THE INFLATIONARY QCD AXION

Alessio Notari

(Università Roma `La Sapienza")

based on: M. Gorghetto, E. Hardy, H. Nicolaescu, A. N., M. Redi, JHEP 02 (2024), 223

$$\mathscr{L}_{\text{SM}} \supset \theta_{\text{strong}} \frac{\alpha_s}{8\pi} G_{\mu\nu} \tilde{G}^{\mu\nu}$$

• Why CP-violation in QCD is tiny $(\bar{\theta}_{\text{strong}} \ll 1)$?

$$\mathscr{L}_{\text{SM}} \supset \theta_{\text{strong}} \frac{\alpha_s}{8\pi} G_{\mu\nu} \tilde{G}^{\mu\nu}$$

- Why CP-violation in QCD is tiny ($\bar{\theta}_{\rm strong} \ll 1$)?
- QCD Axion solution: promote $\theta_{\rm strong}$ to a dynamical field $\to \frac{a}{f_a}$
- Axion potential minimized at $a=\bar{\theta}_{\rm strong}=0$ (CP conserving)

$$\mathcal{L}_{SM}^{\theta=0} + \frac{1}{2} (\partial_{\mu} a)^2 + \frac{a}{f_a} \frac{\alpha_s}{8\pi} G \tilde{G} + \dots$$

 $_{\bullet}$ Dynamical explanation of $\bar{\theta}_{\rm strong} \ll 1$

$$\mathcal{L}_{SM}^{\theta=0} + \frac{1}{2} (\partial_{\mu} a)^2 + \frac{a}{f_a} \frac{\alpha_s}{8\pi} G \tilde{G} + \dots$$

- $_{\bullet}$ Dynamical explanation of $\bar{\theta}_{\rm strong} \ll 1$
- ullet Below Λ_{OCD} a potential is generated by this operator:

$$V_a \approx \Lambda_{QCD}^4 \left[1 - \cos\left(\frac{a}{f_a}\right) \right]$$

$$\mathcal{L}_{SM}^{\theta=0} + \frac{1}{2} (\partial_{\mu} a)^2 + \frac{a}{f_a} \frac{\alpha_s}{8\pi} G \tilde{G} + \dots$$

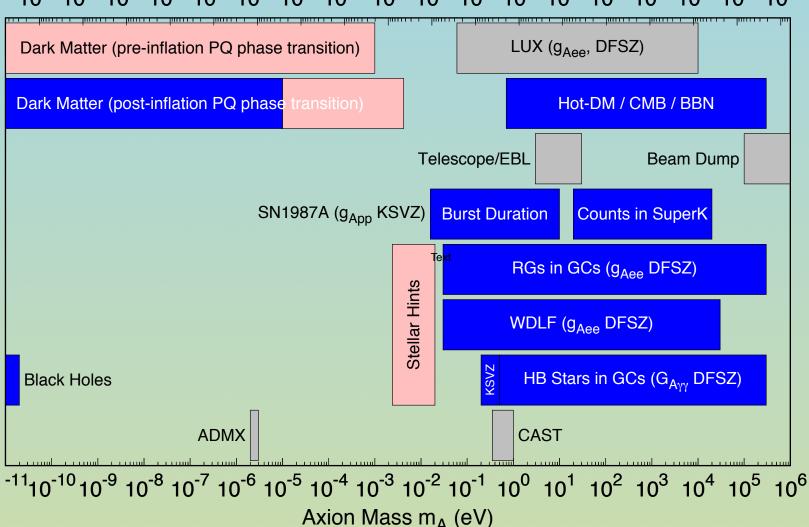
- $_{\bullet}$ Dynamical explanation of $\bar{\theta}_{\rm strong} \ll 1$
- $_{\bullet}$ Below Λ_{OCD} a potential is generated by this operator:

$$V_a \approx \Lambda_{QCD}^4 \left[1 - \cos\left(\frac{a}{f_a}\right) \right]$$

Light scalar particle,
$$m_a \approx \Lambda_{QCD}^2/f_a \approx 0.57 eV \left(\frac{10^7 GeV}{f_a}\right)$$

• Large f_a required (Cosmology, Supernovae, star cooling...)

