

Colliders in the Sky

Constraining Primordial Non-Gaussianity with CMB and LSS Observations

Oliver H. E. Philcox

Assistant Professor @ Stanford

Primordial non-Gaussianity

START: Quantum Fluctuations in Inflaton ϕ

Single-field, slow-roll inflation, with Bunch-Davies vacuum

Vanilla inflation \Rightarrow **Gaussian** fluctuations in ζ

New physics \Rightarrow non-Gaussian fluctuations in ζ

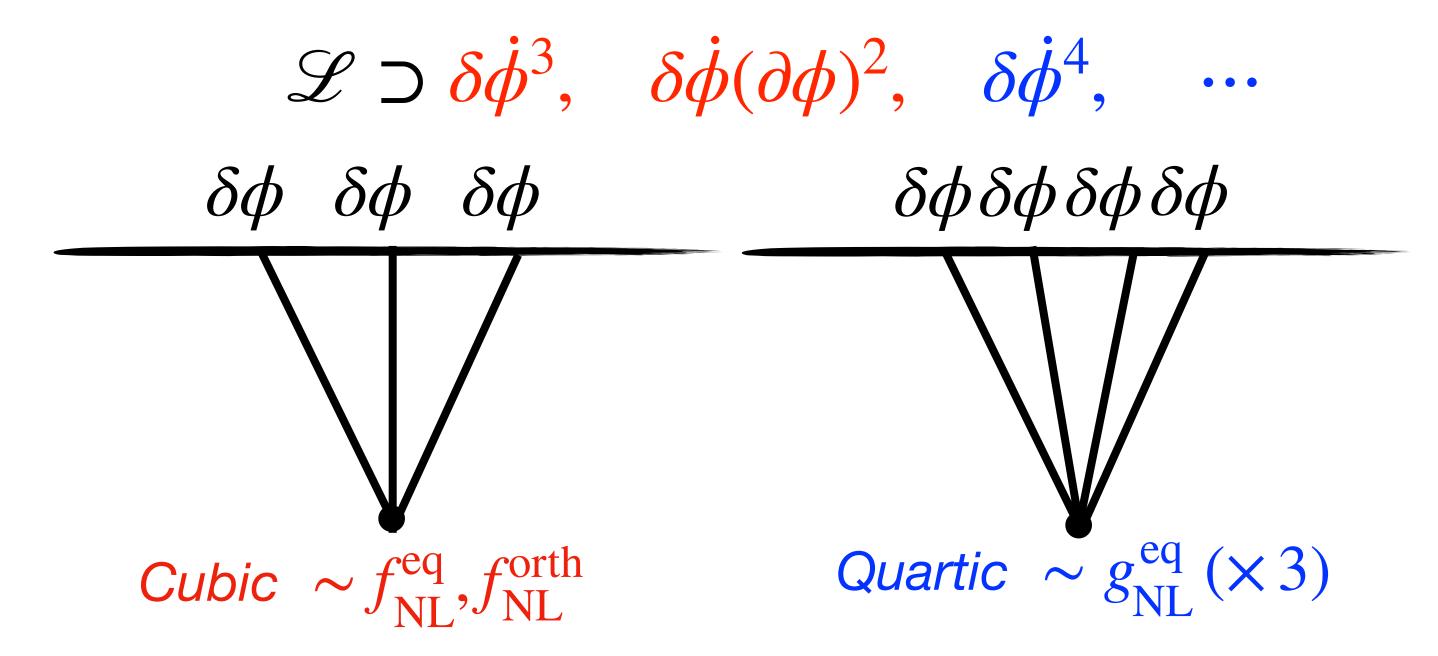
Self-interactions, new fields, new vacuum states, thermal dissipation, ...

END: Classical Fluctuations in Curvature ζ

By searching for non-Gaussianity, we can constrain inflationary physics!

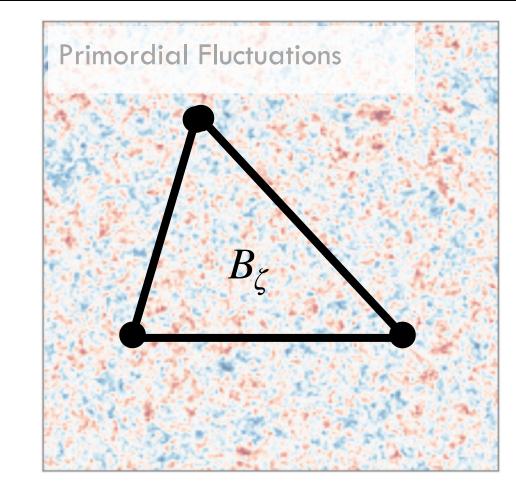
Self-Interactions

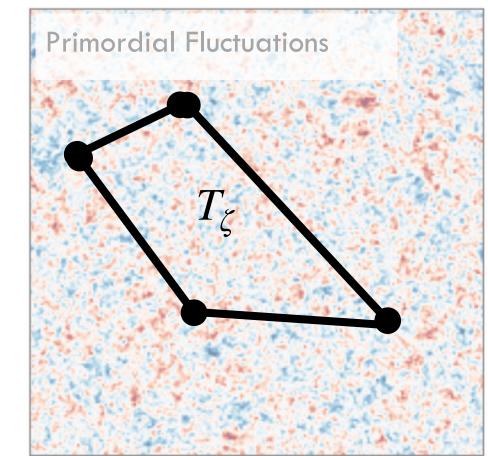
Many models of inflation feature self-interactions:



- These lead to three- and four-point functions at the end of inflation
- The shape encodes the interaction vertex, the amplitude encodes the microphysics

e.g.
$$\langle \zeta(\mathbf{k}_1)\zeta(\mathbf{k}_2)\zeta(\mathbf{k}_3)\rangle \sim f_{\mathrm{NL}}^{\mathrm{eq}} \times \mathrm{shape}$$





Self-Interactions

• Other models feature **new particles**, σ :

- Primordial Fluctuations B_{ζ}
- Primordial Fluctuations T_{ζ}

- These lead to three- and four-point functions at the end of inflation
- The shape encodes the interaction vertex, the amplitude encodes the microphysics

e.g.
$$\langle \zeta(\mathbf{k}_1)\zeta(\mathbf{k}_2)\zeta(\mathbf{k}_3)\rangle \sim f_{\rm NL}^{\rm loc} \times {\rm shape}$$

Arkani-Hamed, Maldacena, Lee, Moradinezhad, Cabass, Pajer, Jazayeri, Baumann...

The Cosmological Collider

- The three- and four-point functions track the exchange of a particle $\sigma_{\mu_1\cdots\mu_s}$ of mass $m_\sigma\sim H$ and spin $s=0,1,2,\cdots$
- In the **collapsed limit** (low exchange momentum), the inflationary signatures are set by **symmetry** and depend **only** on the mass m_{σ} , the spin, s, and the speed c_{σ}

$$\langle \zeta^4 \rangle \sim \tau_{\text{NL}} \times \frac{1}{k_1^3 k_3^3 k_{12}^3} \left[\left(\frac{k_{12}}{k_1 k_3} \right)^{3/2 + i\mu_s} + \left(\frac{k_{12}}{k_1 k_3} \right)^{3/2 - i\mu_s} \right] \mathcal{L}_s(\hat{\mathbf{k}}_1 \cdot \hat{\mathbf{k}}_3)$$

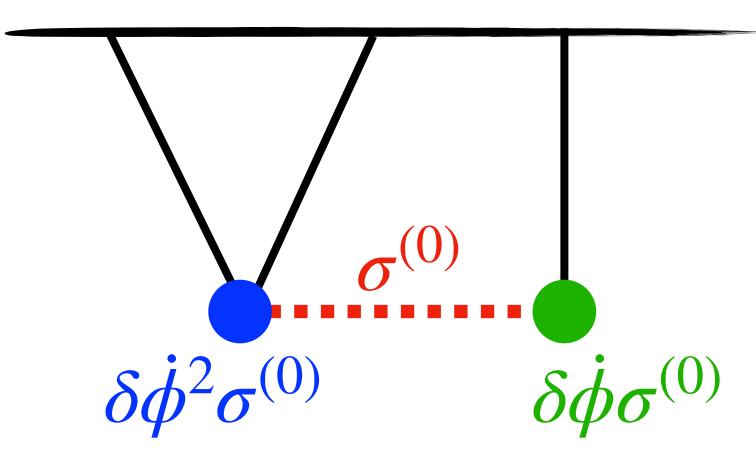
Amplitude $\sim e^{-m_{\sigma}/H}$

Shape (mass dependent) Angle (spin-dependent)

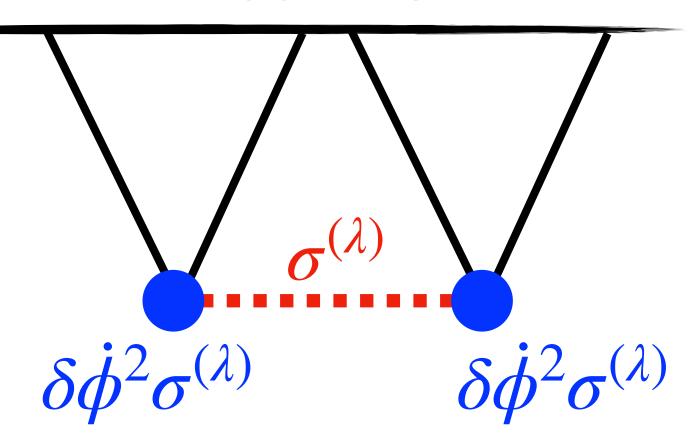
for mass parameter
$$\mu_{\rm S} = \sqrt{m_{\sigma}^2/H^2 - 9/4}$$

