

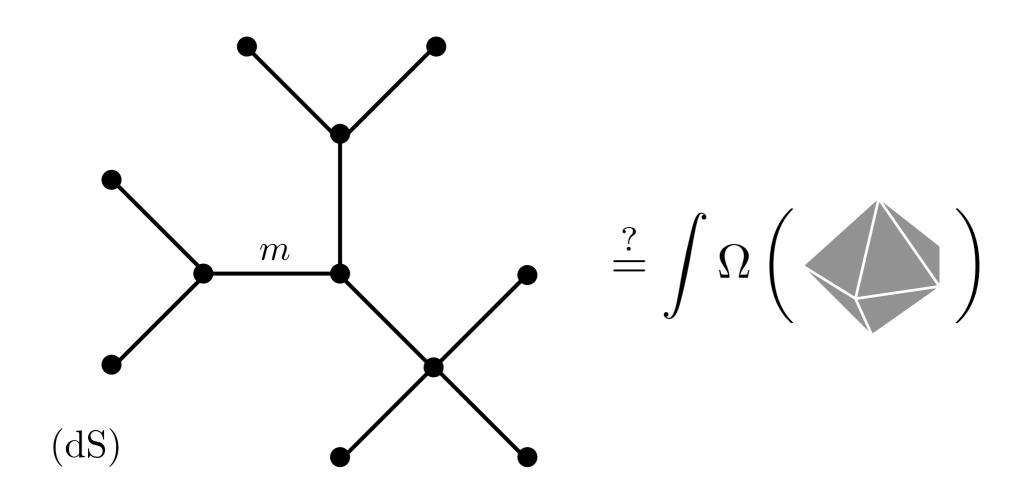
Denis Werth

Max Planck Institute for Physics

Max Planck-IAS-NTU Center for Particle Physics, Cosmology and Geometry

UNIVERSE+

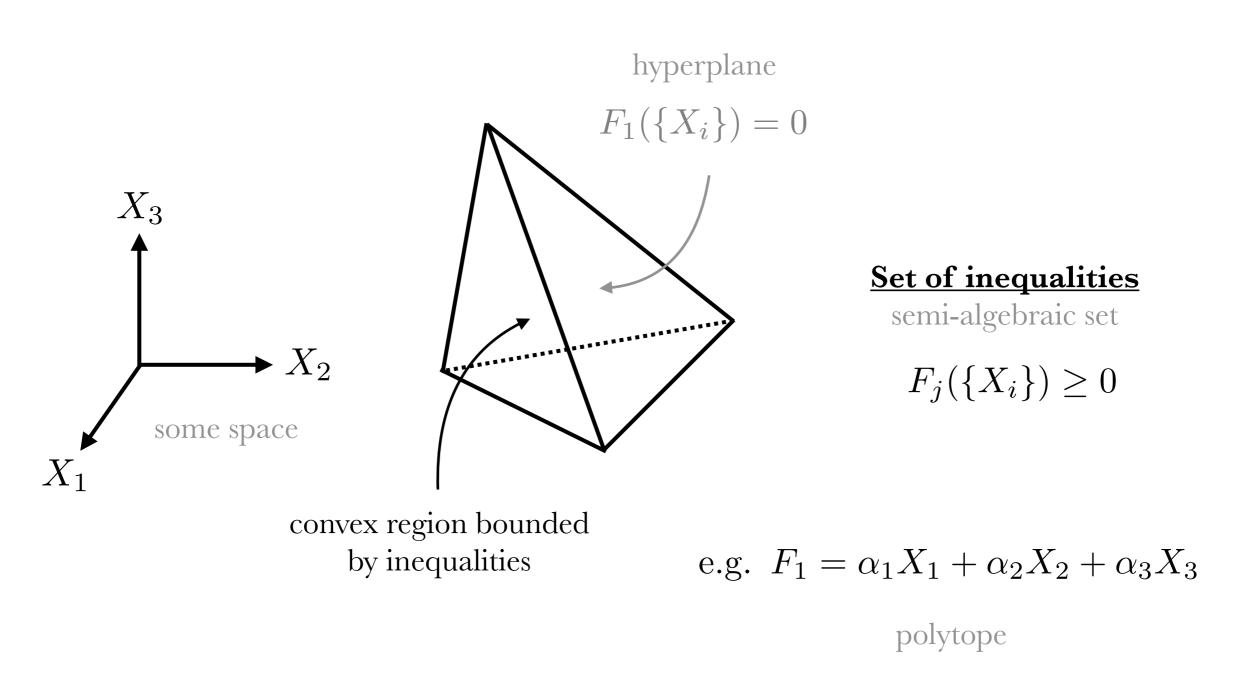
Can massive de Sitter cosmological correlators be described by positive geometries?



