Decoherence of Primordial Perturbations in the View of a Local Observer

Fumiya Sano

Ph.D. candidate at Institute of Science Tokyo / IBS CTPU-CGA (formerly Tokyo Institute of Technology)

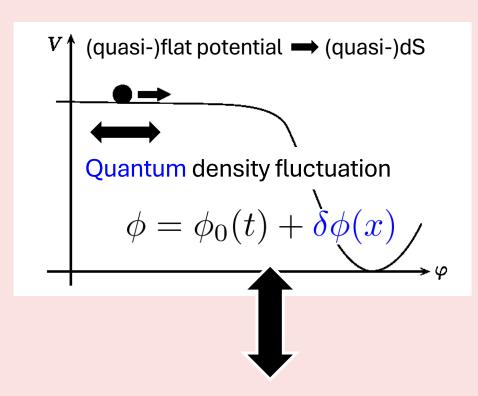
Contributed talk

December 2, 2025 at Inflation 2025

Based on **2504.10472** with **Junsei Tokuda (McGill University)**

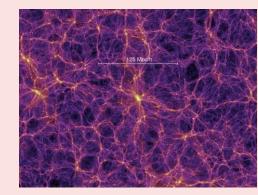
Inflation as a source for cosmological perturbations

How (fast) classicalized?



4.00 10³ 10³ 10³ 10³ 0 Planck TT.TEEF+low E+lensing +BK15 3.30 2.25 2.25 2.26 2.27 2.27 2.28 2.29 2.29 2.20

[Planck 1807.06211]



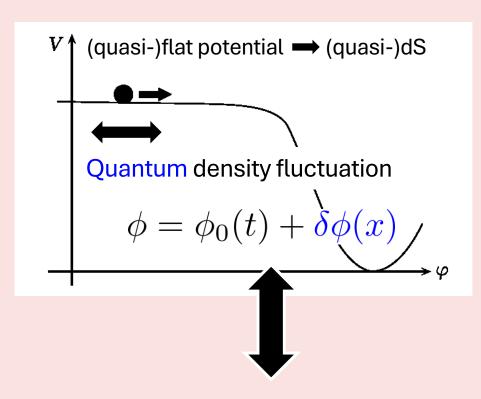
[Millennium Simulation 2005]

Classical anisotropy and inhomogeneity

Quantum curvature perturbation

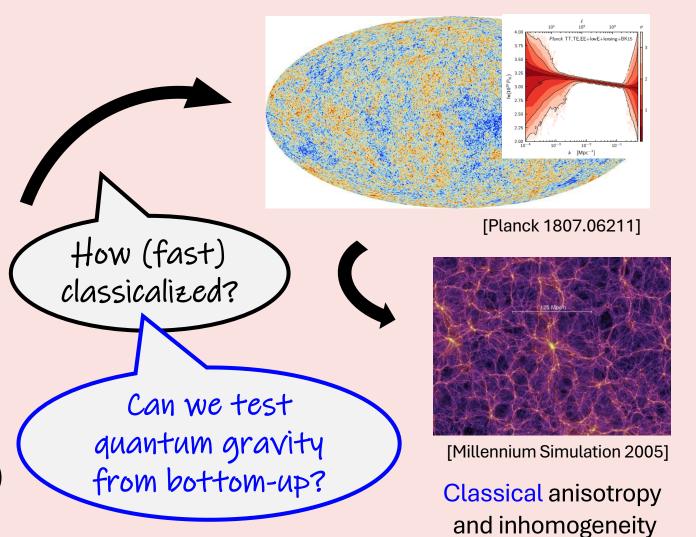
$$h_{ij} = (e^{\zeta(x)}a(t))^2(\delta_{ij} + \gamma_{ij})$$

Inflation as a source for cosmological perturbations



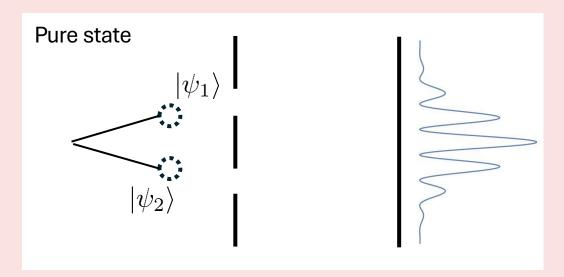
Quantum curvature perturbation

$$h_{ij} = (e^{\zeta(x)}a(t))^2(\delta_{ij} + \gamma_{ij})$$



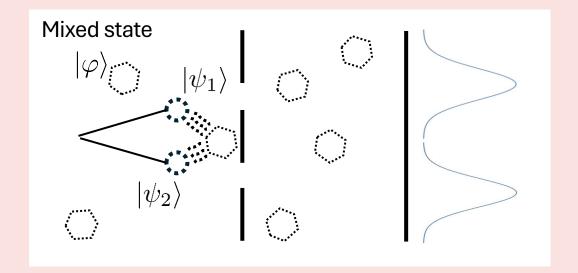
Quantum interference and decoherence

➤ Example from double slit experiment (Infinite slits at each time step ⇒ path integral)