We get oscillations for particles with $m_{\sigma} \gtrsim H$

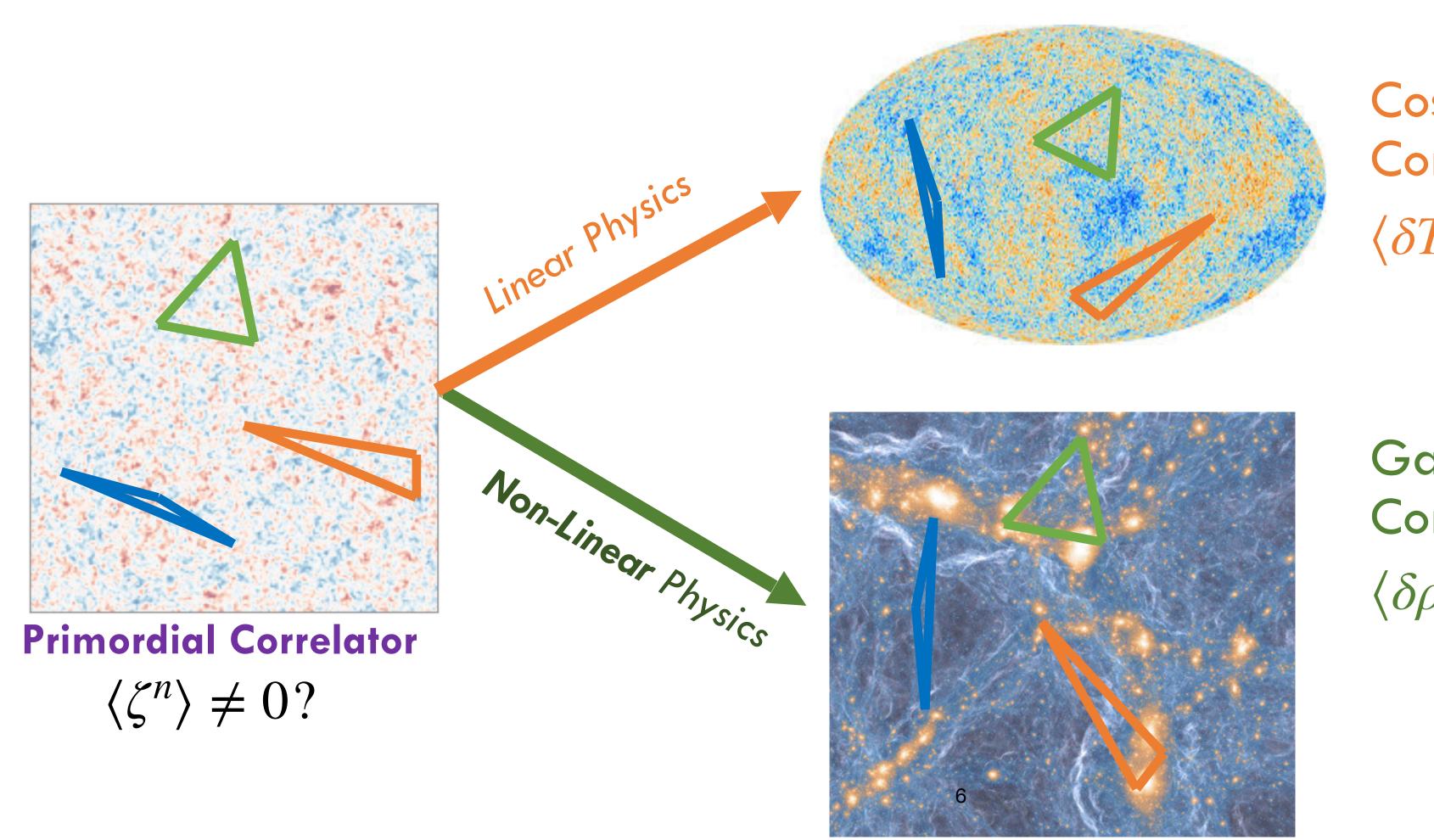
Three-Point



Four-Point



How to Measure Primordial Non-Gaussianity



Cosmic Microwave Background Correlator

 $\langle \delta T^n \rangle \neq 0$?

Galaxy Distribution
Correlator

$$\langle \delta \rho_{\text{galaxy}}^n \rangle \neq 0$$
?

How to Measure a Three-Point Function

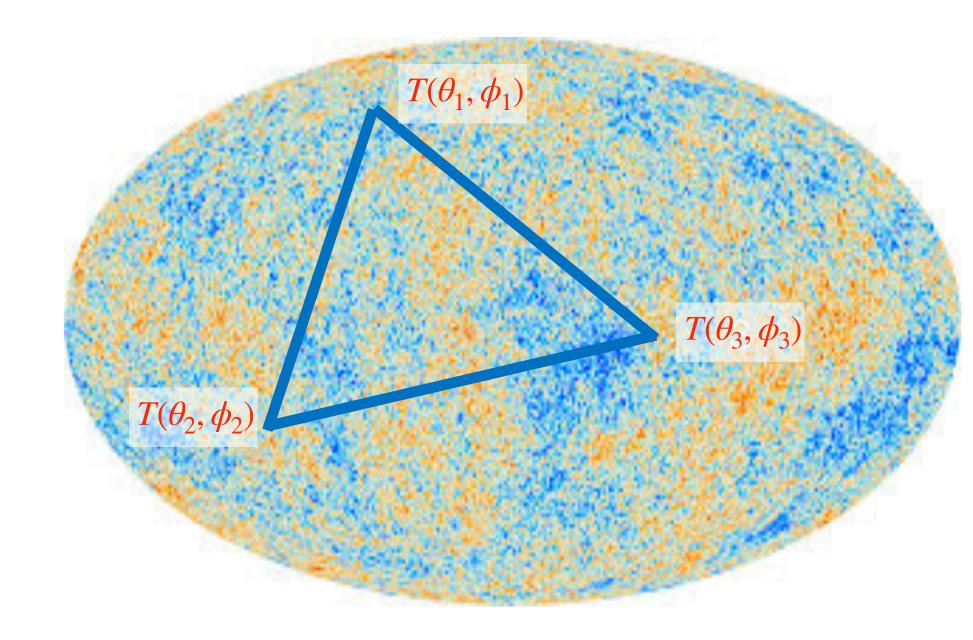
 CMB experiments measure the temperature and polarization across the whole sky

$$T(\theta, \phi), \quad E(\theta, \phi) \quad \leftrightarrow \quad a_{\ell m}^T, \quad a_{\ell m}^E$$

 Since the physics is linear we just need to correlate the CMB at three angles

$$\langle T(\theta_1, \phi_1) T(\theta_2, \phi_2) T(\theta_3, \phi_3) \rangle \leftrightarrow \langle a_{\ell_1 m_1}^T a_{\ell_2 m_2}^T a_{\ell_3 m_3}^T \rangle$$

- This is computationally expensive:
 - The bispectrum is 3-dimensional [after symmetries]
 - There's $N_{\rm pix}^3 \sim 10^{21}$ combinations of points!



How to Measure a Three-Point Function

Most CMB analyses use two tricks:

1. Compression:

• We compress all 10^{21} elements into a single number, encoding the amplitude of a specific model, e.g., $f_{\rm NL}^{\rm loc}$

$$\widehat{f_{\mathrm{NL}}^{\mathrm{loc}}} \sim \sum_{\ell_1 m_1 \ell_2 m_2 \ell_3 m_3} \langle a_{\ell_1 m_1} a_{\ell_2 m_2} a_{\ell_3 m_3} \rangle_{\mathrm{theory}}^{\dagger} \times (C^{-1}a)_{\ell_1 m_1} (C^{-1}a)_{\ell_2 m_2} (C^{-1}a)_{\ell_3 m_3}$$

$$\mathsf{Model}$$

$$\mathsf{Data}$$

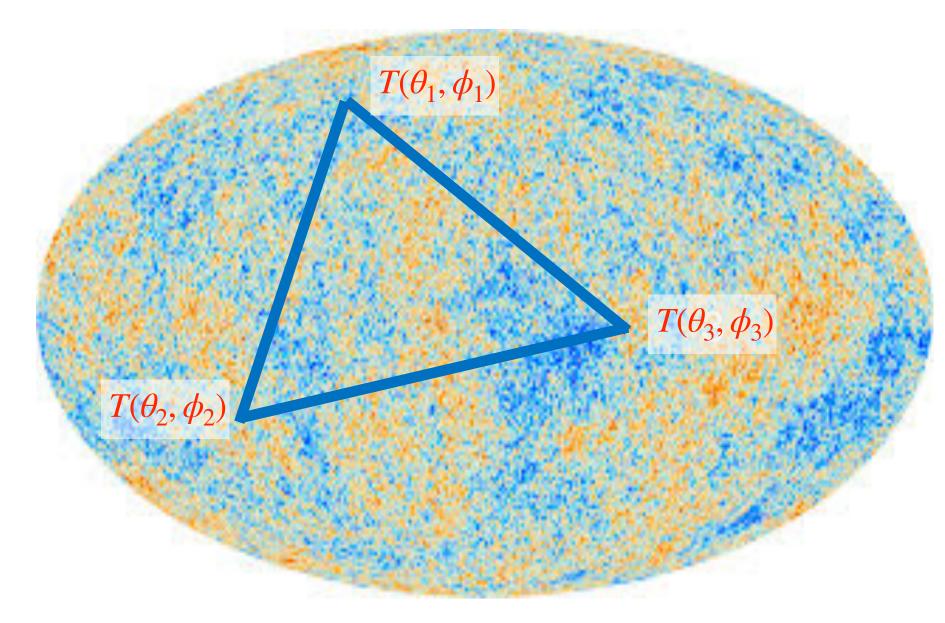
• This is an **optimal estimator** for $f_{\rm NL}$, *i.e.* it is **lossless**

2. Separability:

• If the **theory model** is **separable**, we can rewrite the ℓ , m sum using spherical harmonic transforms!

$$B_{\zeta}(k_1, k_2, k_3) \sim \sum_{n} \alpha_n(k_1) \beta_n(k_2) \gamma_n(k_3)$$

- This reduces the complexity from $\mathcal{O}(N_{\rm pix}^3)$ to $\mathcal{O}(N_{\rm pix}\log N_{\rm pix})$



(**Note**: binned/modal analyses use a similar trick, but compress to a lower-dimensional basis, rather than a single amplitude)