Short answer: We don't know yet!

Goal of the talk: Give you the tools to understand the question & why it's worth asking

What is a *positive geometry* in simple terms?

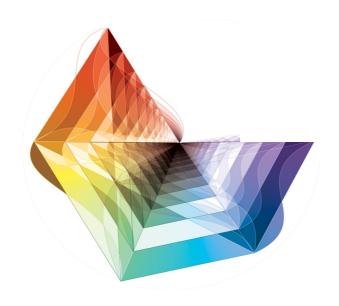


Positive geometry is a new emergent field of mathematics that is related to and inspired by physics

Positive geometries can describe (flat-space) scattering amplitudes in *some* theories

Amplituhedron

(Planar N = 4 SYM) tree level & loop integrands

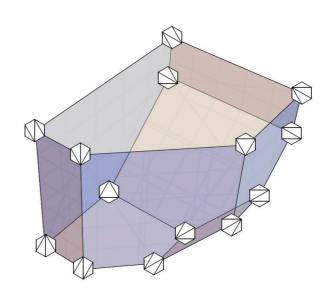


[Arkani-Hamed, Trnka '13]

momentum twistor space/ positive Grassmanian

ABHY Associahedron

 $(\operatorname{Tr}(\phi^3) / \operatorname{bi-adjoint} \phi^3)$



[Arkani-Hamed, Bai, He, Yan '17]

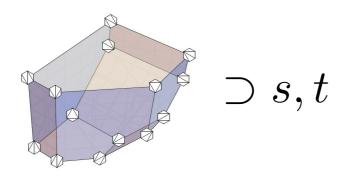
kinematic space of Mandelstam invariants

Surfacehedron generalisation to loop integrands

[Arkani-Hamed, Frost, Salvatori, Plamondon, Thomas '23]

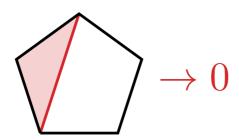
Novel properties emerge from positive geometries

No Feynman diagrams



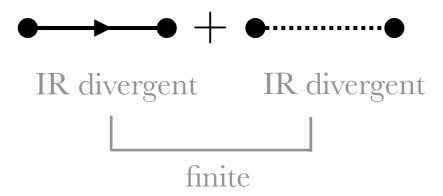
Physical properties made manifest

e.g. singularities encoded in the facet structure of the positive geometry



New decompositions from triangulations

No spurious divergences



No computational advantage but rather new conceptual viewpoint!

Positive geometry can bring a *novel fundamental perspective* on cosmological correlators

Geometry

(defined by set of inequalities in physical or auxiliary space)

Canonical differential form

(rational integrands)

Cosmological correlators

(special functions after integration)

What geometries are relevant?

How to construct the forms?

$$\Omega\left(\begin{array}{c} & & \\ & & \end{array}\right)$$
 (?)

How to perform the integration?

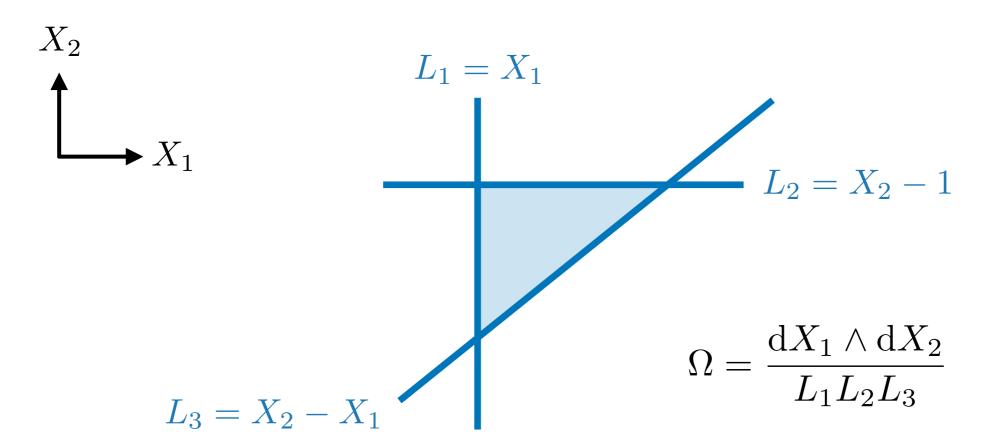
$$\int \Omega \left(\begin{array}{c} \\ \\ \end{array} \right) \quad (?)$$