$$|\Psi\rangle = \alpha |\psi_1\rangle + \beta |\psi_2\rangle$$

$$\langle \Psi | \widehat{A} | \Psi \rangle = |\alpha|^2 \langle \psi_1 | \widehat{A} | \psi_1 \rangle + |\beta|^2 \langle \psi_2 | \widehat{A} | \psi_2 \rangle + (\alpha \beta^* \langle \psi_2 | \widehat{A} | \psi_1 \rangle + \text{c.c.})$$



$$|\Psi\rangle = \alpha |\psi_1\rangle |\varphi_1\rangle + \beta |\psi_2\rangle |\varphi_2\rangle$$

$$\rho_{\psi} = \operatorname{Tr}_{\varphi}[|\Psi\rangle \langle \Psi|] = \begin{pmatrix} |\alpha|^2 & \alpha\beta^* \langle \varphi_2 | \varphi_1 \rangle \\ \alpha^* \beta \langle \varphi_1 | \varphi_2 \rangle & |\beta|^2 \end{pmatrix}$$

 $\langle \varphi_2 | \varphi_1 \rangle \sim 0$ if scattered to independent states.

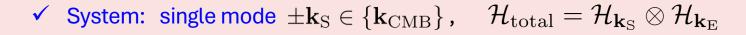
More scattering, more independent, less interference.

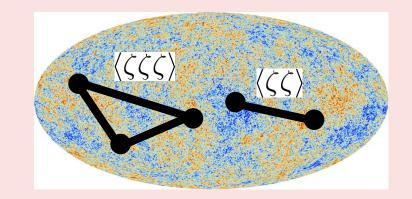
Wavefunction formalism

Observables: correlation functions

$$\langle \Omega | \widehat{\zeta}^{n}(t) | \Omega \rangle = \int d\zeta(t) \langle \Omega | \zeta; t \rangle \langle \zeta; t | \Omega \rangle \zeta^{n} \equiv \int d\zeta(t) |\Psi[\zeta(t)]|^{2} \zeta^{n}$$

$$\widehat{\zeta}(t) |\zeta; t \rangle = \zeta(t) |\zeta; t \rangle$$





Wavefunction at a certain time slice

Gaussian

Gravitational non-linearity

$$\Psi[\zeta(t)] \equiv \langle \zeta; t | \Omega \rangle = \exp\left[-\frac{1}{2} \int \frac{d^3 \mathbf{k}_1}{(2\pi)^3} \frac{d^3 \mathbf{k}_2}{(2\pi)^3} \psi_2 \zeta_{k_1} \zeta_{k_2} - \frac{1}{3!} \int \frac{d^3 \mathbf{k}_1}{(2\pi)^3} \frac{d^3 \mathbf{k}_2}{(2\pi)^3} \frac{d^3 \mathbf{k}_3}{(2\pi)^3} \psi_3 \zeta_{k_1} \zeta_{k_2} \zeta_{k_3} - \cdots\right]$$

$$= \int_{\Omega}^{\zeta} \mathscr{D} \zeta' e^{iS[\zeta']})$$

$$\psi : \text{ coefficient of the expansion}$$

 ψ_n : coefficient of the expansion

Free propagation:
$$e^{-\int_{\mathbf{k}} \psi_2 \zeta_{\mathbf{k}} \zeta_{-\mathbf{k}}}$$

no entanglement between $k_{\rm S}$ and $k_{\rm E}$ (no scattering)

Non-linearities cause decoherence.

Unitarity and Schwinger-Keldysh formalism

☐ Expectation values at a time slice

✓ Perturbation theory in interaction picture (2 pt.)

