linearity \Rightarrow non-Gaussian structures \rightarrow Important lever arm for a lot of astrophysical objectives

Slide from E. Allys

CMB is a Gaussian field

Non Gaussian field

Non linear physical Coupling between scales, Power spectrum is not Non Gaussian structures processes: gravity, sufficient magneto-hydrodynamics... (ex: filaments) Original data Gaussian synthesis 100. 100 Same power spectrum 50. 50-0 -0 -50--50-100-1000 100 [Allys et al. 2019] -100 -5050 -100-5050 100 0 0

=> Need higher order non-Gaussian statistics for proper characterisation

Scattering Transforms

Scattering Transforms are [Bruna et al. 2013, Allys et al. 2019]

- a set of non-Gaussian summary statistics
- inspired from neural networks, but can be computed without a training stage, even from a single image.
- directional wavelet filters to separate the different scales and angles

Image from E. Allys

Scattering Transforms

Scattering Transforms are [Bruna et al. 2013, Allys et al. 2019]

- a set of non-Gaussian summary statistics
- inspired from neural networks, but can be computed without a training stage, even from a single image.
- directional wavelet filters to separate the different scales and angles
- **non linearities** to extract the couplings between scales

Image from E. Allys

Extract coupling between scales

Extract coupling between scales

Extract coupling between scales

This is for one pair of scales.

=> Following the same for all scales we get a family of coefficients.

Application 1: Generative models

Quantitatively realistic generative models from a few 100 of coefficients only.

Application 2: Component separation in Hershel data

[Auclair et al. 2024]

Data = Dust + CIB

Application 2: Component separation in Hershel data

[Auclair et al. 2024]

Data = Dust + CIB

Isolated CIB observation

Compute ST statistics

Application 2: Component separation in Hershel data

[Auclair et al. 2024]

Component separation using only non Gaussian spatial information. Using only 2 observations.

[Delouis et al. 2023]

Application 3: Statistical denoising of the Planck maps

Input: Noise templates for Planck maps.

Deterministic denoising up to SNR² 0.1.

Statistical denoising up to SNR≈0.01.

Adapting these tools to spherical maps is needed

Large scale cosmological surveys

- Large Scale Structures : Euclid, Vera Rubin
- CMB : Planck, SPT, ACT, LiteBIRD...

GDR CoPhy - IAP - November 2024

s2scat

Paper : https://arxiv.org/abs/2407.07007

Astronomy Astrophysics All volumes For authors

pen Access

Issue		A&A Volume 691, November 2024	
	Article Number	A269	
	Number of page(s)	13	
	Section	Numerical methods and codes	
	DOI	https://doi.org/10.1051/0004-6361/202451396	
	Published online	18 November 2024	

A&A, 691, A269 (2024)

Generative models of astrophysical fields with scattering transforms on the sphere

L. Mousset¹*,
 E. Allys¹, M. A. Price²,
 J. Aumont³,
 J.-M. Delouis⁴, L. Montier³ and J. D. McEwen²

Received: 5 July 2024 Accepted: 16 September 2024

GDR CoPhy - IAP - November 2024

Wavelet filters on the sphere

Spherical harmonic transform:

Wavelet filters on the sphere

[Price & McEwen 2023]

0.0

L. Mousset, LPENS

GDR CoPhy - IAP - November 2024

Filter set scaling

4

Wavelet transform

[McEwen et al. 2015, Price & McEwen 2023] S2FFT Python package

Directional convolution performed in harmonic space.

Scattering covariance coefficients S₁, S₂, S₃, S₄

[Morel et al. 2023, Cheng et al. 2023]

Coefficients associated to a single scale and a single angle:

 $S_{1}^{\lambda_{1}} = \langle |I \star \Psi^{\lambda_{1}}| \rangle$ $S_{2}^{\lambda_{1}} = \langle |I \star \Psi^{\lambda_{1}}|^{2} \rangle$ Averages over pixels

Scattering covariance coefficients S₁, S₂, S₃, S₄

Coefficients associated to a single scale and a single angle:

 $S_{1}^{\lambda_{1}} = \langle |I \star \Psi^{\lambda_{1}}| \rangle$ $S_{2}^{\lambda_{1}} = \langle |I \star \Psi^{\lambda_{1}}|^{2} \rangle$ Averages over pixels

Coefficients to probe the coupling between scales:

$$S_{3}^{\lambda_{1},\lambda_{2}} = \operatorname{Cov}\left[I \star \Psi^{\lambda_{1}}, |I \star \Psi^{\lambda_{2}}| \star \Psi^{\lambda_{1}}\right]$$
$$S_{4}^{\lambda_{1},\lambda_{2},\lambda_{3}} = \operatorname{Cov}\left[|I \star \Psi^{\lambda_{3}}| \star \Psi^{\lambda_{1}}, |I \star \Psi^{\lambda_{2}}| \star \Psi^{\lambda_{1}}\right]$$

For instance, with j = [1, 8] and $\gamma = [1, 5]$

 $\Rightarrow \sim 10^3$ coefficients.

