Analytical routes to massive inflationary correlators

Zhong-Zhi Xianyu (鲜于中之)

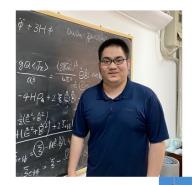
Department of physics, Tsinghua University

Inflation 2025 @ IAP

Paris | December 1, 2025

In collaboration with ...

樊秉初 Bingchu Fan



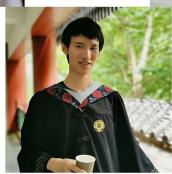
刘皓源 Haoyuan Liu

秦哲涵 Zhehan Qin

吴家毅 Jiayu Wu

臧家驹 Jiaju Zang

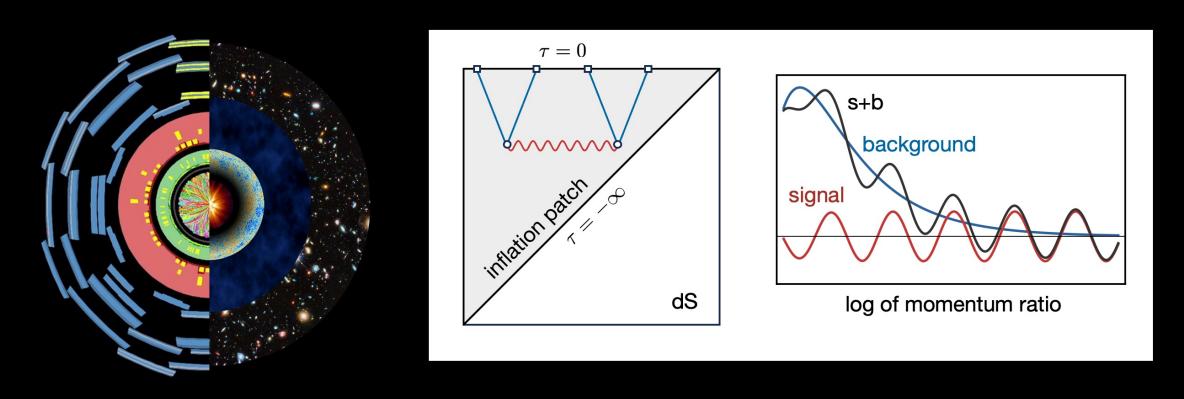
张洪语 Hongyu Zhang

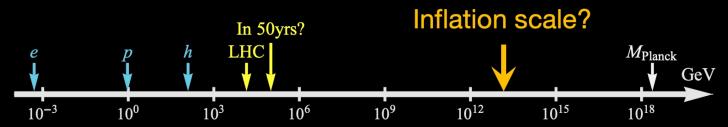


张亦松 Yisong Zhang

A cosmological collider program

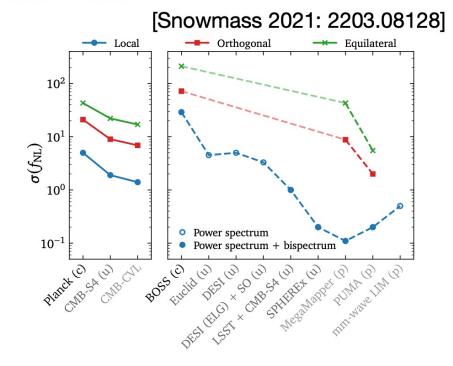
[Chen, Wang, 0911.3380; Arkani-Hamed, Maldacena, 1503.08043 and many more]





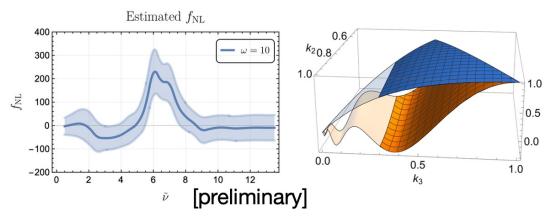
Data are coming in!

 ~ 2 orders in near future; ~ 4 ultimately with 21cm

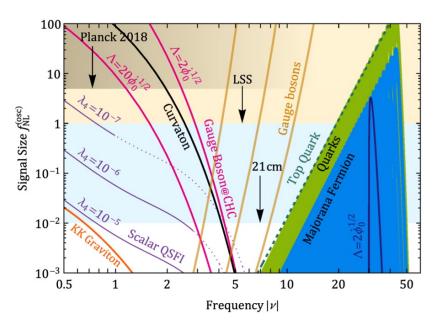


 Challenges for theorists:
 Efficient and precise computation of massive cosmological correlators!

- Searches of single-change processes from CMB/LSS data [Cabass et al. 2404.01894; Sohn et al. 2404.07203; Suman et al. 2511.17500; Philcox et al. 2511.19179 etc]
- Parity-violating particle models (chem potential) from LSS data
 [Bao, Wang, ZX, Zhong, 2504.02931]
- Many types of scalar-exchange models from Planck data [Kumar, Lu, ZX, Zhang, to appear]



Particle Phenomenology



[Lian-Tao Wang, ZX, 1910.12876]

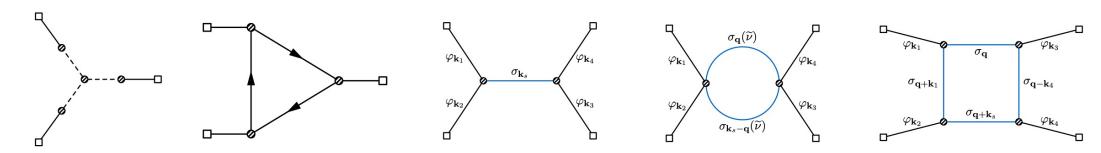
Over the years, many particle models identified in SM/BSM, with naturally large signals