$$\langle \Omega | U^{\dagger} \zeta^{2}(\tau_{0}) U | \Omega \rangle = \left\langle 0 \left| \left(\overline{\operatorname{T}} e^{i \int_{\tau_{0}}^{\tau} d\tau' H_{\mathrm{I}}} \right) \zeta_{\mathrm{I}}^{2}(\tau) \left(\operatorname{T} e^{-i \int_{\tau_{0}}^{\tau} d\tau' H_{\mathrm{I}}} \right) \right| 0 \right\rangle$$

$$= \langle 0 | \zeta_{\mathrm{I}}^{2} | 0 \rangle - i \int_{\tau_{0}}^{\tau} d\tau' \left\langle 0 | \zeta_{\mathrm{I}}^{2}(\tau) H_{\mathrm{I}}(\tau') | 0 \right\rangle + \mathrm{c.c.}$$

$$+ \int_{\tau_{0}}^{\tau} d\tau' d\tau'' \left\langle 0 | H_{\mathrm{I}}(\tau') \zeta_{\mathrm{I}}^{2}(\tau) H_{\mathrm{I}}(\tau'') | 0 \right\rangle - \int_{\tau_{0}}^{\tau} d\tau' d\tau'' \left\langle 0 | \zeta_{\mathrm{I}}^{2}(\tau) \mathrm{T}[H_{\mathrm{I}}(\tau') H_{\mathrm{I}}(\tau'')] | 0 \right\rangle + \mathrm{c.c.}$$

$$= \text{etc.}$$

$$= \text{etc.}$$

$$= \text{etc.}$$

Comparison with density matrix

$$\langle \Omega | U^{\dagger} \mathcal{O}_{0,\mathbf{S}} U | \Omega \rangle = \mathrm{Tr}[\rho(\tau) \mathcal{O}_{0,\mathbf{S}}] = \mathrm{Tr}_{\mathbf{S}}[\rho_{\mathbf{S}}(\tau) \mathcal{O}_{0,\mathbf{S}}] \qquad \begin{cases} \rho(\tau) = U \, |\Omega\rangle \langle \Omega | \, U^{\dagger} \\ \rho_{\mathbf{S}}(\tau) = \mathrm{Tr}_{\mathbf{E}}[U \, |\Omega\rangle \langle \Omega | \, U^{\dagger}] \end{cases}$$
Defined in a subsystem

$$\begin{cases} \rho(\tau) = U |\Omega\rangle\langle\Omega| U^{\dagger} \\ \rho_{S}(\tau) = \text{Tr}_{E}[U |\Omega\rangle\langle\Omega| U^{\dagger}] \end{cases}$$

Path integral
$$\rho_{\rm S}[\zeta,\widetilde{\zeta};\tau] = \int_{\Omega}^{\zeta} \mathscr{D}\zeta_{+} \int_{\Omega}^{\widetilde{\zeta}} \mathscr{D}\zeta_{-}e^{iS[\zeta_{+}]-iS[\zeta_{-}]+iS_{\rm IF}[\zeta_{+},\zeta_{-}]} \\ \underset{\text{(contributions in } /\zeta^{2}): \quad \bullet}{\text{Non-unitarity}}$$

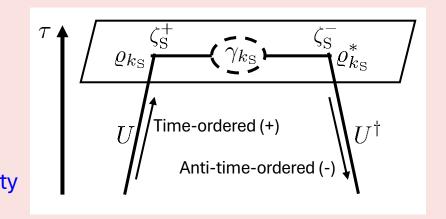
(contributions in $\langle \zeta^2 \rangle$: -, ...)

Tracing out environmental modes

[Nelson 1601.03734]

 $\label{eq:continuous_continuous$

$$\begin{split} \rho_{\mathrm{S}}[\zeta_{\mathrm{S}}^{+},\zeta_{\mathrm{S}}^{-}] &= \int d\zeta_{\mathrm{E}}(t)\Psi[\zeta_{\mathrm{S}}^{+},\zeta_{\mathrm{E}}]\Psi^{*}[\zeta_{\mathrm{S}}^{-},\zeta_{\mathrm{E}}] \\ &\equiv N \mathrm{exp}\Big[-\varrho_{k_{\mathrm{S}}}|\zeta_{\mathbf{k}_{\mathrm{S}}}^{+}|^{2} - \varrho_{k_{\mathrm{S}}}^{*}|\zeta_{\mathbf{k}_{\mathrm{S}}}^{-}|^{2} + \frac{\gamma_{k_{\mathrm{S}}}}{2}(\zeta_{\mathbf{k}_{\mathrm{S}}}^{+}\zeta_{\mathbf{k}_{\mathrm{S}}}^{-*} + \zeta_{\mathbf{k}_{\mathrm{S}}}^{+*}\zeta_{\mathbf{k}_{\mathrm{S}}}^{-}) + \cdots \Big] \\ & \text{"Pure state" part } \Psi\Psi^{*} & \text{Mixed part due to non-unitarity (~influence functional)} \end{split}$$



$$\checkmark \ \varrho_{k_{\mathrm{S}}} \colon \psi_{2}^{\mathrm{tree}} + \psi_{2}^{\mathrm{loop}} + \underbrace{\bigcirc_{\psi_{3}}}_{\zeta_{\mathrm{S}}^{+}} + \underbrace{\bigcirc_{\psi_{3}}}_{\psi_{3}} + \underbrace{\bigcirc_{\psi_{4}}}_{\psi_{4}} + \underbrace{\bigcirc_{\psi_{4}}}_{\psi_{4}} + \underbrace{\bigcirc_{\psi_{4}}}_{\psi_{4}} + \cdots$$
 Time ordered in Schwinger-Keldysh