CMB Bispectrum Constraints

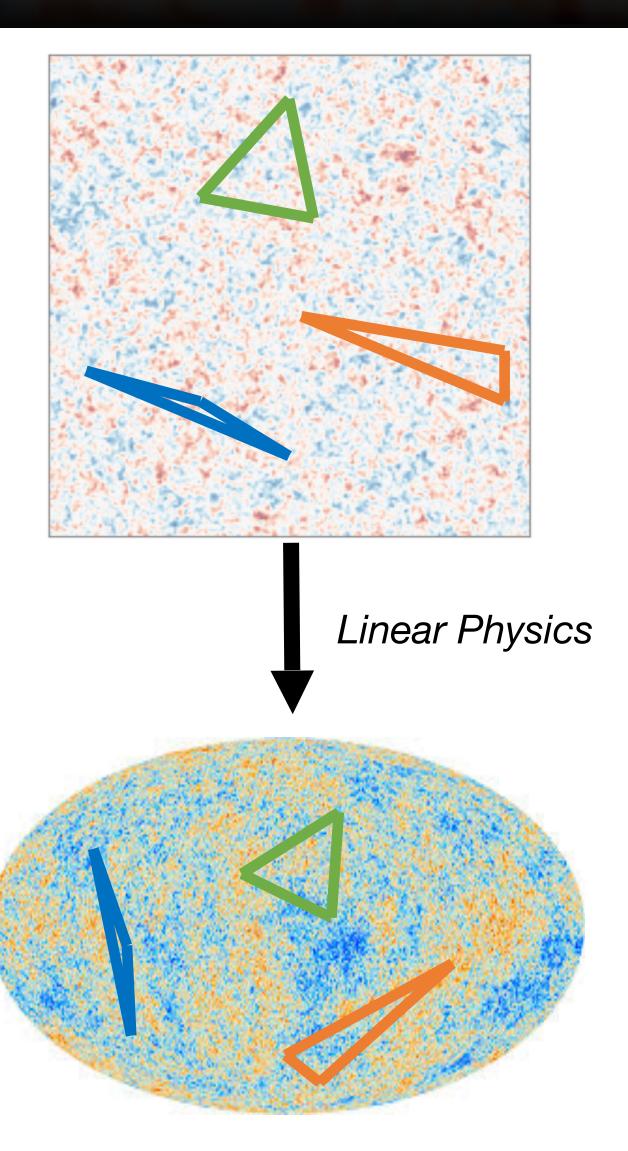
• Planck placed strong constraints on scalar three-point functions, e.g.,

Planck 2018 Local
$$-0.9 \pm 5.1$$
 New light scalars -26 ± 47 Orthogonal -38 ± 24 Self-interactions

- These span many phenomenological templates
- Planck uses both separable shapes and modal/binned approximations
- Recent work has also constrained **tensor** three-point functions, e.g., $\langle \zeta \zeta h \rangle$ and **cosmological collider** bispectra

Conclusion: Scalar primordial non-Gaussianity is **small**: $10^{-5} \, |f_{\rm NL}| \ll 1$

However, we are still far from the (rough) theory targets: $\sigma(f_{\rm NL}) \sim 1$



What's Next for PNG?

1. More models

Folded NG? Excited states? Slow colliders? Strongly-mixed colliders?

2. Higher-orders

Four-point functions? Five-point functions? Non-perturbative effects?

3. Other datasets

• Next-generation CMB? Galaxy clustering? Weak lensing? 21cm observations?

The CMB Trispectrum

Very few previous works have considered four-point functions!

Are they worth investigating?

Yes!

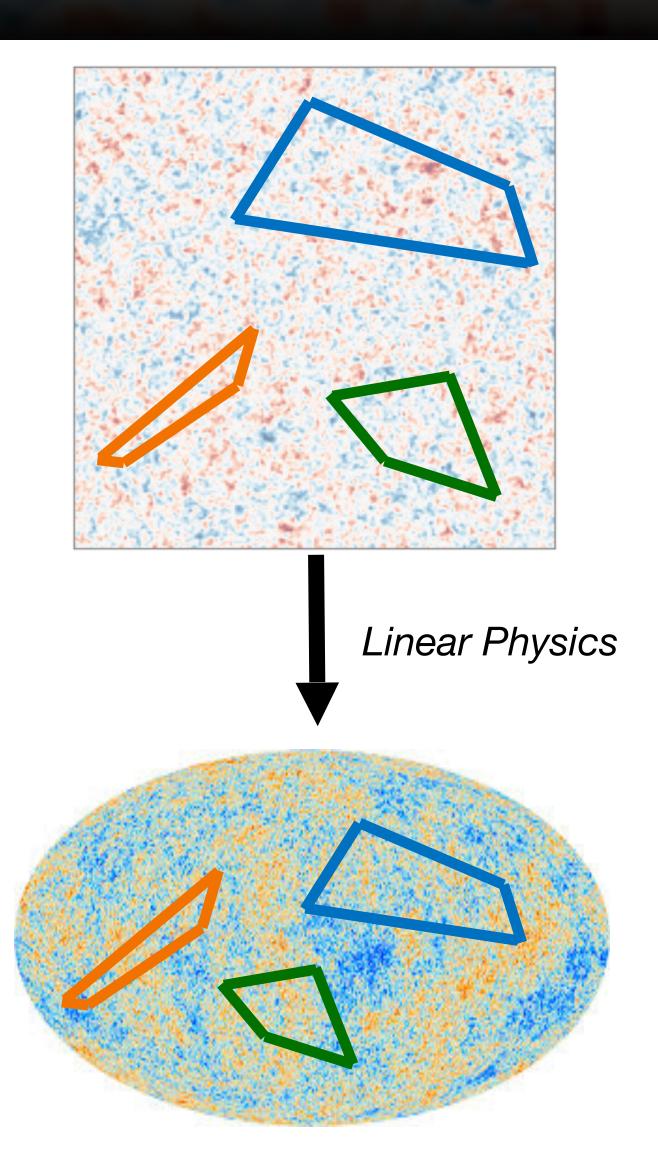
Cubic-terms in the Lagrangian could be protected by symmetry

$$\mathcal{L} \sim \frac{1}{2} (\partial \sigma)^2 + \dot{\sigma}^3 + \dot{\sigma}(\partial \sigma)^2 + \delta \sigma^4 + \cdots$$

(for a general light scalar σ , ignoring coupling amplitudes)

Killed by \mathbb{Z}_2 symmetry ($\sigma \to -\sigma$), or some supersymmetries

- Four-point functions can reveal hidden particle physics, e.g, helicities
- Collider trispectra don't require a linear mixing with the inflaton
- Until recently, we only had constraints on
 - Local effects ($g_{
 m NL}^{
 m loc}, au_{
 m NL}^{
 m loc}$)
 - Self-interactions (from the EFT of inflation: $g_{\mathrm{NL}}^{\mathrm{eq}} \times 3$)



How to Measure a Four-Point Function

Measuring the CMB trispectrum is a challenge!

• The trispectrum is five-dimensional [after symmetries] and depends on 10^{28} sets of points!

$$\langle T(\theta_1, \phi_1) T(\theta_2, \phi_2) T(\theta_3, \phi_3) T(\theta_4, \phi_4) \rangle \leftrightarrow \langle a_{\ell_1 m_1}^T a_{\ell_2 m_2}^T a_{\ell_3 m_3}^T a_{\ell_4 m_4}^T \rangle$$

• We can use **compression** as for the bispectrum:

$$\widehat{g_{\rm NL}} \sim \sum_{\ell_1 m_1 \ell_2 m_2 \ell_3 m_3 \ell_4 m_4} \langle a_{\ell_1 m_1} a_{\ell_2 m_2} a_{\ell_3 m_3} a_{\ell_4 m_4} \rangle_{\rm theory}^{\dagger} \times (C^{-1}a)_{\ell_1 m_1} (C^{-1}a)_{\ell_2 m_2} (C^{-1}a)_{\ell_3 m_3} (C^{-1}a)_{\ell_4 m_4}$$

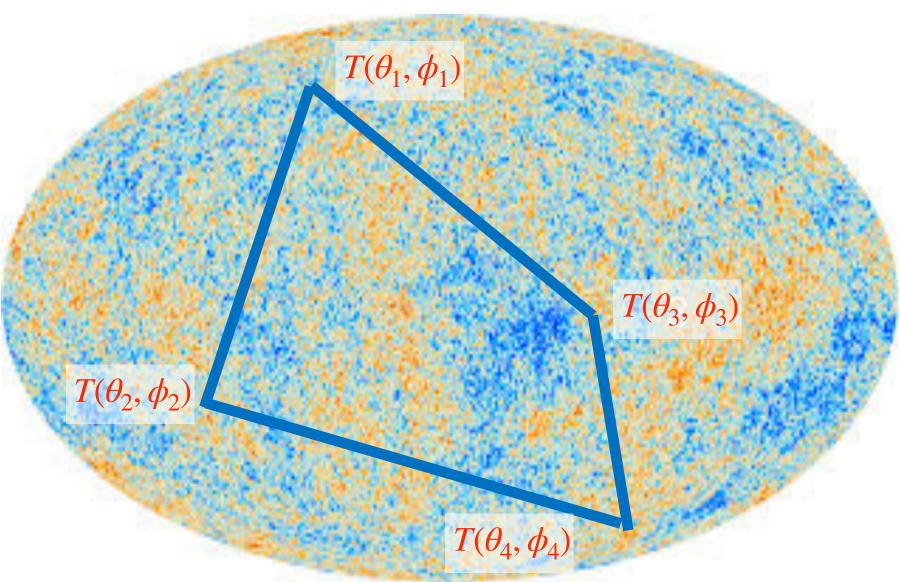
Model

Data

• To **compute** the ℓ, m sum we use a variety of tricks, including low-dimensional integrals, harmonic transforms, and Monte Carlo summation

$$T_{\zeta}(k_1, k_2, k_3, k_4, s, t, u) \sim F(k_1)G(k_2)H(k_3)I(k_4)J(s^{1/2}) + \cdots$$

• If the trispectrum can be (integral-)**factorized**, this reduces the complexity from $\mathcal{O}(N_{\rm pix}^4)$ to $\mathcal{O}(N_{\rm pix}\log N_{\rm pix})$