Many fascinating stories which are still ongoing

The CC signals can be there, and deserve to be treated seriously

Model templates

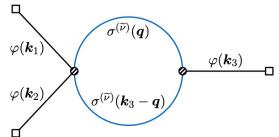
Behind the CC signals are "simple" Feynman graphs in the inflationary background:



- To look for CC signals in real data, we may need a template bank
- Not a kinematic point, but the full shape; not for a parameter; but a multi-dim parameter grid
- We'd better compute them with precision and efficiency --- Analytic approach
- Developing fast! Many computations considered impossible a few years ago are now done
- Meanwhile, active studies on numerical frontier as well [Werth, Pinol, Renaux-Petel, 2302.00655, 2402.03693, 2312.06559]

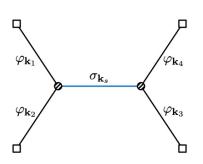
Why analytic?

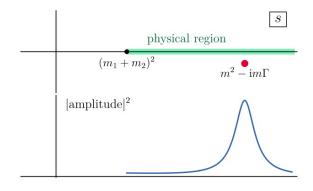
Data-wise: good analytical strategy speeds up numerical computation
 Example: 3pt massive bubble: numerical [O(10⁵) CPU hrs] vs. analytical [O(10s) @ laptop]
 [Wang, ZX, Zhong, 2109.14635]
 [Liu, Qin, ZX, 2407.12299]

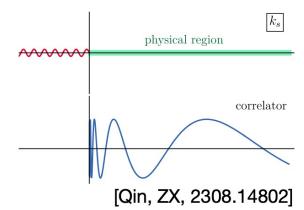


$$\mathcal{J}^{0,-2}(u) = Cu^{3} - \frac{u^{4}}{128\pi \sin(2\pi i\widetilde{\nu})} \sum_{n=0}^{\infty} \frac{(3+4i\widetilde{\nu}+4n)(1+n)_{\frac{1}{2}}(1+2i\widetilde{\nu}+n)_{\frac{1}{2}}}{(\frac{1}{2}+i\widetilde{\nu}+n)_{\frac{1}{2}}(\frac{3}{2}+i\widetilde{\nu}+n)_{\frac{1}{2}}} \times \left\{ {}_{2}\mathcal{F}_{1} \begin{bmatrix} 2+2i\widetilde{\nu}+2n,4+2i\widetilde{\nu}+2n \\ 4+4i\widetilde{\nu}+4n \end{bmatrix} u \right] u^{2n+2i\widetilde{\nu}} - {}_{3}\mathcal{F}_{2} \begin{bmatrix} 1,2,4 \\ 1-2n-2i\widetilde{\nu},4+2n+2i\widetilde{\nu} \end{bmatrix} u \right\} + (\widetilde{\nu} \to -\widetilde{\nu})$$

Theory-wise: good lessons about QFT in dS from analytical structures of correlators
 Whenever a correlator becomes singular, there is a physical reason







The nature of the problem

- Weakly coupled QFTs in the bulk (loop expansion works)
- dS isometries often broken (especially dS boosts, sometimes dilitation as well)
- They suggest us to develop analytical methods that exploit bulk perturbativity in a model independent way but do not heavily rely on full dS isometries
- The goals:
 - 1. Explicit results of correlators in terms of well-defined functions
 - 2. Understanding the analytic structures: complete characterization of their singularities
 - 3. Analytical continuation and efficient numerical strategies
- A comment on tensor structure:

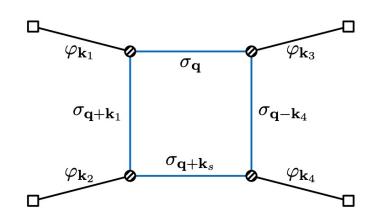
$$\langle \varphi_{\mathbf{k}_1} \cdots \varphi_{\mathbf{k}_n} \rangle' \sim \sum_{\text{tensor structure}} \text{tensorial factor} \times \text{scalar integral}$$

Massive inflation correlators

[See Chen, Wang, ZX, 1703.10166 for a review]

$$\mathcal{T}\big(\{\pmb{k}\}\big) \sim \int \mathrm{d}\tau \int \mathrm{d}^d \pmb{q} \, \times (-\tau)^p \times e^{\mathrm{i} E\tau} \times \mathrm{H}_{\mathrm{i}\widetilde{\nu}}\Big[-K(\pmb{q},\pmb{k})\tau\Big] \times \theta(\tau_i - \tau_j)$$
 vertex int loop int ext line bulk line

- Massless / conformal external lines + (principal) massive internal lines
- Challenges:
 - Mode functions (Hankel, Whittacker, ...)
 - Nested time integrals
 - Loop momentum integrals
- Complexity increases with # of loops and # of vertices
 [Tree graphs are nontrivial! Quantifiable; more later]

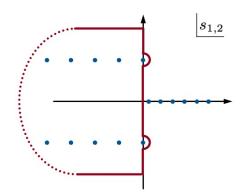


Analytical methods

Expression => Structure

Structure => Expression

Partial Mellin-Barnes representation [Resolve!]



Differential equations [Pinch!]

Family tree decomposition [Flip!]