* Purity:
$$P = \operatorname{Tr}\left[\rho^2\right] \simeq \frac{1}{1+\Gamma}$$
 where $\Gamma = 4P_{k_{\mathrm{S}}}\gamma_{k_{\mathrm{S}}} \simeq 2P_{k_{\mathrm{S}}}\int_{\mathbf{q}}P_{q}P_{|\mathbf{k}_{\mathrm{S}}-\mathbf{q}|}|\psi_{3,(\mathbf{k}_{\mathrm{S}},-\mathbf{q},\mathbf{q}-\mathbf{k}_{\mathrm{S}})}|^2$

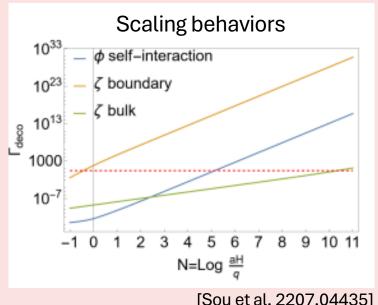
Estimations in previous work

[Nelson 1601.03734, Sou et al. 2207.04435]

Another method: quantum master equation [Burgess et al. astro-ph/061646, Burgess et al. 2211.11046, etc.]

lacktriangle Dependence on scale factor $(
ho_{ ext{off-diag}} \sim e^{-1})$

$$\begin{split} \Gamma &\simeq 2P_{k_{\mathrm{S}}} \int_{\mathbf{q}} P_{q} P_{|\mathbf{k}_{\mathrm{S}} - \mathbf{q}|} |\psi_{3,(\mathbf{k}_{\mathrm{S}}, -\mathbf{q}, \mathbf{q} - \mathbf{k}_{\mathrm{S}})}|^{2} \quad \text{--} \\ &\sim \frac{H^{2}}{M_{\mathrm{pl}}^{2}} \left[\left(\frac{1}{\epsilon^{2}} \left(\frac{aH}{k_{\mathrm{S}}} \right)^{6} + \epsilon^{2} \left(\frac{aH}{k_{\mathrm{S}}} \right)^{3} \right) (1 + \log(k_{\mathrm{IR}}/k_{\mathrm{S}})) + \left(\frac{\Lambda_{\mathrm{phys}}}{H} \right)^{\#} \right] \\ &\qquad \partial_{t} (9aH\zeta^{3}) \qquad a^{2} \epsilon^{2} \zeta (\partial \zeta)^{2} \qquad \text{IR cutoff} \qquad \text{UV cutoff} \end{split}$$



[Sou et al. 2207.04435]

 \triangleright Technical difference from calculations of $\langle \zeta^n \rangle$

Evaluation at the finite time slice, Effects from boundary terms, Necessity of Im ψ_n , ...

UV behavior become worse.

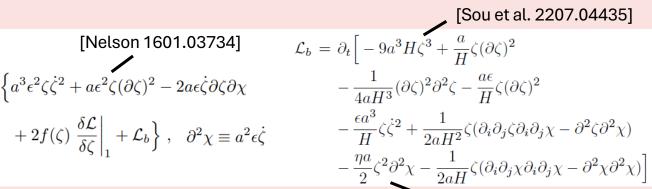
IR may not fully be investigated.

✓ IR: inertial observer's coordinate See our paper [Sano and Tokuda 2504.10472]

✓ UV: time averaged observables as well as renormalization. This talk!

Consistency condition for loop calculations

[Nelson 1601.03734] $S_{3} = \int dt d^{3}x \Big\{ a^{3} \epsilon^{2} \zeta \dot{\zeta}^{2} + a \epsilon^{2} \zeta (\partial \zeta)^{2} - 2a \epsilon \dot{\zeta} \partial \zeta \partial \chi \Big\} - \frac{1}{4aH^{3}} (\partial \zeta)^{2} \partial^{2} \zeta - \frac{a \epsilon}{H} \zeta (\partial \zeta)^{2} \Big\}$