 $f_A (GeV)$ $10^{17}10^{16}10^{15}10^{14}10^{13}10^{12}10^{11}10^{10}10^9 10^8 10^7 10^6 10^5 10^4 10^3 10^2 10^1 10^0$



- The axion can form a coherent condensate with high occupation numbers
- · Can be described by classical fields
- Example: start at 'initial time' with homogenous $a(t_i) = a_0 \neq 0$ over our horizon

•
$$V(a) = \Lambda_{\rm QCD}^4 \left[1 - \cos \left(\frac{a}{f_a} \right) \right]$$
 at Temperatures below $\Lambda_{\rm QCD}$

Coherent oscillations
$$\ddot{a} + 3H\dot{a} + V'(a) = 0$$

Approximately
$$\ddot{a} + 3H\dot{a} + m_a^2 a = 0$$

Frozen when $m_a \ll H$ (early times)

Oscillates in time like matter when $m_a \gtrsim H$ (late times)

• The axion arises from a Complex Scalar (``KSVZ" models):

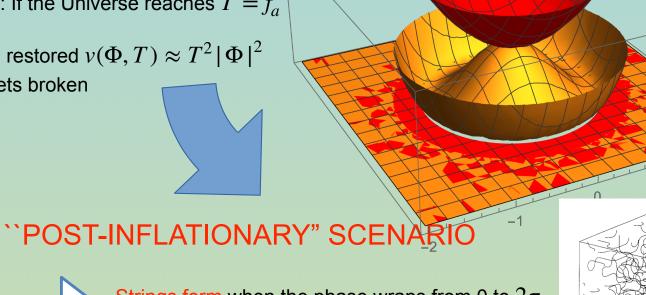
•
$$V(\Phi) = \frac{\lambda}{4} (|\Phi|^2 - v^2)^2$$
 $v = f_a \ (N_{DW} = 1)$

- The symmetry is broken during inflation $\Phi = ve^{i\theta} = f_a e^{i\frac{a}{v}}$,
- A scalar field in inflation has quantum fluctuations of order H_i
- If very small ($H_i \ll f_a$)
- $\theta(t_i) = a(t_i)/v$ is a random value in $(-\pi, \pi)$, almost homogenous in our horizon

"PRE-INFLATIONARY" SCENARIO

• Another possible scenario: If the Universe reaches $T = f_a$

- At $T > f_a$ the symmetry is restored $v(\Phi, T) \approx T^2 |\Phi|^2$
- At $T \approx f_a$ the symmetry gets broken



The field falls randomly

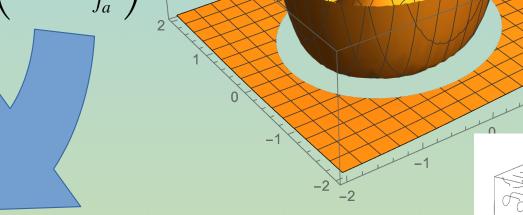
Strings form when the phase wraps from 0 to 2π

Network of strings forms

O(1) string per Hubble volume

Much later the potential gets tilted

•
$$V(\Phi) = \frac{\lambda}{4} (|\Phi|^2 - v^2)^2 + \Lambda_{QCD} \left(1 - \cos(\frac{a}{f_a})\right)$$



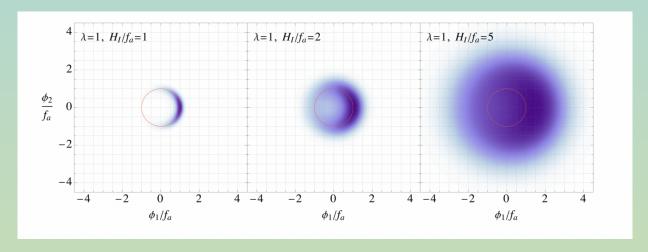
1.0

0.5

The field goes in the only minimum (after forming domain walls at $a/f_a \approx \pi$)