Optimal Trispectrum Analyses

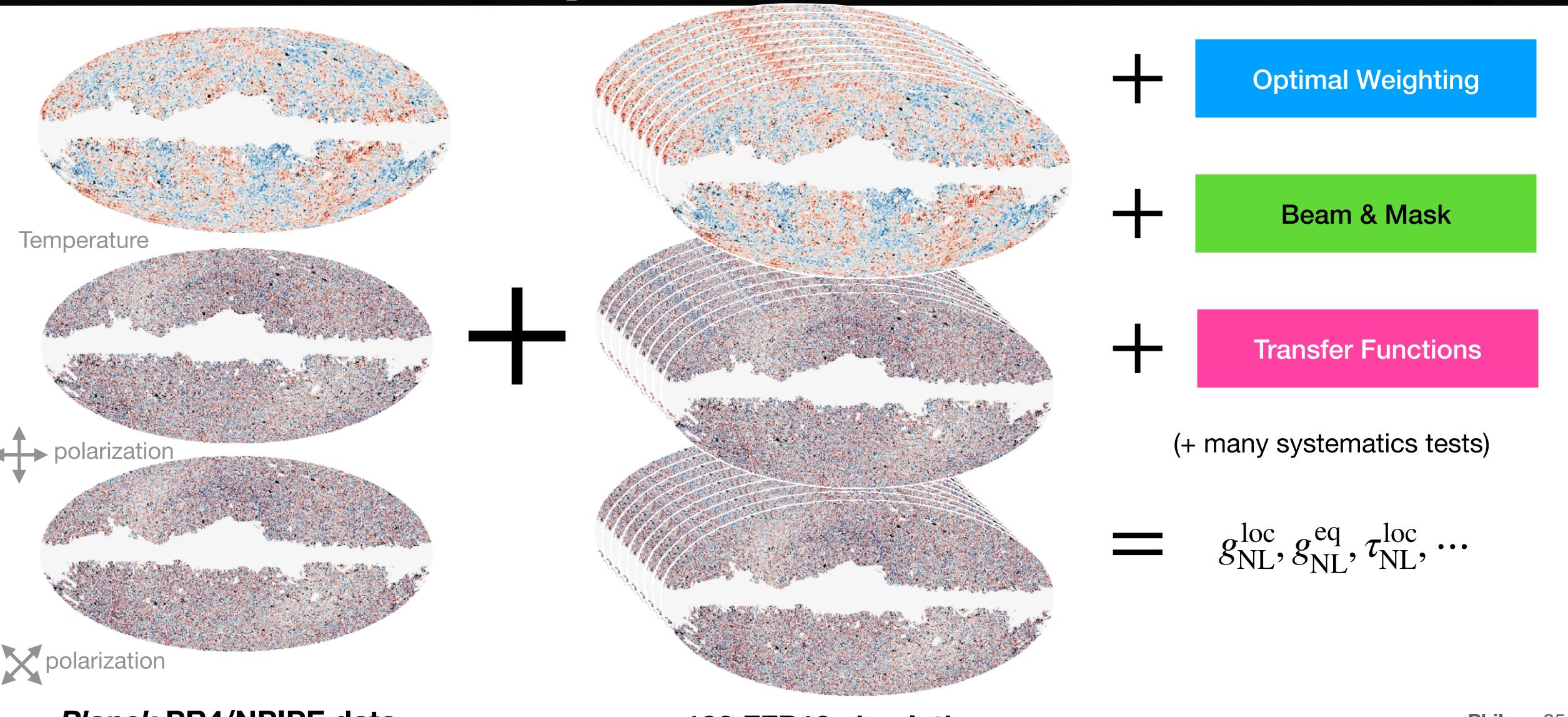
The result: **fast** estimation of four-point amplitudes!

The estimators are

- *Unbiased* (by the mask, geometry, beams, lensing, ...)
- Efficient (limited by spherical harmonic transforms)
- Minimum-Variance (they saturate the Cramer-Rao bound)
- Open-Source (entirely written in Python/Cython)
- General (17 classes of factorizable model included so far)

inflation parameters

The Planck Trispectrum



Planck PR4/NPIPE data

100 FFP10 simulations

What did we try to detect?

- 1. Cubic local shape (g_{NL}^{loc})
- 2. Quadratic² local shape ($\tau_{\rm NL}^{\rm loc}$)
- 3. Constant shape (g_{NL}^{con})
- 4. Effective Field Theory of Inflation shapes ($\times 3$)
- 5. Direction-dependent shapes
- 6. Cosmological Collider shapes [non-analytic part]
- 7. Weak Gravitational Lensing
- 8. Unresolved **Point-Sources**
- 9. ISW-lensing Trispectra

All of these can be integral-factorized!

Detecting Non-Gaussianity?

What did we try to detect?

1. Cubic local shape (g_{NI}^{loc})

2. Quadratic² local shape (τ_{NI}^{loc})

3. Constant shape (g_{NL}^{con})

4. Effective Field Theory of Inflation shapes ($\times 3$)

Direction-dependent shapes

Cosmological Collider shapes [non-analytic part]

7. Weak Gravitational Lensing

Unresolved **Point-Sources**

ISW-lensing Trispectra

Did we detect it?

No

No

No

No $(\times 3)$

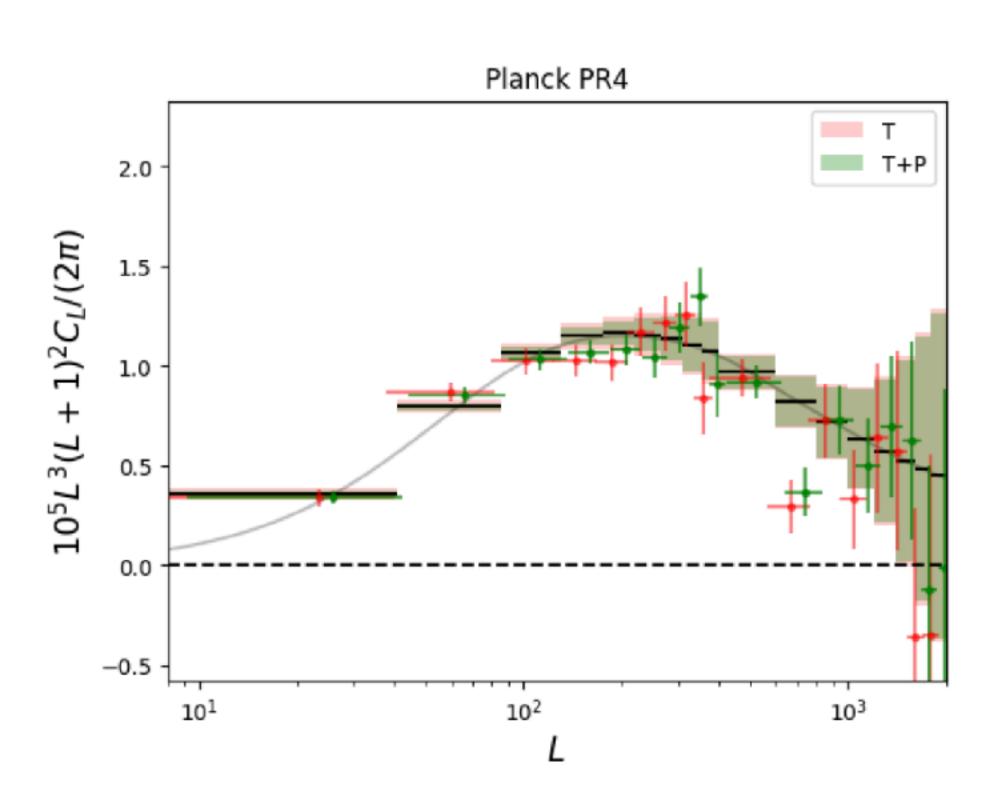
No $(\times 8)$

No $(\times 17)$

Yes!!!

No

No



Gravitational Lensing $(43\sigma, but not a new detection)$

All of these can be integral-factorized!

Equilateral Non-Gaussianity

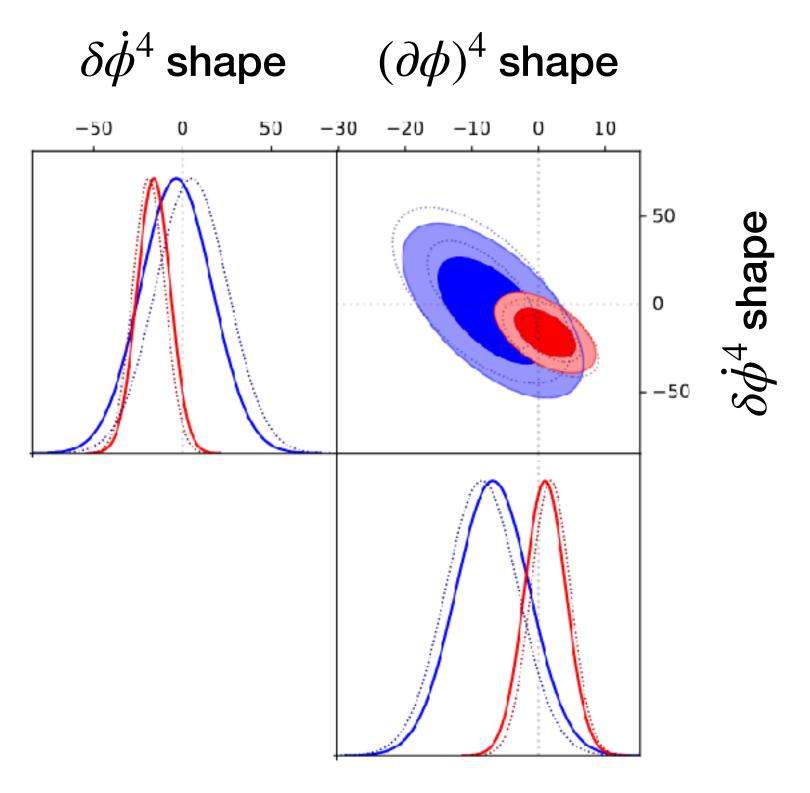
We can constrain cubic self-interactions in inflation

- Constrains models such as:
 - Effective Field Theory couplings
 - **DBI** inflation (string theory + small sound-speed)
 - Generic single-field inflation (including Lorentz Invariant models)
 - Ghost inflation, k-inflation, and beyond...

Outcome: Consistent with zero!

• (50 - 150%) better than any previous constraints!