Necessary for correlation function

Consistency condition for loop calculations

$$[\text{Nelson 1601.03734}] \qquad \mathcal{L}_{b} = \partial_{t} \left[-9a^{3}H\zeta^{3} + \frac{a}{H}\zeta(\partial\zeta)^{2} - \frac{1}{4aH^{3}}(\partial\zeta)^{2} + a\epsilon^{2}\zeta(\partial\zeta)^{2} - 2a\epsilon\dot{\zeta}\partial\zeta\partial\chi \right] \\ + 2f(\zeta)\left. \frac{\delta\mathcal{L}}{\delta\zeta} \right|_{1} + \mathcal{L}_{b}, \quad \partial^{2}\chi \equiv a^{2}\epsilon\dot{\zeta}$$

$$-\frac{1}{4aH^{3}}(\partial\zeta)^{2}\partial^{2}\zeta - \frac{a\epsilon}{H}\zeta(\partial\zeta)^{2} - \frac{a\epsilon^{2}}{H}\zeta(\partial\zeta)^{2} - \frac{\epsilon a^{3}}{H}\zeta\dot{\zeta}^{2} + \frac{1}{2aH^{2}}\zeta(\partial_{t}\partial_{j}\zeta\partial_{t}\partial_{j}\chi - \partial^{2}\zeta\partial^{2}\chi) - \frac{\epsilon a^{3}}{H}\zeta\dot{\zeta}^{2} + \frac{1}{2aH^{2}}\zeta(\partial_{t}\partial_{j}\chi - \partial^{2}\zeta\partial^{2}\chi) - \frac{\epsilon a^{3}}{H}\zeta\dot{\zeta}^{2} + \frac$$

[Sou et al. 2207.04435] $\mathcal{L}_b = \partial_t \left[-9a^3H\zeta^3 + \frac{a}{u}\zeta(\partial\zeta)^2 \right]$

$$-\frac{1}{4aH^3}(\partial\zeta)^2\partial^2\zeta - \frac{a\epsilon}{H}\zeta(\partial\zeta)^2$$

$$-\frac{\epsilon a^3}{H}\zeta\dot{\zeta}^2 + \frac{1}{2aH^2}\zeta(\partial_i\partial_j\zeta\partial_i\partial_j\chi - \partial^2\zeta\partial^2\chi)$$

$$-\frac{\eta a}{2}\zeta^2\partial^2\chi - \frac{1}{2aH}\zeta(\partial_i\partial_j\chi\partial_i\partial_j\chi - \partial^2\chi\partial^2\chi)$$

Necessary for correlation function

Maldacena's consistency condition for wavefunction [Maldacena astro-ph/0210603, Pimentel 1309.1793]

$$\lim_{k_1 \to 0} \psi_3(k_1, k_3) = \left(3 - k_3 \frac{d}{dk_3}\right) \psi_2(k_3)$$

$$\lim_{k_1 \to 0} \langle \zeta_1 \zeta_2 \zeta_3 \rangle = -\langle \zeta_1 \zeta_1 \rangle \left(3 + k_3 \frac{d}{dk_3}\right) \langle \zeta_3 \zeta_3 \rangle$$

$$\langle \zeta_1 \zeta_2 \rangle = \frac{1}{2 \operatorname{Re}[\psi_2(k_1)]}, \quad \langle \zeta_1 \zeta_2 \zeta_3 \rangle = -\frac{2 \operatorname{Re}[\psi_3]}{\prod_{i=1}^3 2 \operatorname{Re}[\psi_2(k_i)]}$$

$$\lim_{k_1 \to 0} \langle \zeta_1 \zeta_2 \zeta_3 \rangle = -\langle \zeta_1 \zeta_1 \rangle \left(3 + k_3 \frac{d}{dk_3} \right) \langle \zeta_3 \zeta_3 \rangle$$

$$\langle \zeta_1 \zeta_2 \rangle = \frac{1}{2 \operatorname{Re}[\psi_2(k_1)]}, \quad \langle \zeta_1 \zeta_2 \zeta_3 \rangle = -\frac{2 \operatorname{Re}[\psi_3]}{\prod_{i=1}^3 2 \operatorname{Re}[\psi_2(k_i)]}$$

■ Loop diagram at a time slice

$$k_1 \ll k_2 \simeq k_3 \ll aH$$

$$k_1 \simeq k_2 \gg aH \gg k_3$$

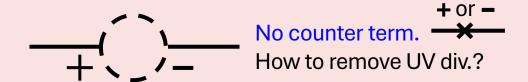
$$k_1^5$$

from
$$\partial_t (a\zeta(\partial_i\zeta)^2/H)$$

UV divergence in equal time

Unitary evolution

➤ Non-unitary evolution



☐ Subtlety of equal time correlators as observables

✓ Divergence from infinite external momenta [e.g., Balasubramanian et al. 1108.3568, Bucciotti 2410.01903 for Minkowski spacetime]

$$\text{E.g.,} \quad \langle \mathcal{O}_1^{\mathbf{k}} \mathcal{O}_2^{-\mathbf{k}}(t) \rangle \sim \int d(\mathbf{x}_1 - \mathbf{x}_2) \frac{1}{|\mathbf{x}_1 - \mathbf{x}_2|^{2\Delta}} \quad \text{diverges even at tree level when } \Delta \geq \frac{3}{2}.$$