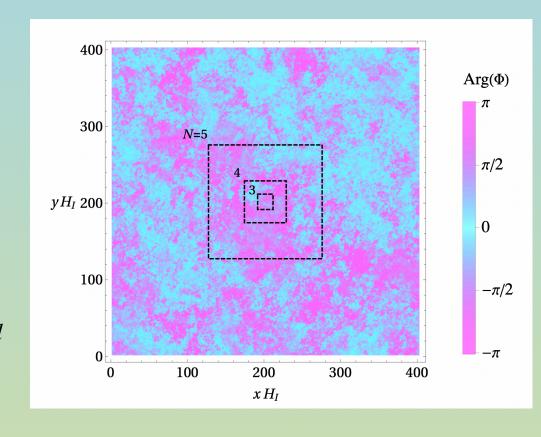
Strings and walls decay into (cold?) axions, which add to Cold Dark Matter

- THIRD POSSIBILITY: "STOCHASTIC INFLATIONARY SCENARIO"
- $H_i \gtrsim f_a$ large fluctuations during inflation (see Lyth 1992, Lyth & Stewart 1992)
- Both the <u>angular and the radial</u> field have large fluctuations

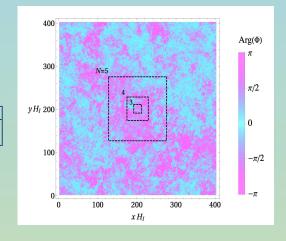


- Strings form due to large inflationary fluctuations
- If Temperature is never large enough after inflation $(T < f_a)$ Symmetry is NOT restored after inflation

- On small patches: angle θ almost constant
- On <u>large</u> patches: can wrap from 0 to 2π
- Strings form, separated by a length $d=e^{N_s}/H_I$
- 2 CASES:
- If $N_{\rm s} \gtrsim 60$ field coherent in our entire horizon
- If $N_s < 60$ Strings separated by macroscopic length d

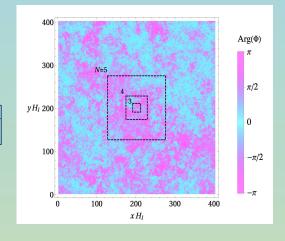


- Once a Fourier mode exits horizon becomes classical with amplitude $\frac{H_I}{2\pi}$ gives a kick to average field value
- In a coarse-grained region of size H⁻³: field undergoes random walk, independently in causally disconnected regions, $Var(\Phi) = \frac{H_I}{Var(\Phi)}$



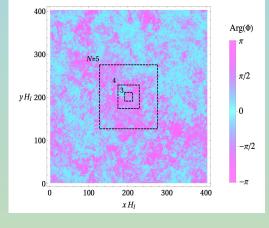
- Once a Fourier mode exits horizon becomes classical with amplitude $\frac{H_I}{2\pi}$ gives a kick to average field value
- In a coarse-grained region of size H⁻³: field undergoes random walk, independently in causally disconnected regions, $Var(\Phi) = \frac{H_I}{2\pi}$
- ullet grows as \sqrt{N} until it reaches quantum vs classical equilibrium:

$$P(\Phi) = \exp\left[-8\pi^2/3V(\Phi)/H^4\right]$$



- Once a Fourier mode exits horizon becomes classical with amplitude $\frac{H_I}{2\pi}$ gives a kick to average field value
- In a coarse-grained region of size H⁻³: field undergoes random walk, independently in causally disconnected regions, $Var(\Phi) = \frac{H_I}{2\pi}N$
- ullet grows as \sqrt{N} until it reaches quantum vs classical equilibrium:

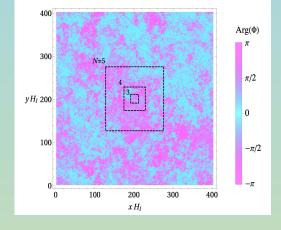
$$P(\Phi) = \exp\left[-8\pi^2/3V(\Phi)/H^4\right]$$



· After $N_s \simeq 10/\sqrt{\lambda}$:equilibrium reached (at N>N_s exponential suppression)

- Once a Fourier mode exits horizon becomes classical with amplitude $\frac{H_I}{2\pi}$ gives a kick to average field value
- In a coarse-grained region of size H⁻³ : field undergoes random walk, independently in causally disconnected regions, $Var(\Phi) = \frac{H_I}{2\pi} \Lambda$
- $\bullet \quad \Phi \quad \text{grows as} \ \sqrt{N} \ \text{until it reaches quantum vs classical equilibrium:}$