T+Pol >>> T-only



The third shape $-\delta\dot{\phi}^2(\partial\phi)^2$ — is very correlated, so we don't plot it [but we don't detect it]

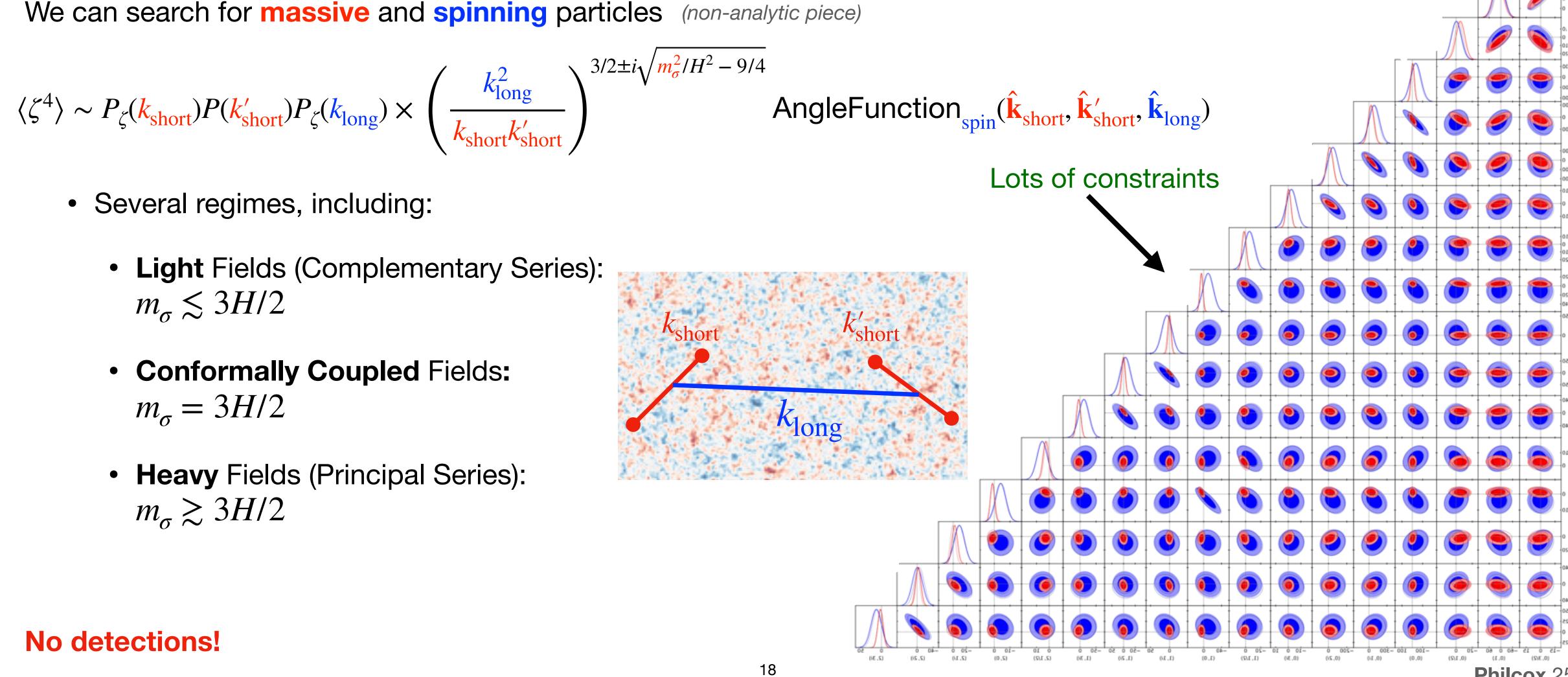
Cosmological Colliders

We can search for massive and spinning particles (non-analytic piece)

$$\langle \zeta^4 \rangle \sim P_{\zeta}(k_{\text{short}})P(k'_{\text{short}})P_{\zeta}(k_{\text{long}}) \times \left(\frac{k_{\text{long}}^2}{k_{\text{short}}k'_{\text{short}}}\right)^{\frac{1}{2}}$$

• Several regimes, including:

- Light Fields (Complementary Series): $m_{\sigma} \lesssim 3H/2$
- Conformally Coupled Fields: $m_{\sigma} = 3H/2$
- Heavy Fields (Principal Series): $m_{\sigma} \gtrsim 3H/2$

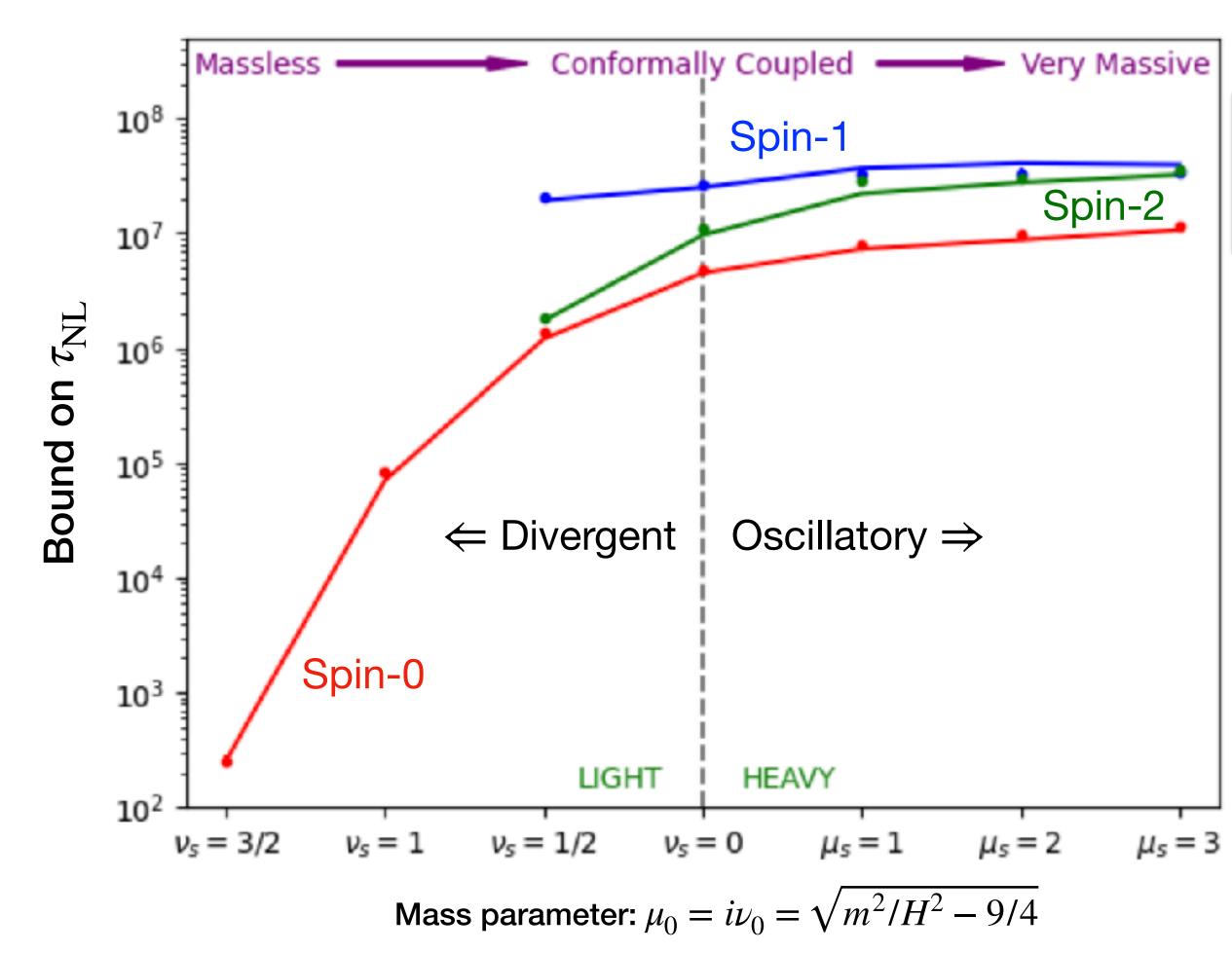


Cosmological Colliders

We can search for massive and spinning particles (non-analytic piece)

- Several regimes, including:
 - **Light** Fields (Complementary Series): $m_{\sigma} \lesssim 3H/2$
 - Conformally Coupled Fields: $m_{\sigma} = 3H/2$
 - Heavy Fields (Principal Series): $m_{\sigma} \gtrsim 3H/2$

- As expected, light fields are easiest to constrain since their trispectrum diverges
- Odd-spins are hard to constrain due to cancellations!
- **Note**: many of the collider signals are **orthogonal** to the standard templates! [Suman+25, Sohn+24]



What's Next For the Trispectrum?

There are many ways to extend.

1. More Data

$$\sigma(\tau_{\rm NL}^{\rm loc}) \sim \ell_{\rm max}^{-2}$$

- ACT, SPT, Simons Observatory, LiteBird, CMB-HD, ... will provide data down to much smaller scales!
- Polarization will be particularly useful and could benefit from delensing

2. More Models

- Lighter particles? Heavier particles? Unparticles?
- Tensor non-Gaussianity?
- Collider physics beyond the collapsed limit?
- Thermal baths? Higher-spin particles? Modified sound speeds? Loops? Fermions?
- Scale-dependence? Isocurvature? Primordial magnetic fields?

Separable Inflationary Correlators

• Efficient bispectrum and trispectrum analyses require factorizable primordial signals.