✓ Renormalization of composite operators [e.g., Ch. 6 and 7, "Renormalization", Collins 2023]

$$[\phi^2]_{\mathrm{R}}(x) \equiv Z_a \phi^2(x) + \mu^{d/2-3} (Z_b m^2 + Z_c \Box) \phi(x)$$
 Defining finite of leading to model

Defining finite composite operators, leading to modification of observables.

(More intuitive) modification of observables: point-splitting / averaging in time as the resolution of detectors [Agón et al. 1412.3148, Bucciotti 2410.01903, Burgess et al. 2411.09000 for Minkowski spacetime]

Time averaged observables in de Sitter

[Sano and Tokuda 2504.10472]

$$\langle \Phi_1 \Phi_2(\tau) \rangle \supset \tau$$
 $\Phi = \zeta \text{ or } \pi$

Time averaging

$$\int^{\Lambda} k^{\#} dk \longrightarrow \Lambda^{\#}$$



$$\triangleright \overline{\rho}$$

$$\langle \overline{\Phi}_1 \overline{\Phi}_2(\tau) \rangle = \int d\tau_1 d\tau_2 W_{\tau}(\tau_1) W_{\tau}(\tau_2) \langle \Phi_1(\tau_1) \Phi_2(\tau_2) \rangle$$

$$\supset \int d\tau_1 d\tau_2 W_{\tau}(\tau_1) W_{\tau}(\tau_2) \left[\tau_1 \overline{\Phi} \overline{\Phi} \right]$$

$$\frac{1}{|\tau_1 - \tau_2|^\#}$$

This is (expected to be) renormalized.

$$\frac{e^{-ik(\tau_1 - \tau_2)}}{|\tau_1 - \tau_2|^{\#}}$$

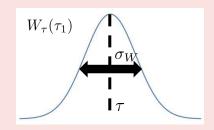
Included in Wightman function.

Not renormalized in standard procedure.

☐ Time averaging

$$W_{\tau}(\tau_1) = \frac{e^{-(\tau_1 - \tau)^2/2\sigma_W^2}}{\sqrt{2\pi\sigma_W^2}},$$

$$G(k; \tau_1, \tau_2) \propto e^{-i\mathbf{k}(\tau_1 - \tau_2)}$$



$$\overline{\Gamma}_{\rm UV} \sim \int_{k>aH} dk \ k^{\#} e^{-\underline{k^2}\sigma_W^2}$$

Exponential decay in sub-horizon

Summary and outlook: Averaging scale?

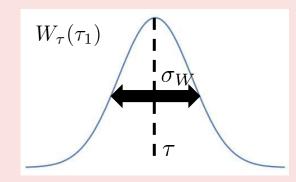
[Sano and Tokuda 2504.10472 and ongoing]

\Box UV divergence of inflationary decoherence $(\rho_{\text{off-diag}} \sim e^{-\Gamma})$

✓ Equal time correlators can include divs. which is not removed without redefining observables.

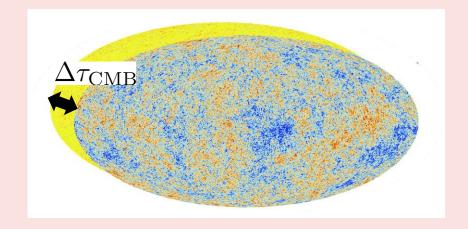
$$\Gamma \sim \frac{\tau}{\textbf{+}} \underbrace{ \frac{\tau}{-}} \underbrace$$

$$\Gamma_{
m UV} \sim \int_{k>aH} dk \; k^{\#} e^{-k^2 \sigma_W^2}$$
 Exp. sup. for decoherence from sub-horizon env.



lacksquare What is σ_W ?

- \checkmark Theoretical resolution $\sigma_W \gtrsim rac{1}{a\Lambda_{\mathrm{HV}}}$
- ✓ Relations to renormalized composite operators?
- ✓ Phenomenological scale? E.g., $\Delta \tau_{\rm CMB}$ When is ζ "measured"? (Quantum history of cosmo. pert. (GW?) including measurement?)



Back up slides

Purity as a quantumness monotone

[Streltsov et al. 1612.07570]

☐ Coherence is basis-dependent

- \checkmark But the maximally mixed state cannot be coherent even when changing basis, $\frac{1}{d} = U \frac{1}{d} U^{\dagger}$.
- "Maximal coherence" exist for each quantum state.