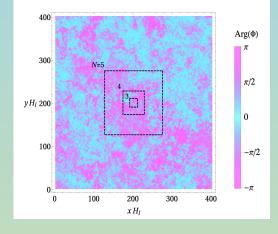
$$P(\Phi) = \exp\left[-8\pi^2/3V(\Phi)/H^4\right]$$



- After $N_s \simeq 10/\sqrt{\lambda}$: equilibrium reached (at N>N_s exponential suppression)
- At equilibrium: $\langle |\Phi| \rangle = H_I/\lambda^{1/4}$

- Once a Fourier mode exits horizon becomes classical with amplitude H_I gives a kick to average field value
- In a coarse-grained region of size H⁻³ : field undergoes random walk, independently in causally disconnected regions, $Var(\Phi) = \frac{H_I}{2\pi} \Lambda$
- $\bullet \quad \Phi \quad \text{grows as} \ \sqrt{N} \ \text{until it reaches quantum vs classical equilibrium:}$

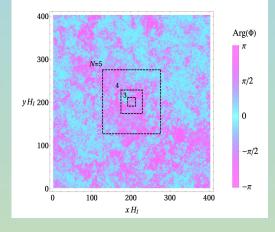
$$P(\Phi) = \exp\left[-8\pi^2/3V(\Phi)/H^4\right]$$



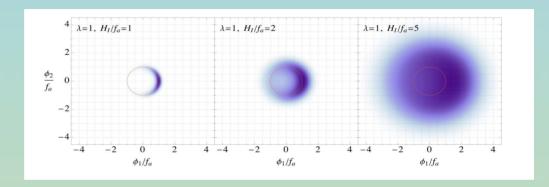
- After $N_s \simeq 10/\sqrt{\lambda}$: equilibrium reached (at N>N_s exponential suppression)
- At equilibrium: $\langle |\Phi| \rangle = H_I/\lambda^{1/4}$
- After $N_{\rm g}$ Arg(Φ) randomized in $[0,2\pi]$.

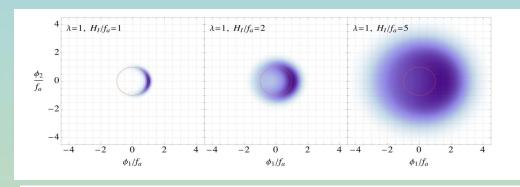
- Once a Fourier mode exits horizon becomes classical with amplitude H_I gives a kick to average field value
- In a coarse-grained region of size H⁻³: field undergoes random walk, independently in causally disconnected regions, $\operatorname{Var}(\Phi) = \frac{H_I}{2\pi} N$
- Φ grows as \sqrt{N} until it reaches quantum vs classical equilibrium:

$$P(\Phi) = \exp\left[-8\pi^2/3V(\Phi)/H^4\right]$$

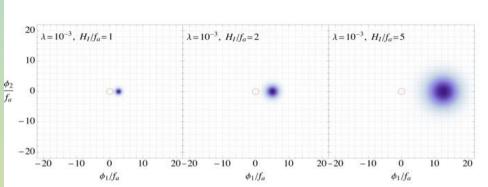


- · After $N_s \simeq 10/\sqrt{\lambda}$:equilibrium reached (at N>N exponential suppression)
- At equilibrium: $\langle |\Phi| \rangle = H_I/\lambda^{1/4}$
- After N_s Arg(Φ) randomized in $[0,2\pi]$. $N_s=60$ realized for $\;\lambda \simeq 0.05$