 $\lambda = (j, \gamma)$ Scale Angle

[Morel et al. 2023,

Cheng et al. 2023]

[Allys et al. 2020]

Maximum entropy generative model

Summary statistics:

 $\phi(x) = \{ \langle x \rangle, Var(x), S_1, S_2, S_3, S_4 \}$

[Allys et al. 2020]

Maximum entropy generative model

Summary statistics:

 $\phi(x) = \{ \langle x \rangle, Var(x), S_1, S_2, S_3, S_4 \}$

The gradient descent in practice

Start (white gaussian noise) \int_{\perp}^{\perp}

GRADIENT DESCENT Iterate on the pixels or on the harmonic coefficients

JAX => Auto-differentiable Using GPU Minimizer from Optax or jaxopt

Difficulty :

- Directional convolution performed in harmonic space
- Non-linear operation (modulus) performed in map space
- => Change space at each iteration in the gradient descent

Visual validation

Zoom on a patch - Weak lensing

Zoom on a patch - tSZ

Target Generated

Zoom on a patch - Venus

Comparison with a Gaussian generative model

L. Mousset, LPENS

Scattering covariances for the LSS

L. Mousset, LPENS

GDR CoPhy - IAP - November 2024

Statistical validation - Probability Density Function (PDF)

Statistical validation - Probability Density Function (PDF)

tSZ

Statistical validation - Probability Density Function (PDF)

Venus

Statistical validation - Angular power spectrum

LSS Venus tSZ 10^{-15} 10^{-1} Target Target Target 10⁰ Generated Generated Generated 10-2 10^{-16} Ű C J 10⁻³ 10^{-1} Munnahar . 10-17 10^{-4} Malm malmen 10-2 10^{-18} 10-5 100 150 200 250 50 100 150 200 250 100 150 250 50 50 200 Multipole *l* Multipole *l* Multipole *l*

Statistical validation - Minkowski functionals

LSS

tSZ

L. Mousset, LPENS

GDR CoPhy - IAP - November 2024

28/31

Statistical validation - Minkowski functionals

Venus

GDR CoPhy - IAP - November 2024

Summary

- Scattering transforms are efficient low variance summary statistics to characterize non-Gaussian fields.
- We have adapted these tools to spherical data, which will be mandatory for incoming large scale surveys.
- We validated s2scat on generative modeling of full-sky homogeneous fields.
- The software is available on GitHub and details can be found in the associated paper.

Future applications

We have a low dimensional generative model applicable to a broad range of physical fields. => Can be plug into different algorithms.

One example : Traditional component separations for CMB.

Thank you for your attention!

A critical example for large scale measurement

Angular power spectrum

Spherical maps Planar approximation not valid

Directional convolution on the sphere

[McEwen et al. 2015, Price & McEwen 2023] S2FFT Python package

$$W_{\ell m n}^{j} = \frac{8\pi^{2}}{2\ell+1} I_{\ell m} \Psi_{\ell n}^{j*}$$

$$\lim_{\mathbf{v}} \mathbf{W}^{j}(\mathbf{\alpha}, \mathbf{\beta}, \gamma) \rightarrow W_{\ell n}^{j\gamma}(\mathbf{\theta}, \mathbf{\varphi})$$

$$W^{j}(\mathbf{\alpha}, \mathbf{\beta}, \gamma) \rightarrow W_{\ell n}^{j\gamma}(\mathbf{\theta}, \mathbf{\varphi})$$

$$\lim_{\mathbf{v}} \mathbf{U}^{j\gamma}(\mathbf{\theta}, \mathbf{\varphi}) \rightarrow W_{\ell n}^{j\gamma}(\mathbf{\theta}, \mathbf{\varphi})$$

$$\int_{\mathbf{u}} \mathbf{U}^{j\gamma}(\mathbf{\theta}, \mathbf{\varphi})$$

$$\int_{\mathbf{u}} \mathbf{U}^{j\gamma}(\mathbf{\theta}, \mathbf{\varphi})$$

Convolution of a Dirac map:

Computational benchmarking

 Table 1. Computational benchmarking.

Pre-compute Mode				
Bandlimit	Forward	Gradient	JIT Compilation	
256	15 ms	30 ms	20 s	
512	100 ms	200 ms	25 s	
Recursive Mode				
Bandlimit	Forward	Gradient	JIT Compilation	
256	120 ms	300 ms	90 s	
1024	5 s	10 s	3 m	
2048	20 s	50 s	6 m	

Notes. Results of the SC transform provided by s2scat. These results were recovered on a single NVIDIA A100 40GB GPU, although it is possible to run across multiple GPUs. In our analysis we generate spherical images through 400 iterations to be conservative. In practice, however, we find that ~ 100 iterations is typically sufficient, in which case an image at L = 256 can be generated in ~ 4s. Furthermore, batched generation can dramatically decrease per sample compute time. For example, 20 images at L = 256 can be generated in ~ 12s, corresponding to ~ 0.5s per sample.