Coherence monotone

- \checkmark Maximal coherence $\mathbb{C}_{\mathrm{m}}(
 ho)=\sup_{U}\mathbb{C}(U
 ho U^{\dagger})$ (example: $S_{lpha}(
 ho||\hat{1}/d)$, which is written by **purity** when lpha=2)

Entanglement monotone

 \checkmark By definition, $\mathbb{C}_{\mathrm{m}} \geq \mathbb{C} \geq 0$ when we use the same distance.

Free states $\left\{\begin{array}{ll} \text{Entanglement: separable states } \mathcal{S} \\ \text{Discord: pointer states } \mathcal{P} \end{array}\right. \rightarrow \operatorname{Tr}_{\mathrm{E}}[\mathcal{S}] \supset \operatorname{Tr}_{\mathrm{E}}[\mathcal{P}] \supset \mathcal{I} \rightarrow \mathbb{C}_{\mathrm{m}} \geq \mathbb{C} \geq \mathbb{D} \geq \mathbb{E} \geq 0$ **Comments on other quantumness** Distance based $\sum_{i} p_{i} \rho_{A,i} \otimes |i\rangle\langle i|_{B}$

Unitarity and Schwinger-Keldysh formalism

☐ Expectation values at a time slice

✓ Perturbation theory in interaction picture (2 pt.)

$$\langle \Omega | U^{\dagger} \zeta^{2}(\tau_{0}) U | \Omega \rangle = \left\langle 0 \left| \left(\overline{\operatorname{T}} e^{i \int_{\tau_{0}}^{\tau} d\tau' H_{\mathrm{I}}} \right) \zeta_{\mathrm{I}}^{2}(\tau) \left(\operatorname{T} e^{-i \int_{\tau_{0}}^{\tau} d\tau' H_{\mathrm{I}}} \right) \right| 0 \right\rangle$$

$$= \langle 0 | \zeta_{\mathrm{I}}^{2} | 0 \rangle - i \int_{\tau_{0}}^{\tau} d\tau' \left\langle 0 | \zeta_{\mathrm{I}}^{2}(\tau) H_{\mathrm{I}}(\tau') | 0 \right\rangle + \mathrm{c.c.}$$

$$+ \int_{\tau_{0}}^{\tau} d\tau' d\tau'' \left\langle 0 | H_{\mathrm{I}}(\tau') \zeta_{\mathrm{I}}^{2}(\tau) H_{\mathrm{I}}(\tau'') | 0 \right\rangle - \int_{\tau_{0}}^{\tau} d\tau' d\tau'' \left\langle 0 | \zeta_{\mathrm{I}}^{2}(\tau) \mathrm{T}[H_{\mathrm{I}}(\tau') H_{\mathrm{I}}(\tau'')] | 0 \right\rangle + \mathrm{c.c.}$$

$$= \text{etc.}$$

$$= \text{etc.}$$

$$= \text{etc.}$$

Comparison with density matrix

$$\langle \Omega | U^{\dagger} \mathcal{O}_{0,\mathbf{S}} U | \Omega \rangle = \mathrm{Tr}[\rho(\tau) \mathcal{O}_{0,\mathbf{S}}] = \mathrm{Tr}_{\mathbf{S}}[\rho_{\mathbf{S}}(\tau) \mathcal{O}_{0,\mathbf{S}}] \qquad \begin{cases} \rho(\tau) = U \, |\Omega\rangle \langle \Omega | \, U^{\dagger} \\ \rho_{\mathbf{S}}(\tau) = \mathrm{Tr}_{\mathbf{E}}[U \, |\Omega\rangle \langle \Omega | \, U^{\dagger}] \end{cases}$$

$$\begin{cases} \rho(\tau) = U |\Omega\rangle\langle\Omega| U^{\dagger} \\ \rho_{S}(\tau) = \text{Tr}_{E}[U |\Omega\rangle\langle\Omega| U^{\dagger}] \end{cases}$$

Path integral
$$\rho_{\mathrm{S}}[\overline{\zeta}_{+},\overline{\zeta}_{-};\tau] = \int_{\Omega}^{\overline{\zeta}_{+}} \mathscr{D}\zeta_{+} \int_{\Omega}^{\overline{\zeta}_{-}} \mathscr{D}\zeta_{-}e^{iS[\zeta_{+}]-iS[\zeta_{-}]+iS_{\mathrm{IF}}[\zeta_{+},\zeta_{-}]} \\ \underbrace{\hspace{1cm}} \text{Non-unitarity (contributions in } \langle \zeta^{2} \rangle : \quad \underline{\hspace{1cm}} - \quad \underline$$