Dispersion relations [Glue!]

$$= \int \frac{\mathrm{d}r'}{2\pi \mathrm{i}} \frac{1}{r'-r} \times \left(\begin{array}{c} \\ \\ \\ \end{array} \right)$$

Partial Mellin-Barnes representation

[Qin, ZX, 2205.01692, 2208.13790]

MB rep for all bulk lines; Resolving special functions into power functions

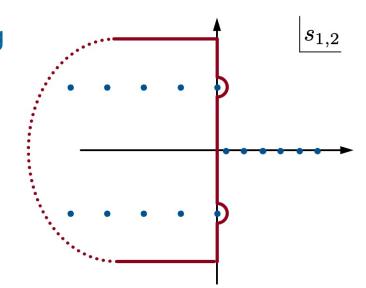
For example: Massive scalar propagator [Hankel function]

$$H_{\nu}^{(1)}(-k\tau) = \frac{1}{\pi} \int_{-i\infty}^{i\infty} \frac{ds}{2\pi i} \left(\frac{k}{2}\right)^{-2s} (-\tau)^{-2s} e^{(2s-\nu-1)\pi i/2} \Gamma\left[s - \frac{\nu}{2}, s + \frac{\nu}{2}\right]$$

Expanding in dilatation eigenmode, but no dilatation or boost symmetry required

Time and loop momentum integrals factorized, enabling separate treatments

$$\mathcal{T}(\{m{k}\}) \sim \int \mathrm{d}s imes \mathcal{G}(s) imes \left[\int \mathrm{d}^d m{q} K(m{q},m{k})^lpha
ight] \quad ext{Loop int} \ imes \left[\int \mathrm{d} au e^{\mathrm{i}E au} imes (- au)^eta imes heta(au_i- au_j)
ight] \quad ext{Time int}$$



[See also Sleight 1907.01143 etc.]

Family tree decomposition

[ZX, Zang, 2309.10849]

Family tree decomposition: flip the directions such that all graphs are partially ordered

$$\theta(\tau_1 - \tau_2) + \theta(\tau_2 - \tau_1) = 1$$

Partial order:

A mother can have any number of daughters but a daughter must have only one mother

Every resulting nested graph can be interpreted as a maternal family tree sisters

A notation for FTs:
$$\left[12(34\cdots)(5\cdots)\right] = \int_{-\infty}^{0} \prod_{i=1}^{N} \left[\mathrm{d}\tau_i(-\tau_i)^{q_i-1} e^{\mathrm{i}\omega_i\tau_i}\right] \theta_{21}\theta_{32}\theta_{52}\theta_{43}\cdots$$

mother-daughter

$$\left[\mathscr{P}(\widehat{1}2\cdots N)\right] = \frac{(-\mathrm{i})^N}{(\mathrm{i}\omega_1)^{q_1\cdots N}} \sum_{n_2,\cdots,n_N=0}^{\infty} \Gamma(q_1\dots N+n_2\dots N) \prod_{j=2}^N \frac{(-\omega_j/\omega_1)^{n_j}}{(\widetilde{q}_j+\widetilde{n}_j)n_j!}$$

What can PMB + FTD do?

- Tree level: A trivial procedure to get analytical results for all trees [solved]
 PMB => FTD => Collecting MB poles => Solutions in hypergeo series [ZX, Zang, 2309.10849]
- A byproduct: complete analytical answer for all conformal scalar tree amplitudes in power-law FRW space [automatically solve the kinematic flow diff eqs] [Fan, ZX, 2403.07050]
- Beyond tree level: Full computation remains challenging
 However, very useful for studying analytical structure of arbitrary loop graphs
- Generally, a (tree or loop) correlator can exhibit singular behavior (branch point) at:
 - ☐ Nonlocal signal branch points (soft momentum limit)

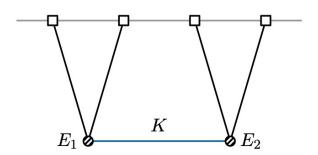
$$K \to 0$$

☐ Local signal branch points (hard energy limit)

$$E_1 \to \infty$$
 or $E_2 \to \infty$

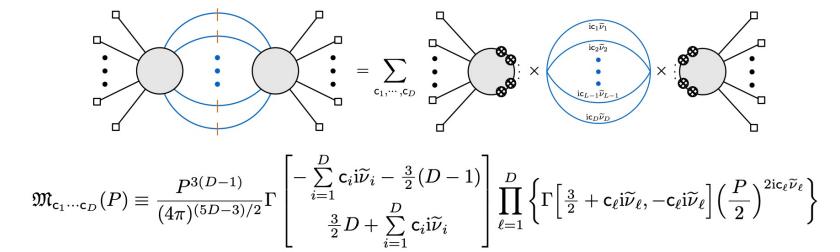
☐ Partial energy branch points (zero energy sum limit)

$$E_1+K \rightarrow 0$$
 or $E_2+K \rightarrow 0$ or $E_1+E_2 \rightarrow 0$



Singularity structure / factorization theorems / cutting rules

- Take the nonlocal signal as an example (very relevant to CC pheno)
- The nonlocal signal is factorized (and thus cut) and computable to the leading order in the soft momentum but to all loop orders [Qin, ZX, 2304.13295; 2308.14802]

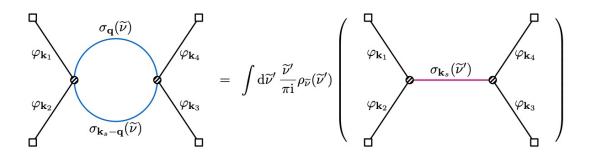


- Similar factorization and cutting rules hold for the local signal [Qin, ZX, to appear] and partialenergy limit [Wu, ZX, Zhang, to appear]
- In a sense, the nonanalytic part is always "simpler" than the analytic part