 $B_{\zeta}(k_1, k_2, k_3) \sim F(k_1)G(k_2)H(k_3)$

 $T_{\zeta}(k_1, k_2, k_3, k_4, s, t, u) \sim F(k_1)G(k_2)H(k_3)I(k_4)J(s^{1/2}) + \cdots$

- Separable N-point function $\rightarrow \mathcal{O}(N_{\rm pix} \log N_{\rm pix})$ algorithm
- Non-separable N-point function $\rightarrow \mathcal{O}(N_{\rm pix}^N)$ algorithm
- Many models of interest are not separable
 - Some require complex oscillatory integrals (via in-in)
 - Others cannot be expressed analytically (e.g., numerical methods)
- To analyze these models, we have two options:
 - 1. Bin the statistic [lossy, and expensive to compute theory predictions!]
 - 2. Create a separable approximation [e.g., modal decompositions]

$$B_{\zeta}(k_1, k_2, k_3) \sim \frac{k_1 k_2 k_3}{(k_1 + k_2 + k_3)^3}$$

Separable Inflationary Bispectra

• Modal approach: represent the bispectrum as a sum of polynomials:

$$(k_1k_2k_3)^2B_{\zeta}(k_1,k_2,k_3) \sim \sum_{p+q+r=0} \alpha_{pqr}k_1^pk_2^qk_3^r$$
 (or Legendre polynomials)

- Given a target bispectrum, the coefficients α_{pqr} are computed with linear algebra
- Each term is **factorizable**, so we can build an efficient CMB estimator!
- However, this basis is **big** (≈ 5000 terms used in the *Planck* collider analysis) and does not represent all shapes of interest.
- Alternative approach: learn the basis from the theory itself

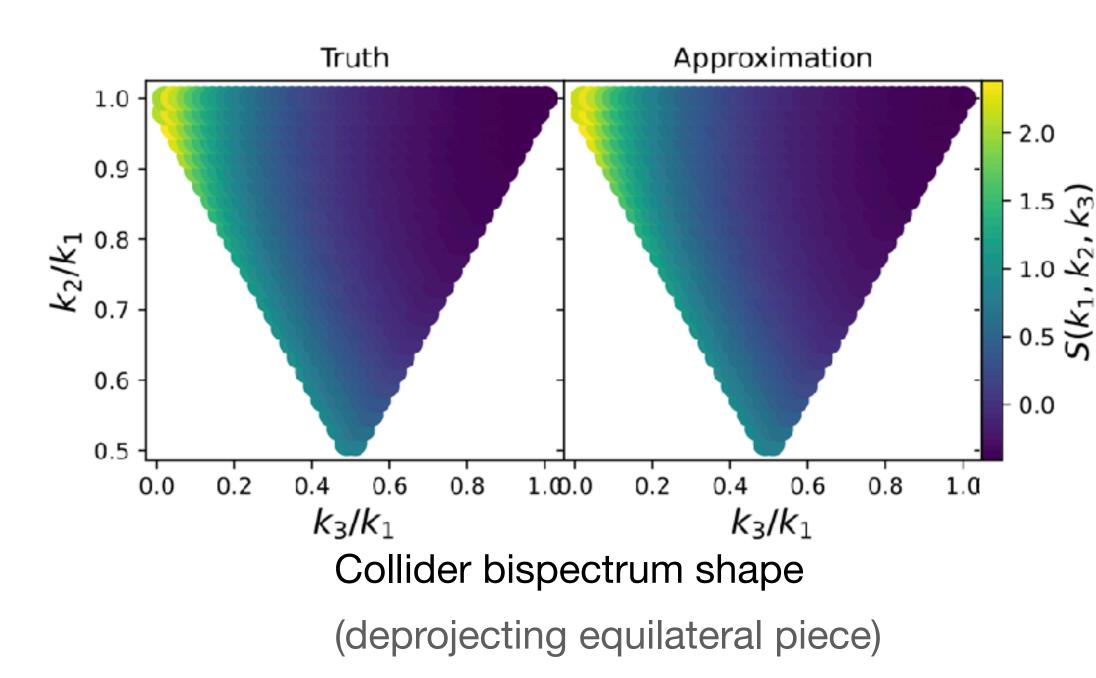
$$(k_1k_2k_3)^2B_{\zeta}(k_1,k_2,k_3) \sim \sum_n w_n\alpha_n(k_1)\beta_n(k_2)\gamma_n(k_3) + \text{perms.}$$

- Given a target bispectrum, the functions $\alpha_n, \beta_n, \gamma_n$ and weights w_n are computed using machine learning
- By carefully choosing the loss function, we can optimize the decomposition for the task of interest, e.g., Planck CMB analysis
- This typically requires far fewer terms ($N \leq 3$) to compute the bispectra!

Separable Bispectra in Practice

- This is implemented in the separable_bk code, which includes:
 - Simple **neural network** architecture, supplemented with permutation symmetries
 - Training with stochastic gradient descent
 - Fast pytorch implementation, giving basis functions in $\mathcal{O}(\text{minutes})$
- We test separable_bk using numerical bispectra obtained with the CosmoFlow code
 - We use a strongly-mixed collider shape that cannot be computed analytically
 - With just three terms, we find approximations with > 99.9% accuracy!

 $(k_1k_2k_3)^2B_{\zeta}(k_1,k_2,k_3) \sim \sum_n w_n\alpha_n(k_1)\beta_n(k_2)\gamma_n(k_3) + \text{perms.}$

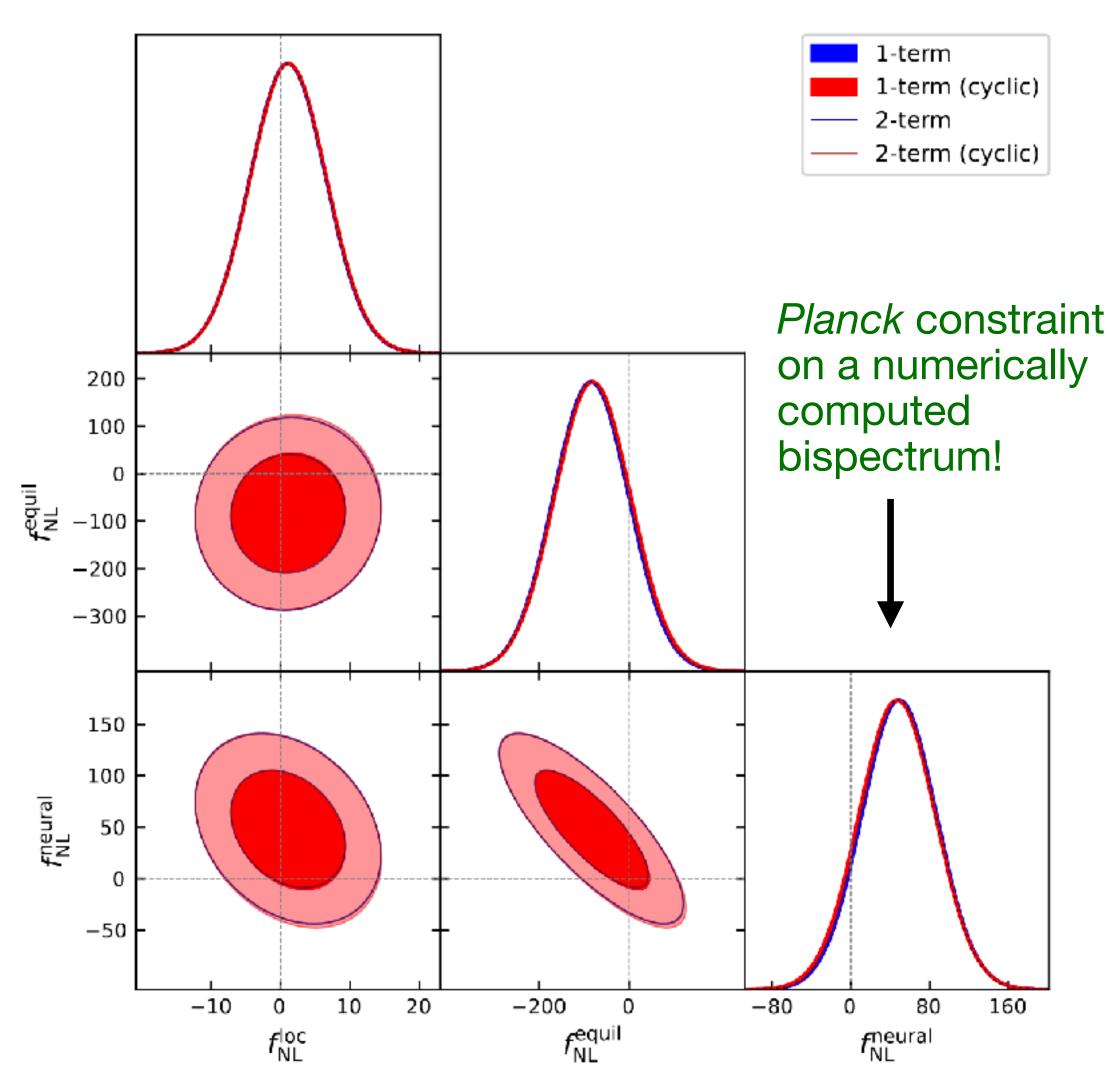


Available at https://github.com/KunhaoZhong/separable_bk

Separable Bispectra in Practice

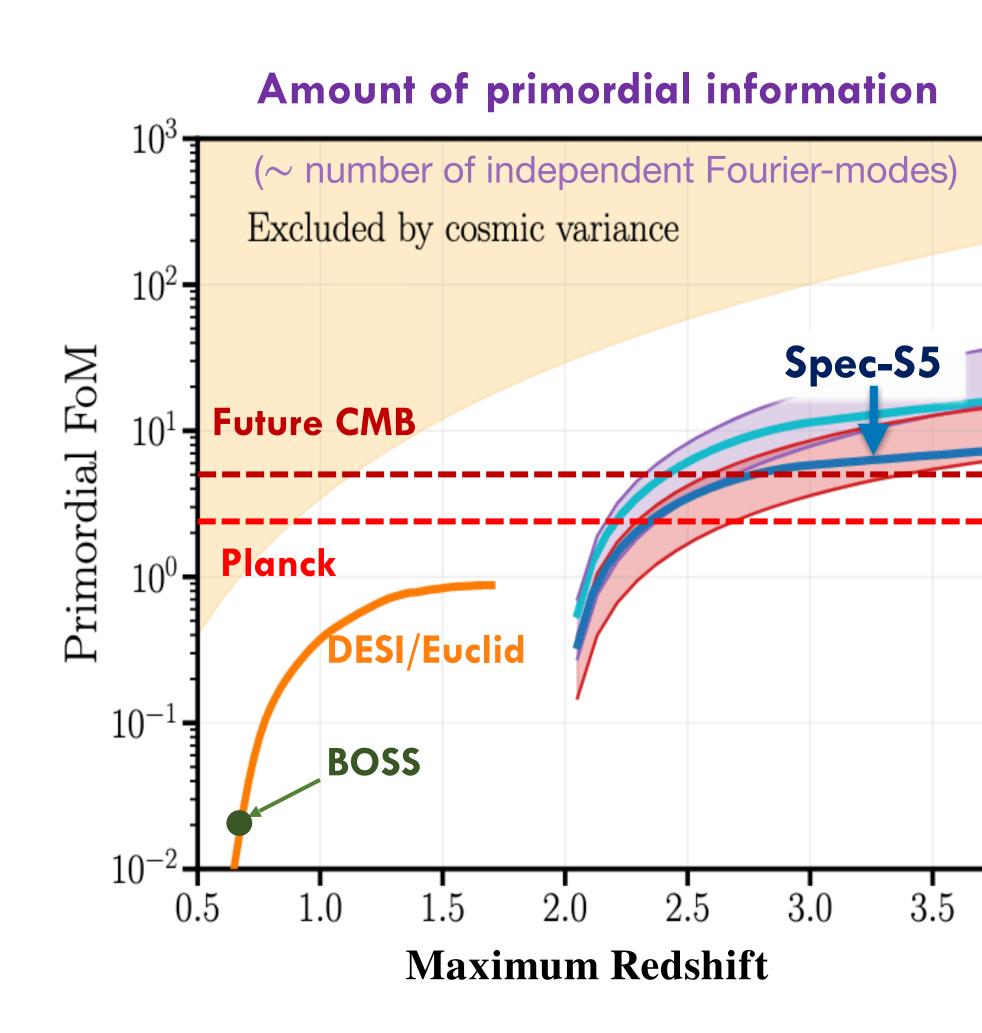
- The output of separable_bk is a set of **basis functions** describing a particular primordial bispectrum.
- These can be interfaced with the PolySpec code to compute $f_{\rm NL}$ bounds, e.g., from Planck
- Since the number of separable terms is **small**, we can analyze **collider** bispectra in similar computation time to standard shapes, such as local and equilateral!
- This will allow us to constrain arbitrary primordial bispectra, including those that can only be computed numerically.
- There is **lots** to explore, e.g., analysis of strongly-mixed colliders, and extension to trispectra