Tomographic approach to quantum state

[Sano and Tokuda 2504.10472]

- \blacksquare Wavefunction $\Psi[\zeta(t)] = \langle \zeta(t) | \psi \rangle$: defined in equal time. How to consider time averaging?
- ☐ Quantum state tomography

$$\langle \zeta_1 \zeta_2 \rangle = \frac{1}{2 \operatorname{Re}[\psi_2(k_1)]}, \quad \langle \zeta_1 \zeta_2 \zeta_3 \rangle = -\frac{2 \operatorname{Re}[\psi_3]}{\prod_{i=1}^3 2 \operatorname{Re}[\psi_2(k_i)]}$$

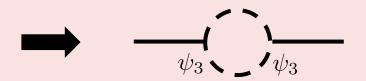
$$\langle \pi_1 \zeta_2 \rangle = -\frac{\operatorname{Im}[\psi_2(k_1)]}{2 \operatorname{Re}[\psi_2(k_1)]}, \quad \langle \pi_1 \zeta_2 \zeta_3 \rangle = \frac{2 \operatorname{Im}[\psi_2(k_1) \psi_3^*]}{\prod_{i=1}^3 2 \operatorname{Re}[\psi_2(k_i)]}$$

$$\mathbf{\Psi}[\zeta] = \exp\left[-\frac{1}{2} \int_{k_1, k_2} \psi_2 \zeta_{k_1} \zeta_{k_2} - \frac{1}{3!} \int_{k_1, k_2, k_3} \psi_3 \zeta_{k_1} \zeta_{k_2} \zeta_{k_3} - \cdots \right]$$
Quantum state is reconstructed from observables

$$\Psi[\zeta] = \exp\left[-\frac{1}{2} \int_{k_1, k_2} \psi_2 \zeta_{k_1} \zeta_{k_2} - \frac{1}{3!} \int_{k_1, k_2, k_3} \psi_3 \zeta_{k_1} \zeta_{k_2} \zeta_{k_3} - \cdots\right]$$

- Quantum state is identified as a probability distribution of canonical variables.
 - ✓ E.g., tree-level of averaged quantum fields

$$\langle \overline{\zeta}_1 \overline{\zeta}_2 \rangle \equiv \frac{1}{2 \mathrm{Re}[\overline{\psi}_2(k_1)]}, \quad \langle \overline{\pi}_1 \overline{\zeta}_2 \rangle \equiv \frac{\mathrm{Im}[\overline{\psi}_2(k_1)]}{2 \, \mathrm{Re}[\overline{\psi}_2(k_1)]}, \quad \longleftarrow \quad \Psi[\overline{\zeta}] \equiv \exp\left[-\frac{1}{2} \int_{k_1, k_2} \overline{\psi}_2 \overline{\zeta}_{k_1} \overline{\zeta}_{k_2} - \cdots\right]$$
 with $[\overline{\zeta}_{\mathbf{k}}, \overline{\pi}_{\mathbf{k}'}] \approx i \hbar (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}')$ Mathematical identity



is included in one-loop corrections of correlation functions

Outlook: Importance of late time evolutions

- Boundary terms in late time [Sano and Tokuda 2504.10472]
 - ✓ During inflation

✓ Late time universe (but before re-entry)

$$\Gamma_{\rm inf} \sim \frac{H^2}{M_{\rm pl}^2} \left[\frac{1}{\epsilon^2} \left(\frac{aH}{k_{\rm S}} \right)^6 + \epsilon^2 \left(\frac{aH}{k_{\rm S}} \right)^3 \right] \quad \Longrightarrow \quad \Gamma_{\rm rad. \ dom.} \sim \frac{H^2}{M_{\rm pl}^2} \left[\frac{1}{\epsilon^2} \left(\frac{a_{\rm f} H_{\rm f}}{k_{\rm S}} \right)^6 \left(\frac{a}{a_{\rm f}} \right)^2 + \epsilon^2 \left(\frac{a_{\rm f} H_{\rm f}}{k_{\rm S}} \right)^3 \left(\frac{a}{a_{\rm f}} \right)^5 \right]$$

- ☐ Time averaging scale?
- ☐ High-frequency gravitational wave [Takeda and Tanaka 2502.18560]
 - ✓ GW with frequency $f_{\rm GW} \gtrsim 100~{\rm Hz}$ (?) may be quantum even today!
 - * Estimation of thermal decoherence by a scalar field, keeping reheating in mind.
- ☐ Outlook
 - ✓ Systematic approaches to sub-horizon evolution for more realistic models?
 - ✓ Entanglement harvesting through detectors? Graviton-photon conversion?
 - ✓ What is more than proving quantumness of gravity? QG from bottom up.