Spectral decomposition of loops

[ZX, Zhang, 2211.03810; Zhang, 2507.19318]

Loops greatly simplified with new strategies in certain cases: spectral decomposition

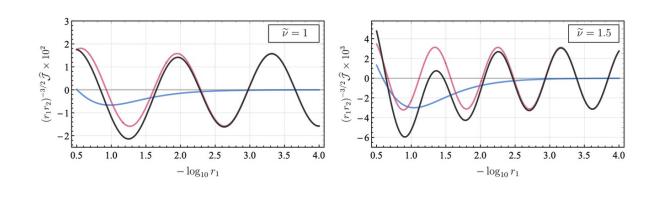


-

Rewrite bubble 1-loop as linear superposition of tree graphs with all possible masses.

The spectral density obtainable by Wick-rotating dS to sphere or AdS

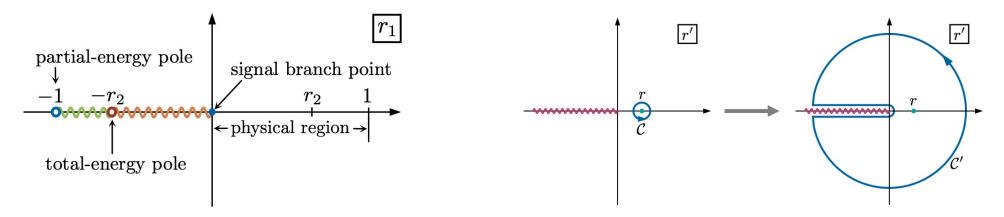
Complete analytical expressions obtained for bubble graphs of massive scalar and vector boson exchange. Directly generalizable to other spins and banana graphs



A dispersive boostrap

[Liu, Qin, ZX, 2407.12299; Liu, Qin, Wu, ZX, Zhang, to appear]

The study of analyticity allows us to locate all singularities on the complex plane => Bootstraping complex graphs by gluing simpler ones. The glue: dispersion integral

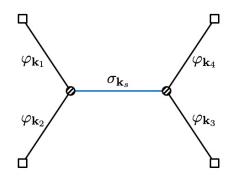


Dispersion integrals are insensitive to UV (local) physics

New and much simplified analytical expression for loops; UV and IR neatly separated In particular: we identify an "irreducible background" demanded by analyticity Lesson: UV div/regularization artificial and avoidable; but renormalization physical [See also: Werth, 2409.02072]

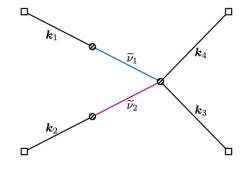
Differential equations

- "Old" technique, first used in cosmo correlators as a "bootstrap" equation
- However, much easier to derive and to generalize in the bulk



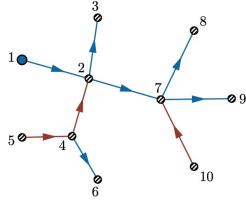
1 exchange (2018)

"Cosmological bootstrap" [Arkani-Hamed, Baumann, Lee, Pimentel, 1811.00024]



2 exchanges (2024)

[ZX, Zang, 2309.10849] [Aoki, Pinol, Sano, Yamaguchi, Zhu, 2404.09547]



Arbitrary exchanges (2023)

Partial Mellin-Barnes [Qin, ZX, 2205.01692, 2208.13790] Family tree [ZX, Zang, 2309.10849]

[See also Pimentel, Wang, 2205.00013, Qin, ZX, 2208.13790, 2301.07047, Jazayeri, Renaux-Petel, 2205.10340, Qin, Renaux-Petel, Tong, Werth, Zhu, 2506.01555, 2511.00152, etc]

Massive family trees: WYSIWYG

[Liu, ZX, 2412.07843]

- In principle, with family trees known, an arbitrary massive tree graph can be obtained by finishing Mellin integrals, which is a mechanical yet tedious procedure
- Also, the results from PMB + FTD involve more layers of summations than expected --- not optimized in transcendental weight

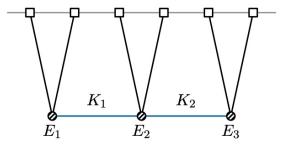
$$\mathcal{G}(\{E\},\{K\}) = \sum_{\mathsf{a}_1,\cdots,\mathsf{a}_V = \pm} \int_{-\infty}^0 \prod_{i=1}^V \left[\mathrm{d}\tau_i \, \mathrm{i} \mathsf{a}_i (-\tau_i)^{p_i} e^{\mathrm{i} \mathsf{a}_i E_i \tau_i} \right] \prod_{\alpha=1}^I D_{\mathsf{a}_\alpha \mathsf{a}_\alpha'}^{(\widetilde{\nu}_\alpha)}(K_\alpha;\tau_\alpha,\tau_\alpha')$$

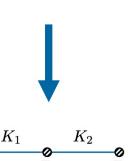
- Question: Can we directly write down the answer for an arbitrary massive tree graph without really computing it?
- Answer: Yes

Massive family trees: WYSIWYG

$$\mathcal{G} = \sum_{i \in 2^{\{K\}}} \operatorname{Cut}\left[\mathcal{G}
ight]$$