Available at https://github.com/KunhaoZhong/separable_bk



The Future of Non-Gaussianity

- Future CMB experiments will improve bounds on PNG by $\lesssim 3 \times 10^{-2}$
 - This is a two-dimensional field
 - We're running out of modes to look at
 - Large-scales are cosmic-variance-limited
 - Small-scales are limited by secondaries and Silk damping
- What about galaxy surveys?
 - The data precision is rapidly increasing
 - Legacy surveys map a million galaxies [BOSS]
 - New surveys map $\sim 100 \times$ more! [DESI, Euclid, Rubin, Roman, SphereX,...]
 - This is a three-dimensional field
 - We aren't limited by projection effects
 - There are new observables e.g., galaxy **shapes**, kSZ cross-correlations, ...



Inflation from Galaxy Surveys

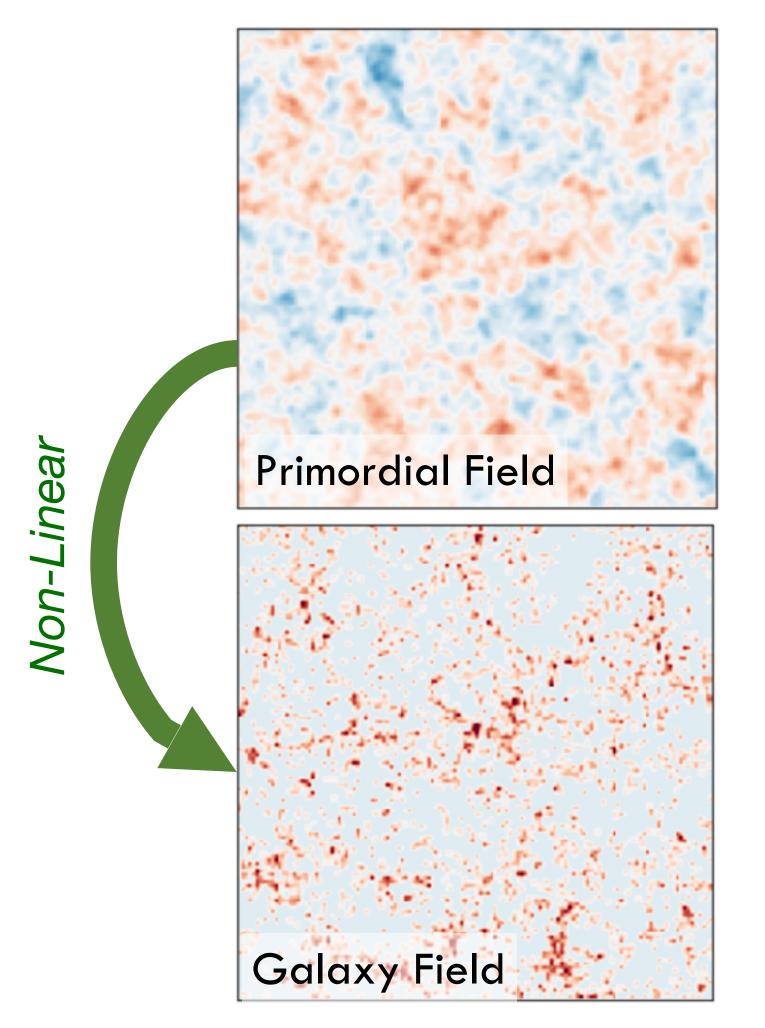
- Modern galaxy surveys map of the distribution of galaxies in three-dimensions: $\delta_g(\mathbf{x},z)$
- This traces dark matter evolution and the initial conditions

 To extract inflationary information, we need a joint model of all effects:

 $\langle \delta_g \delta_g \delta_g \rangle \sim \text{Primordial Physics} + \text{Gravity} + \text{cross-terms}$

State-of-the-art method:

Effective Field Theory of Large Scale Structure (EFTofLSS)

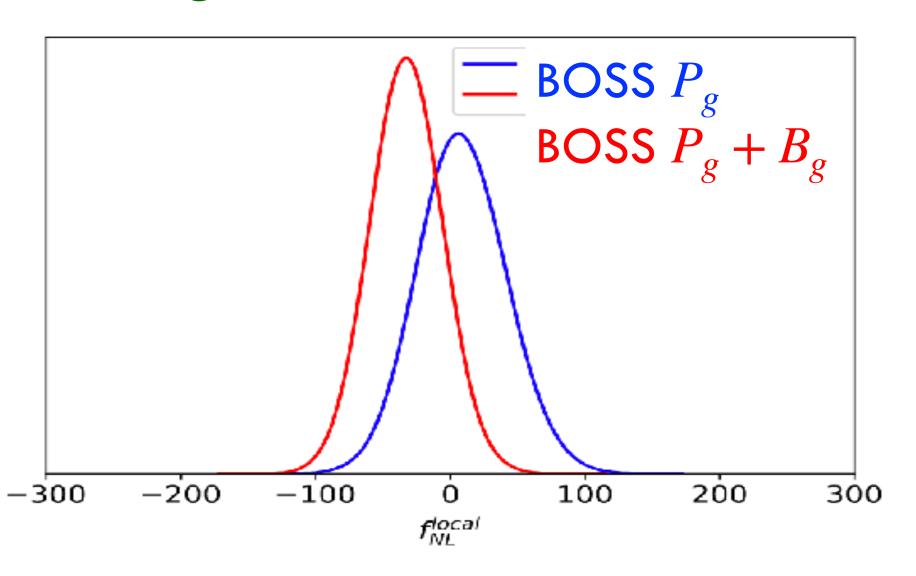


Inflation from Galaxy Surveys

- Recent works have constrained inflationary bispectra with legacy galaxy survey data (SDSS-BOSS):
 - $f_{
 m NL}^{
 m loc}$: Local three-point functions from additional light fields
 - $f_{
 m NL}^{
 m eq,orth}$: **Equilateral** three-point functions from cubic interactions in single-field inflation
 - $f_{
 m NL}^{
 m coll}(m_{\sigma},c_{\sigma})$: Collider three-point functions from the exchange of massive scalar fields

- For now, the constraints are **much** worse than the CMB $(5-20\times)$
- Much better data is coming soon!

Light Field Constraints



$$f_{\rm NL}^{\rm loc} = -33 \pm 28$$
 (9 ± 34 w/o bispectra)

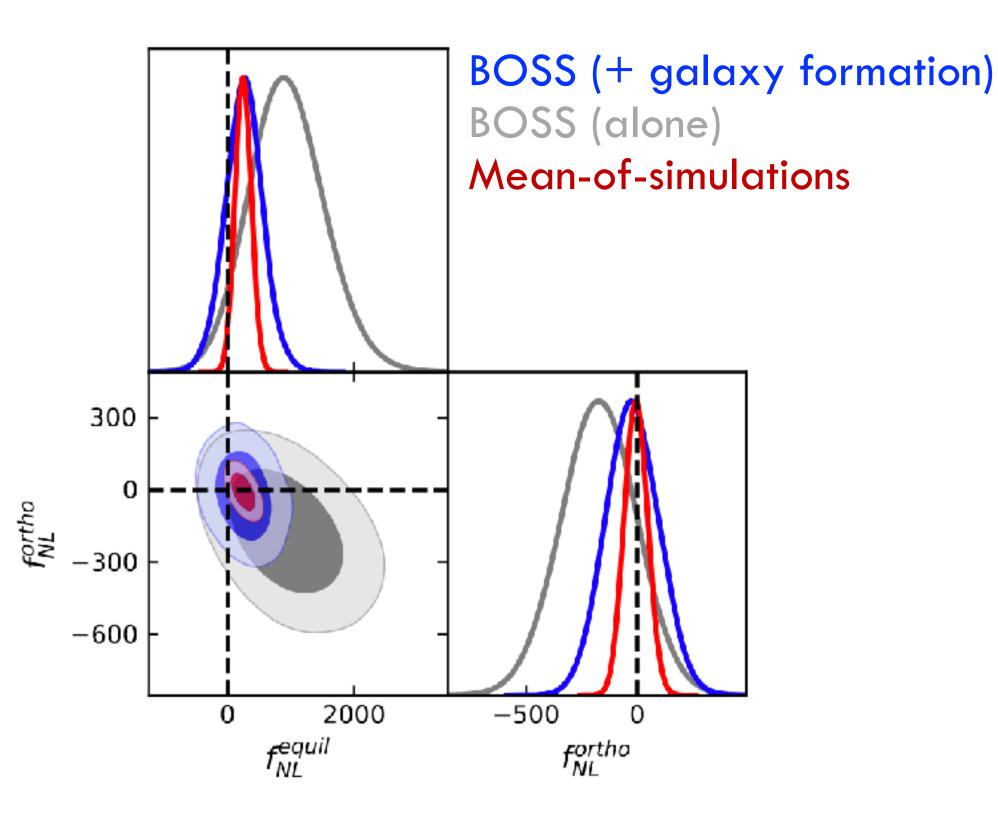
(CMB: ± 5 , Target: ± 1)

Inflation from Galaxy Surveys

- Recent works have constrained inflationary bispectra with legacy galaxy survey data (SDSS-BOSS):
 - $f_{
 m NL}^{
 m loc}$: Local three-point functions from additional light fields
 - $f_{
 m NL}^{
 m eq,orth}$: **Equilateral** three-point functions from cubic interactions in single-field inflation
 - $f_{
 m NL}^{
 m coll}(m_{\sigma},c_{\sigma})$: Collider three-point functions from the exchange of massive scalar fields

- For now, the constraints are **much** worse than the CMB $(5-20\times)$
- Much better data is coming soon!