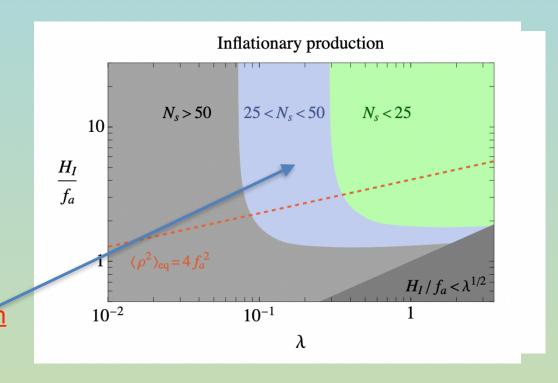


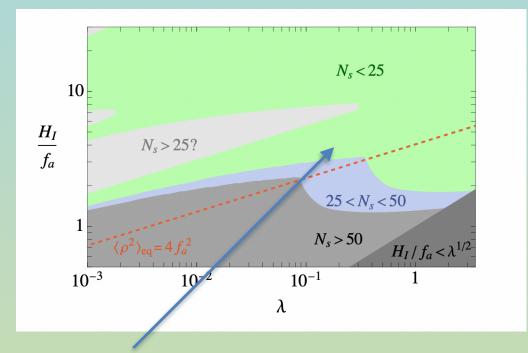


Radial field: $\langle |\Phi| \rangle = H_I/\lambda^{1/4}$



- Strings separated by a length $d=e^{N_{\rm s}}/H_{\rm I}$
- $N_s \approx 10/\sqrt{\lambda}$
- If $N_{\rm s}\gtrsim 60$ field coherent in our entire horizon
- If $N_{\rm s}$ < 60 Strings form, separated by a macroscopic length d
- If $25 < N_s < 60$ strings reenter the horizon after QCD phase transition: "LATE STRINGS" (NEW phenomenology)

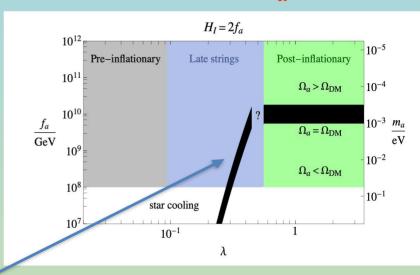




Overshoot mechanism after inflation:
if the field starts high in the potential,
it can roll on the opposite side

AXION DARK MATTER at LARGE m

Standard post-inflationary: Uncertainty from string simulations, but close to $f_a \sim 10^{10} - 10^{11} \text{GeV} \ (m_a \sim 10^{-3} - 10^{-4} \text{eV})$



AXION DARK MATTER at LARGE m

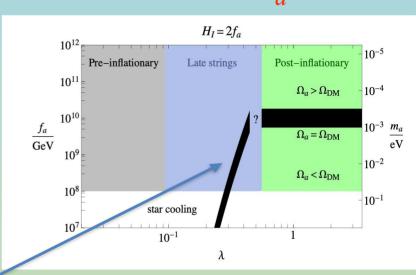
Standard post-inflationary: Uncertainty from string simulations, but close to $f_a \sim 10^{10} - 10^{11} \text{GeV} \ (m_a \sim 10^{-3} - 10^{-4} \text{eV})$

Late strings scenario

String network born *underdense* (<1 string per Hubble patch)

-Becomes dense (enter horizon) later, even below QCD epoch

-As soon as they enter the horizon: decay into DM axions



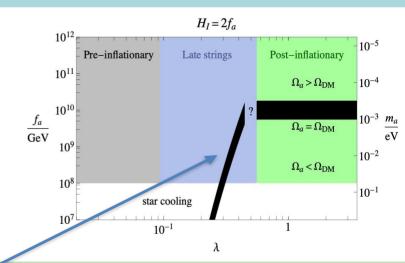
AXION DARK MATTER at LARGE m

Standard post-inflationary: Uncertainty from string simulations, but close to $f_a \sim 10^{10} - 10^{11} \text{GeV} \ (m_a \sim 10^{-3} - 10^{-4} \text{eV})$

Late strings scenario

String network born *underdense* (<1 string per Hubble patch)

- -Becomes dense (enter horizon) later, even below QCD epoch
- -As soon as they enter the horizon: decay into DM axions

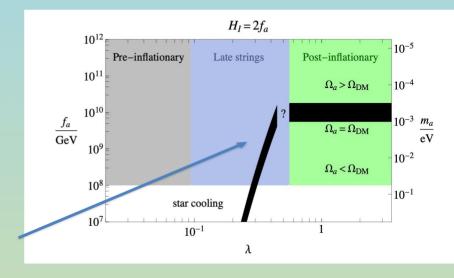


- Smaller f_a can be achieved for correct DM abundance (down to astrophysical bound $f_a \sim 10^8 - 10^{10} \text{GeV}$ ($m_a \sim 10^{-1} - 10^{-3} \text{eV}$)