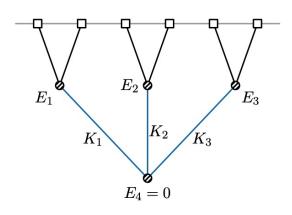
- The complete solution to arbitrary massive tree is the sum of the CIS (completely inhom sol) and all of its cuts.
- CIS => massive family tree
- Cuts => "tuned" (# or ♭) massive family trees





$$\mathcal{G}_{3} = [123] + [1^{\sharp_{1}}] ([2^{\sharp_{1}}3] + [2^{\flat_{1}}3]) + [12^{\sharp_{2}}] ([3^{\sharp_{2}}] + [3^{\flat_{2}}])$$

$$+ [1^{\sharp_{1}}] ([2^{\sharp_{1}\sharp_{2}}] + [2^{\flat_{1}\sharp_{2}}]) ([3^{\sharp_{2}}] + [3^{\flat_{2}}]) + \text{shadows}$$



$$E_2$$
 K_2 $E_4 = 0$ K_1 K_3 E_3

$$\begin{split} \mathcal{G}_{4}' &= \operatorname{CIS}\left[\mathcal{G}_{4}'\right] + \sum_{\alpha=1}^{3} \operatorname{Cut}_{K_{\alpha}}\left[\mathcal{G}_{4}'\right] + \sum_{\alpha \neq \beta} \operatorname{Cut}_{K_{\alpha},K_{\beta}}\left[\mathcal{G}_{4}'\right] + \operatorname{Cut}_{K_{1},K_{2},K_{3}}\left[\mathcal{G}_{4}'\right] \\ & \operatorname{CIS}\left[\mathcal{G}_{4}'\right] = \begin{bmatrix} 1 \cancel{4}(2)(3) \end{bmatrix}, \\ \sum_{\alpha=1}^{3} \operatorname{Cut}_{K_{\alpha}}\left[\mathcal{G}_{4}'\right] &= \begin{bmatrix} 1^{\sharp_{1}} \end{bmatrix} \left(\begin{bmatrix} 2 \cancel{4}^{\sharp_{1}} 3 \end{bmatrix} + \begin{bmatrix} 2 \cancel{4}^{\flat_{1}} 3 \end{bmatrix} \right) + \begin{bmatrix} 1 \cancel{4}^{\sharp_{2}} 3 \end{bmatrix} \left(\begin{bmatrix} 2^{\sharp_{2}} \end{bmatrix} + \begin{bmatrix} 2^{\flat_{2}} \end{bmatrix} \right) \\ &+ \begin{bmatrix} 1 \cancel{4}^{\sharp_{3}} 2 \end{bmatrix} \left(\begin{bmatrix} 3^{\sharp_{3}} \end{bmatrix} + \begin{bmatrix} 3^{\flat_{3}} \end{bmatrix} \right) + \operatorname{shadows}, \\ \sum_{\alpha \neq \beta} \operatorname{Cut}_{K_{\alpha},K_{\beta}}\left[\mathcal{G}_{4}'\right] &= \begin{bmatrix} 1^{\sharp_{1}} \end{bmatrix} \begin{bmatrix} 2^{\sharp_{2}} \end{bmatrix} \left(\begin{bmatrix} 3 \cancel{4}^{\sharp_{1}\sharp_{2}} \end{bmatrix} + \begin{bmatrix} 3 \cancel{4}^{\flat_{1}\sharp_{2}} \end{bmatrix} + \begin{bmatrix} 3 \cancel{4}^{\sharp_{1}\flat_{2}} \end{bmatrix} + \begin{bmatrix} 3 \cancel{4}^{\flat_{1}\flat_{2}} \end{bmatrix} \right) \\ &+ \begin{bmatrix} 1^{\sharp_{1}} \end{bmatrix} \left(\begin{bmatrix} 2 \cancel{4}^{\sharp_{1}\sharp_{3}} \end{bmatrix} + \begin{bmatrix} 2 \cancel{4}^{\flat_{1}\sharp_{3}} \end{bmatrix} \right) \left(\begin{bmatrix} 3^{\sharp_{3}} \end{bmatrix} + \begin{bmatrix} 3^{\flat_{3}} \end{bmatrix} \right) + \operatorname{shadows}, \\ &+ \begin{bmatrix} 1 \cancel{4}^{\sharp_{2}\sharp_{3}} \end{bmatrix} \left(\begin{bmatrix} 2^{\sharp_{2}} \end{bmatrix} + \begin{bmatrix} 2^{\flat_{2}} \end{bmatrix} \right) \left(\begin{bmatrix} 3^{\sharp_{1}\sharp_{2}\sharp_{3}} \end{bmatrix} + \begin{bmatrix} 4^{\sharp_{1}\flat_{2}\sharp_{3}} \end{bmatrix} + \begin{bmatrix} 4^{\sharp_{1}\sharp_{2}\flat_{3}} \end{bmatrix} \right) + \operatorname{shadows}, \\ &+ \begin{bmatrix} 4^{\flat_{1}\flat_{2}\sharp_{3}} \end{bmatrix} + \begin{bmatrix} 4^{\flat_{1}\sharp_{2}\flat_{3}} \end{bmatrix} + \begin{bmatrix} 4^{\flat_{1}\sharp_{2}\flat_{3}} \end{bmatrix} + \begin{bmatrix} 4^{\sharp_{1}\flat_{2}\flat_{3}} \end{bmatrix} \right) + \operatorname{shadows}, \\ &+ \begin{bmatrix} 4^{\flat_{1}\flat_{2}\sharp_{3}} \end{bmatrix} + \begin{bmatrix} 4^{\flat_{1}\sharp_{2}\flat_{3}} \end{bmatrix} + \begin{bmatrix} 4^{\sharp_{1}\flat_{2}\flat_{3}} \end{bmatrix} + \begin{bmatrix} 4^{\sharp_{1}\flat_{2}\flat_{3}} \end{bmatrix} \right) + \operatorname{shadows}, \\ &+ \begin{bmatrix} 4^{\flat_{1}\flat_{2}\sharp_{3}} \end{bmatrix} + \begin{bmatrix} 4^{\flat_{1}\sharp_{2}\flat_{3}} \end{bmatrix} + \begin{bmatrix} 4^{\sharp_{1}\flat_{2}\flat_{3}} \end{bmatrix} + \begin{bmatrix} 4^{\sharp_{1}\flat_{2}\flat_{3}} \end{bmatrix} + \operatorname{shadows}, \\ &+ \begin{bmatrix} 4^{\flat_{1}\flat_{2}\sharp_{3}} \end{bmatrix} + \begin{bmatrix} 4^{\sharp_{1}\sharp_{2}\flat_{3}} \end{bmatrix} + \begin{bmatrix} 4^{\sharp_{1}\flat_{2}\flat_{3}} \end{bmatrix} + \begin{bmatrix} 4^{\sharp_{1}\flat_{2}\flat_{3}} \end{bmatrix} + \operatorname{shadows}, \\ &+ \begin{bmatrix} 4^{\flat_{1}\flat_{2}\sharp_{3}} \end{bmatrix} + \begin{bmatrix} 4^{\sharp_{1}\sharp_{2}\flat_{3}} \end{bmatrix} + \begin{bmatrix} 4^{\sharp_{1}\flat_{2}\flat_{3}} \end{bmatrix} + \begin{bmatrix} 4^{\sharp_{1}\sharp_{2}\flat_{3}} \end{bmatrix} + \operatorname{shadows}, \\ &+ \begin{bmatrix} 4^{\flat_{1}\flat_{2}\sharp_{3}} \end{bmatrix} + \begin{bmatrix} 4^{\sharp_{1}\flat_{2}\flat_{3}} \end{bmatrix} + \begin{bmatrix} 4^{\sharp_{1}\flat_{2}\flat_{3}} \end{bmatrix} + \mathbb{I}_{4}^{\sharp_{1}\flat_{2}\flat_{3}} \end{bmatrix} + \mathbb{I}_{4}^{\sharp_{1}\flat_{2}\flat_{3}} \end{bmatrix} + \mathbb{I}_{4}^{\sharp_{1}\flat_{2}\flat_{3}} \end{bmatrix} + \mathbb{I}_{4}^{\sharp_{1}\sharp_{2}\flat_{3}} \end{bmatrix} + \mathbb{I}_{4}^{\sharp_{1}\sharp_{2}\flat_{$$