Interval (1D)

The canonical differential form should have logarithmic singularities at the endpoints $\begin{cases} X+a=0\\ X+b=0 \end{cases}$

$$\Omega = \frac{\mathrm{d}X}{X+a} - \frac{\mathrm{d}X}{X+b} = \frac{(b-a)\mathrm{d}X}{(X+a)(X+b)} = \mathrm{d}\log\left(\frac{X+a}{X+b}\right)$$

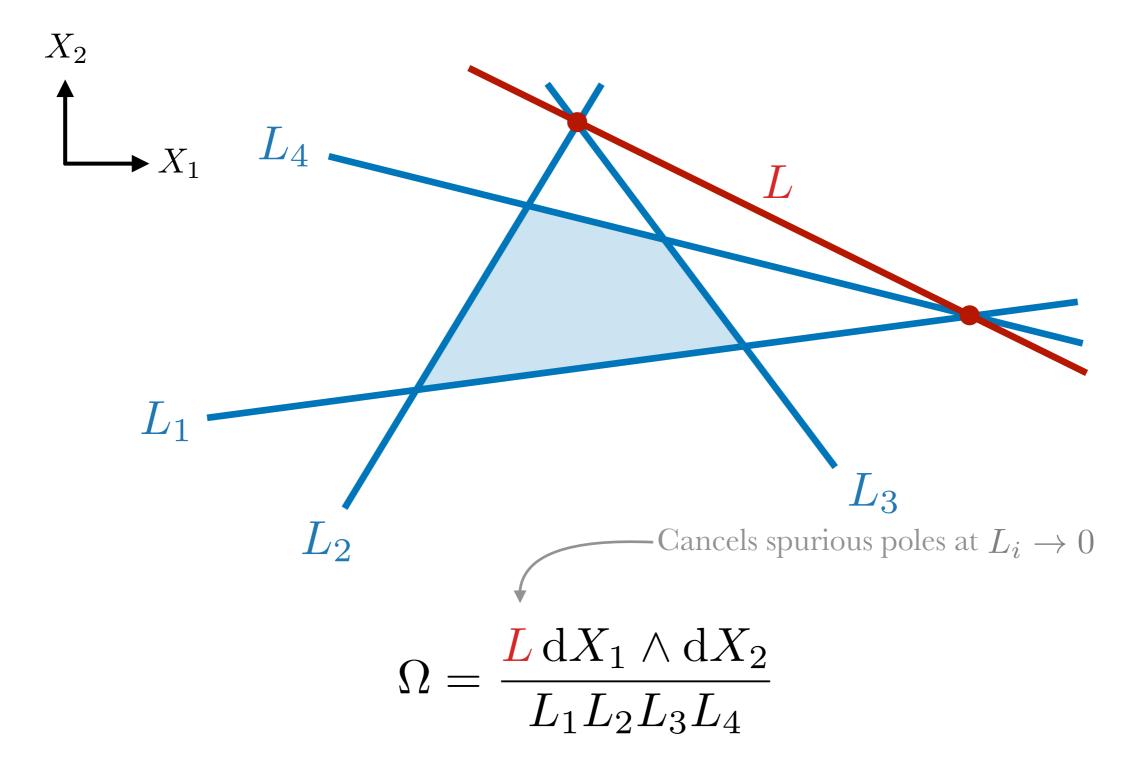
Triangle (2D)



$$\operatorname{Res}_{L_2 \to 0}[\Omega] = \frac{\mathrm{d}X_1}{X_1(1 - X_1)} \quad \longleftarrow \quad \text{canonical form of the interval}$$

<u>Definition:</u> Unique differential form with logarithmic singularities (only) on all the boundaries of the space, with residues on each boundary given by the canonical form on that boundary

Quadrilateral (2D)



This recursive definition & construction of canonical forms generalises to higher dimensions

De Sitter correlators of a *self-interacting conformally* coupled scalar field emerge from positive geometries

$$S = \int d^4x \sqrt{-g} \left[-\frac{1}{2} (\partial_\mu \phi)^2 - \frac{R}{12} \phi^2 - \sum_n \frac{\lambda_n}{n!} \phi^n \right]$$