AXION MINICLUSTERS + ISOCURVATURE

Late strings scenario

As in Standard post-inflationary:
String-wall system leaves O(1)
inhomogeneities in axion DM at length
scales H-1 at collapse



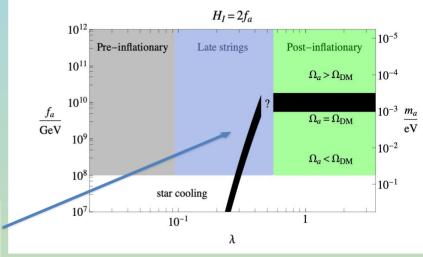
AXION MINICLUSTERS + ISOCURVATURE

Late strings scenario

As in Standard post-inflationary: String-wall system leaves O(1) inhomogeneities in axion DM at length scales H⁻¹ at collapse

Very large miniclusters, up to

$$egin{aligned} M_{m{b}} &\simeq 24 M_{\odot} \left[rac{10}{g_*(T_{
m PQ})}
ight]^{rac{1}{2}} \left[rac{1\,{
m MeV}}{T_{
m PQ}}
ight]^3 \end{aligned}$$



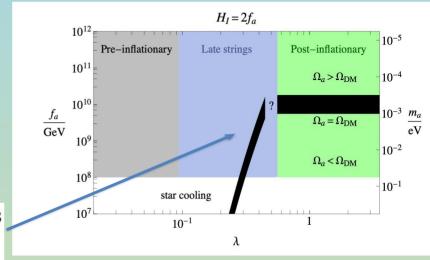
AXION MINICLUSTERS + ISOCURVATURE

Late strings scenario

As in Standard post-inflationary: String-wall system leaves O(1) inhomogeneities in axion DM at length scales H⁻¹ at collapse

Very large miniclusters, up to

$$m{M_b} \simeq 24 M_{\odot} \left[rac{10}{g_*(T_{
m PQ})}
ight]^{rac{1}{2}} \left[rac{1\,{
m MeV}}{T_{
m PQ}}
ight]^3$$



Isocurvature?

DM axions from misalignment carry large isocurvature (nearly flat), while String-Wall network should have a k³ IR tail. What happens when DW collapse?

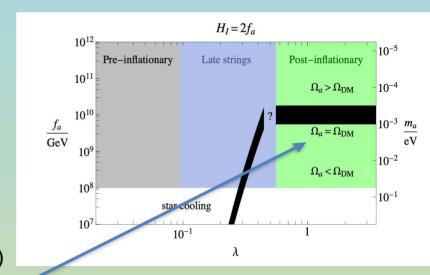
CONCLUSIONS

Late strings scenario

If $H_1 \gtrsim f_a$ and $f_a > T_{max}$ underdense string network could arise from Inflation

- Correct DM abundance could be reached at Smaller f_a (down to astrophysical bound):

$$f_a \sim 10^8 - 10^{10} \text{GeV} \ (m_a \sim 10^{-1} - 10^{-3} \text{eV})$$



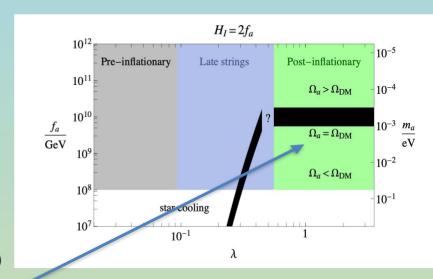
CONCLUSIONS

Late strings scenario

If H_I ≥ f_a and f_a>T_{max} underdense string network could arise from Inflation

- Correct DM abundance could be reached at Smaller f_a (down to astrophysical bound):

$$f_a \sim 10^8 - 10^{10} \text{GeV} \ (m_a \sim 10^{-1} - 10^{-3} \text{eV})$$



Phenomenological constraints:

- Large miniclusters
- Need to understand better isocurvature constraints