Differential equations for arbitrary massive trees

[Liu, ZX, 2412.07843]

- An internal line (bulk propagator) is collapsed to 0 or δ by a Klein-Gordon operator
- The KG operator can be pulled out of the integral with IBP at a given vertex
- We obtain a 2nd order diff eq for the graph by picking up a line + one of its two endpoint
- There are a total of 2*I* choices
 => 2*I* diff eqs for 2*I* indep
 energy ratios. A complete set!

$$\mathcal{D}_{(\alpha i)}\mathcal{G} = \frac{r_{(\alpha i)}^{p_j+4}r_{(\alpha j)}^{p_i+4}}{\left[r_{(\alpha i)}+r_{(\alpha j)}\right]^{p_{ij}+5}}\mathsf{C}_{\alpha}[\mathcal{G}],$$

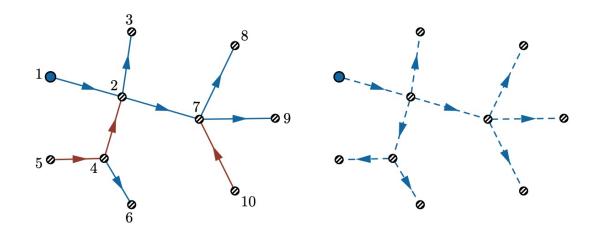
$$\mathcal{D}_{(\alpha i)} \equiv \left(\vartheta_{(\alpha i)}-\frac{3}{2}\right)^2+\widetilde{\nu}_{\alpha}^2-r_{(\alpha i)}^2\big(\vartheta_{\{i\}}+p_i+2\big)\big(\vartheta_{\{i\}}+p_i+1\big)$$

$$r_{(\alpha i)} = \frac{K_{\alpha}}{E_i}$$
 $\vartheta_{(\alpha i)} \equiv r_{(\alpha i)} \frac{\partial}{\partial r_{(\alpha i)}}$ $\vartheta_{\{i\}} \equiv \sum_{\beta \in \mathcal{N}(i)} \vartheta_{(\beta i)}$