This generalises to arbitrary tree graphs and loop integrands

Massive de Sitter correlators have integral representations

with hypergeometric kernels & rational integrands

$$S = \int d^4x \sqrt{-g} \left[-\frac{1}{2} (\partial_{\mu}\phi)^2 - \frac{R}{12} \phi^2 - \frac{1}{2} (\partial_{\mu}\sigma)^2 - \frac{1}{2} m^2 \sigma^2 - \sum_{m,n} \frac{\lambda_{m,n}}{n!m!} \phi^m \sigma^n \right]$$

[Talk by Nathan Belrhali]

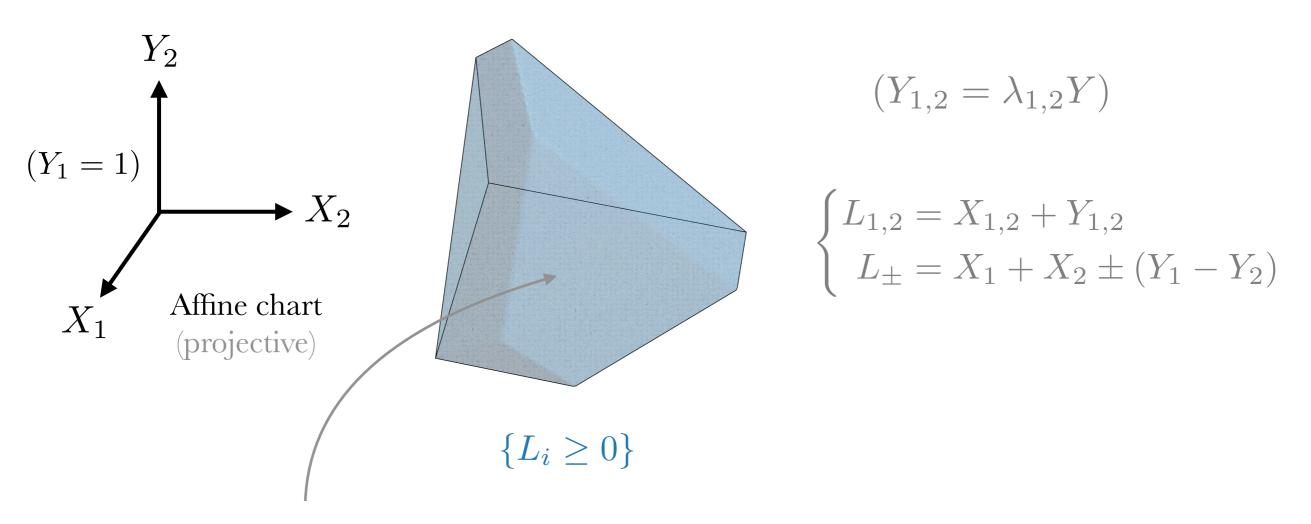
This generalises to arbitrary tree graphs

... but the rational integrands *are not* canonical differential forms of positive geometries in the λ -space...

$$\begin{array}{c} X_1 & X_2 \\ \bullet & Y \end{array} = \int\limits_1^\infty P_{i\mu}(\lambda_1) P_{i\mu}(\lambda_2) \mathrm{d}\lambda_1 \mathrm{d}\lambda_2 \left(\frac{1}{L_1 L_+} + \frac{1}{L_2 L_-} - \frac{1}{L_1 L_2}\right) \\ \lambda_2 & L_1 \\ \lambda_2 & L_2 \\ \text{this is not a positive geometry!} & \begin{cases} L_{1,2} = X_{1,2} + \lambda_{1,2} Y \\ L_{\pm} = X_1 + X_2 \pm (\lambda_1 - \lambda_2) Y \end{cases} \end{array}$$

 $\Omega \stackrel{!}{=} \frac{\mathrm{d}\lambda_1 \wedge \mathrm{d}\lambda_2}{L_1 L_2 L_+} + \frac{\mathrm{d}\lambda_1 \wedge \mathrm{d}\lambda_2}{L_1 L_2 L_+} = \frac{(L_+ + L_-) \,\mathrm{d}\lambda_1 \wedge \mathrm{d}\lambda_2}{L_1 L_2 L_+ L_-}$

... however we obtain a positive geometry in the *projective kinematic space*



we need a slight deformation of the definition to interpret the integrand as the canonical differential form associated to this positive geometry

Work in progress!

Many open questions...

- Is there a simple & systematic canonical form (deformation) for massive dS correlators?
- Can we read off the complexity (transcendental weight) from a suitable integral representation of massive dS correlators?
- How to evaluate the integrals? (Landau analysis, canonical differential equations, ...)
- Can we go beyond individual graphs? (towards dS massive cosmohedron)

•

$$\Omega \to \tilde{\Omega}$$