Self-Interaction Constraints



$$f_{\rm NL}^{\rm eq} = 940 \pm 600, f_{\rm NL}^{\rm orth} = -170 \pm 170$$

(CMB: $\pm 50, \pm 25, Target: \pm 1$)

Inflation from DESI

The first year of DESI data is now public!

- We have developed an independent pipeline for analyzing the power spectrum and bispectrum
- This has been used to constrain: Λ CDM (Ω_m, H_0, σ_8), dark energy ($w_0 w_a$), curvature (Ω_k), neutrino masses ($\sum_{n} m_{\nu}$)

Inflation from DESI

The first year of DESI data is now public!

- We have developed an independent pipeline for analyzing the power spectrum and bispectrum
- This has been used to constrain: Λ CDM (Ω_m, H_0, σ_8), dark energy (w_0w_a), curvature (Ω_k), neutrino masses ($\sum m_{\nu}$)

New constraints on inflation!

• Multi-field:
$$f_{\rm NL}^{\rm loc}=0\pm7$$

• Single-Field:
$$f_{\rm NL}^{\rm eq} = 200 \pm 230, f_{\rm NL}^{\rm orth} = -24 \pm 86$$

(Using the DESI DR1 one-loop power spectrum and bispectrum, plus the high-z, quasar sample)

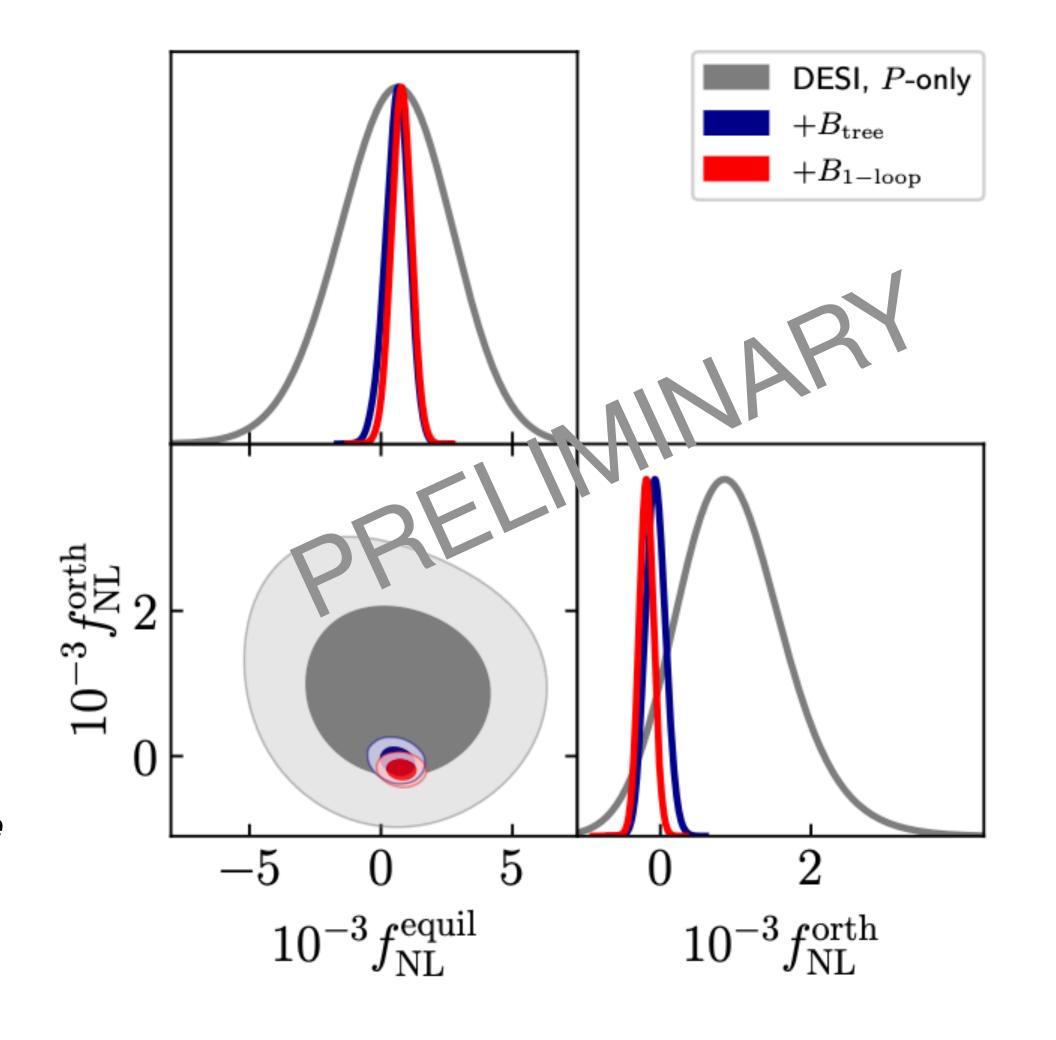
Compare to official DESI

results:

 $f_{\rm NL}^{\rm loc} = -2 \pm 10$

• Adding Planck, we obtain the tightest constraint on local PNG yet!!

$$f_{\rm NL}^{\rm loc} = 0 \pm 4$$



Inflation from DESI

The first year of DESI data is now public!

- We have developed an independent pipeline for analyzing the power spectrum and bispectrum
- This has been used to constrain: Λ CDM (Ω_m, H_0, σ_8), dark energy (w_0w_a) , curvature (Ω_k) , neutrino masses $(\sum_{k=0}^{\infty}m_{\nu})$

New constraints on inflation!

• Multi-field:
$$f_{\rm NL}^{\rm loc} = 0 \pm 7$$

 $f_{\rm NL}^{\rm loc} = -2 \pm 10$ • Single-Field: $f_{\rm NL}^{\rm eq} = 200 \pm 230, f_{\rm NL}^{\rm orth} = -24 \pm 86$

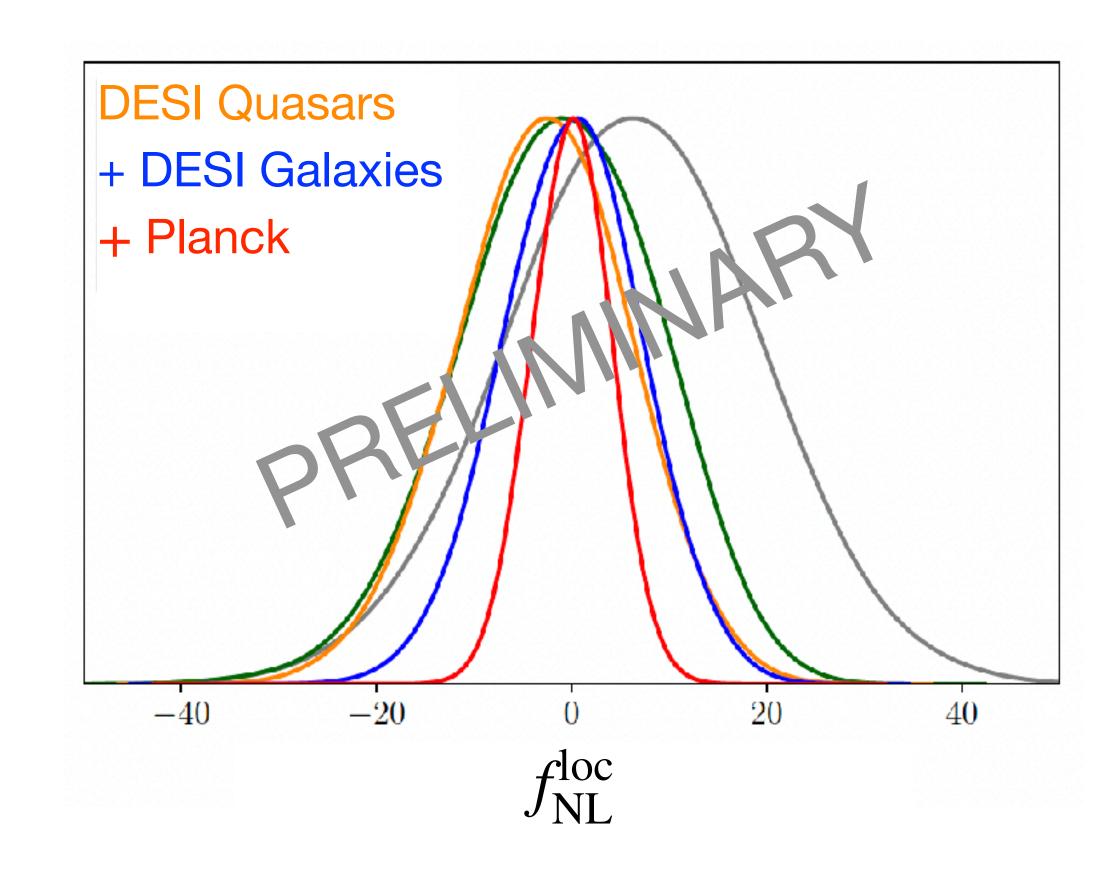
(Using the DESI DR1 one-loop power spectrum and bispectrum, plus the high-z, quasar sample)

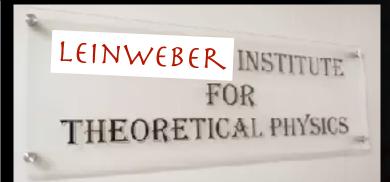
Compare to official DESI

results:

Adding Planck, we obtain the tightest constraint on local PNG yet!!

$$f_{\rm NL}^{\rm loc} = 0 \pm 4$$





Summary

PNG analysis is a very active field!

- We can now constrain inflationary four-point functions in the CMB, including the cosmological collider!
- We can probe arbitrary non-separable bispectrum models with CMB data and machine-learning
- Galaxy surveys are providing exciting new insights into inflation and are starting to rival the CMB