Completely inhomogeneous solution: massive family trees

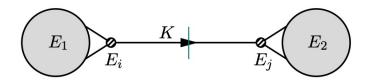
- Quite remarkably, the CIS has a direct hypergeo rep: $\mathrm{CIS}\left[\mathcal{G}_{V}\right]=\llbracket\mathscr{P}(1\cdots V)
 rbracket$
- The solution expanded in the largest vertex energy (1/E₁), indep of the order of other energies
- Picking up a largest energy automatically generates a partial order: massive family tree
 q: a "family parameter" encoding the tree structure:

$$q_i \equiv \widetilde{\ell}_i + 2\widetilde{m}_i + \widetilde{p}_i + 4N_i$$



Homogeneous solutions: cuts of massive family trees

The homogeneous solutions are obtained by executing appropriate cuts:



$$\operatorname{Cut}_{K_{\alpha}}\left[\widetilde{\mathcal{G}}_{V}\right] = \left[\left[\widehat{1}\cdots i^{\sharp}\cdots V_{1}\right]\right] \left\{ \left[\left[\left(V_{1}+1\right)\cdots j^{\sharp}\cdots V\right]\right] + \left[\left[\left(V_{1}+1\right)\cdots j^{\flat}\cdots V\right]\right] \right\} + \text{ c.c.}$$

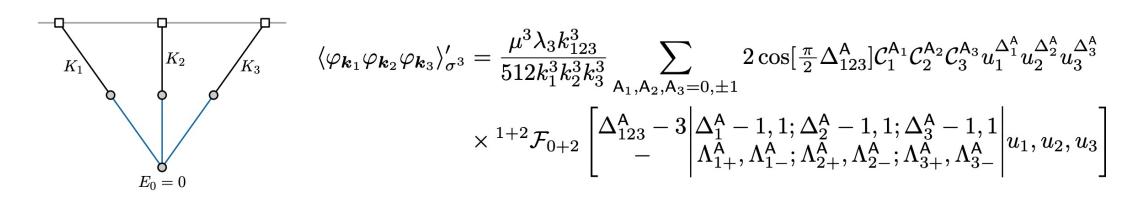
The cut involves certains dressings of massive family trees: augmentation and flattening:

$$\begin{bmatrix} \cdots i^{\sharp} \cdots \end{bmatrix} \equiv \sum_{m=0}^{\infty} \sqrt{\frac{2}{\pi}} \frac{\Gamma(-m - i\widetilde{\nu}_{\alpha})}{m!} \left(\frac{K_{\alpha}}{2E_{i}}\right)^{2m + i\widetilde{\nu}_{\alpha} + 3/2} \left[\cdots i \cdots \right]_{p_{i} \to p_{i} + 2m + i\widetilde{\nu}_{\alpha} + 3/2},
\begin{bmatrix} \cdots i^{\flat} \cdots \end{bmatrix} \equiv \sum_{m=0}^{\infty} \sqrt{\frac{2}{\pi}} \frac{\Gamma(-m + i\widetilde{\nu}_{\alpha})}{m!} \left(\frac{K_{\alpha}}{2E_{i}}\right)^{2m - i\widetilde{\nu}_{\alpha} + 3/2} \left\{ \frac{\cos\left[\frac{\pi(p_{\text{tot}} + 2i\widetilde{\nu}_{\alpha})}{2}\right]}{\cos\left(\frac{\pi p_{\text{tot}}}{2}\right)} \left[\cdots i \cdots \right] \right\}_{p_{i} \to p_{i} + 2m - i\widetilde{\nu}_{\alpha} + 3/2}$$

Alternative representation and folded limits

[ZX, Jiaju Zang, 2511.08677]

- A change of variables: "dressing" vertex energies: $E_i \to \mathcal{E}_i \equiv E_i + \sum_{\alpha \in \mathcal{N}(i)} \mathsf{s}_{\alpha i} K_{\alpha}$
- The new energy ratios (u-variables): $u_{\alpha i} \equiv \frac{2K_{\alpha}}{\mathcal{E}_i}$ sign label, + or -
- New PDE systems and full solutions in terms of u-variables
- The new representation trivializes the folded limit, at which the expressions feature reduced transcendental weight. For instance, the classic triple-massive-exchange graph:

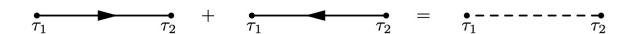


Where are we now?

- Massive tree graphs: solved; WYSIWYG solutions, in hypergeo series
- Loop level: simple 1-loop graphs (massive bubbles) computed, also in hypergeo series
- Analytical structures largely known for all trees and many loops: only poles / branch points of finite degrees
- Conjecture: Any graphic contribution to a renormalized massive cosmological correlator is a multivariate hypergeometric function with only power-law singularities (finite-deg poles or branch points)
- Most of these hypergeo functions are not yet named, and are like "black boxes"
- Then what does the analytical calculation mean other than giving correlators names?
- Why pFq / Appell / Lauricella look like black boxes to us, but sine and cosine do not?

What is analytical computation?

- Using series solutions to define, identify, and represent family trees (hypergeo functions)
- Using the flexibility of FTD to link different reps of family trees => Analytical continuation!



$$\begin{bmatrix} 12 \end{bmatrix} = \begin{bmatrix} 12 \end{bmatrix} \qquad \frac{1}{\omega_{1}^{q_{12}}} \ {}_{2}\mathcal{F}_{1} \begin{bmatrix} q_{2}, q_{12} \\ q_{2} + 1 \end{bmatrix} - \frac{\omega_{2}}{\omega_{1}} \end{bmatrix} = \frac{\Gamma[q_{2}]}{\omega_{12}^{q_{12}}} \ {}_{2}\mathcal{F}_{1} \begin{bmatrix} 1, q_{12} \\ q_{2} + 1 \end{bmatrix} \frac{\omega_{2}}{\omega_{12}}$$

$$\begin{bmatrix} 12 \end{bmatrix} + \begin{bmatrix} 21 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix} \qquad \frac{1}{\omega_{1}^{q_{12}}} \ {}_{2}\mathcal{F}_{1} \begin{bmatrix} q_{2}, q_{12} \\ q_{2} + 1 \end{bmatrix} - \frac{\omega_{2}}{\omega_{1}} \end{bmatrix} + \frac{1}{\omega_{2}^{q_{12}}} \ {}_{2}\mathcal{F}_{1} \begin{bmatrix} q_{1}, q_{12} \\ q_{1} + 1 \end{bmatrix} - \frac{\omega_{1}}{\omega_{2}} \end{bmatrix} = \frac{\Gamma[q_{1}, q_{2}]}{\omega_{1}^{q_{1}} \omega_{2}^{q_{2}}}$$

$$\begin{bmatrix} 123 \end{bmatrix} + \begin{bmatrix} 2(1)(3) \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 23 \end{bmatrix} \qquad \frac{1}{\omega_{1}^{q_{123}}} \ {}_{2}\mathcal{F}_{1} \begin{bmatrix} q_{123}, q_{23} \\ q_{23} + 1 \end{bmatrix} - \frac{\alpha_{2}}{\alpha_{3}} + 1 \end{bmatrix} - \frac{\omega_{2}}{\omega_{1}} - \frac{\omega_{3}}{\omega_{1}} \end{bmatrix} + \frac{1}{\omega_{2}^{q_{123}}} \mathcal{F}_{2} \begin{bmatrix} q_{123} \\ q_{1} + 1, q_{3} + 1 \end{bmatrix} - \frac{\omega_{1}}{\omega_{2}} - \frac{\omega_{3}}{\omega_{2}} \end{bmatrix}$$

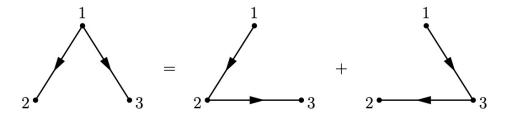
$$= \frac{\Gamma[q_{1}]}{\omega_{1}^{q_{1}} \omega_{2}^{q_{23}}} \ {}_{2}\mathcal{F}_{1} \begin{bmatrix} q_{3}, q_{32} \\ q_{3} + 1 \end{bmatrix} - \frac{\omega_{3}}{\omega_{2}} \end{bmatrix}$$

Family trees are further decomposible into chains [Fan, ZX, 2403.07050; 2509.02684]

$$\theta_{21}\theta_{31}(\theta_{32} + \theta_{23}) = \theta_{32}\theta_{21} + \theta_{23}\theta_{31}$$

Shuffle product:

$$ab \sqcup cd = abcd + acbd + acdb + cabd + cadb + cdab$$



Practically: taking shuffle product recursively among all subfamilies

$$[1(24)(35)] = \{1(24) \sqcup (35)\}$$

$$= \{12435\} + \{12345\} + \{13524\}$$

$$+ \{13245\} + \{13254\} + \{13524\}$$

$$+ \{1345\} + \{1345\} + \{1345\} + \{13524\}$$

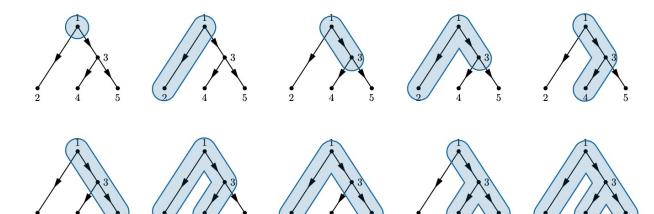
Family chain: standard iterated integrals; Hopf algebra; transcendental weight; Higher weight functions cannot be fully reduced to lower weight functions

Anatomy of family trees

[Fan, ZX, 2509.02684]

A systematic program: charting the singularity map for all family trees

Theorem: all possible singularities of a family tree come from root-bearing partial energies going to zero or infinity [proved by Landau analysis]



With appropriate MB reps, we have derived hypergeometric series representations of an arbitrary family tree around all of its singularities

Example: series in a large partial-energy limit:

$$\left[\mathscr{P}(\widehat{1}2\cdots N)\right] = \frac{(-\mathrm{i})^N}{(\mathrm{i}\Omega_1)^{\widetilde{q}_1}} \sum_{n_2,\cdots,n_N=0}^{\infty} \Gamma(\widetilde{q}_1+\widehat{n}_1) \prod_{j=2}^M \left[\frac{(\Omega_j/\Omega_1)^{n_j}}{(\widetilde{q}_j+\widehat{n}_j)_{n_j+1}} \right] \prod_{k=M+1}^N \left[\frac{(-\omega_k/\Omega_1)^{n_k}}{(\widetilde{q}_k+\widetilde{n}_k)n_k!} \right].$$

Analytical program: final thoughts and outlooks

- Connection to field theory: Many techniques and and explicit results; They provide useful
 tools and explicit data for answering more challenging theoretical questions, e.g.,
 nonperturbative properties of correlators and their relations to fundamental principles?
- Connection to maths: We have to deal with new hypergeometric functions that display intriguing structures: family trees; singularity structures; connecting formulae; cutting and dispersion; relation to polytopes
- Connection to data: Numerical strategies! Series reps; analytical continuation; approximations?
 - --- All computations must be initiated analytically and finished numerically, the only question being where to execute the analytical-to-numerical transition
- We hope that some of the analytical progress can provide new insights and better answers!

Thank you!