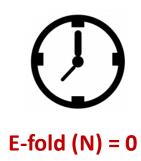
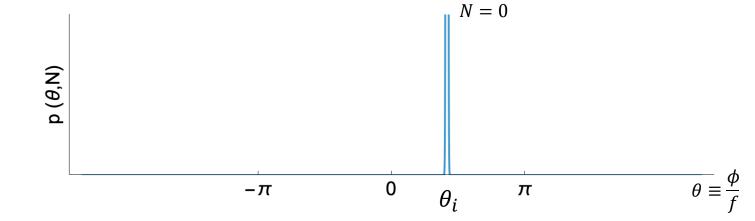


Universidade do Minho

Domain Walls and PBHs from Inflationary Diffusion

Ricardo Z. Ferreira


Based on JCAP 10 (2025) 055, with Miguel Faria and Fabrizio Rompineve

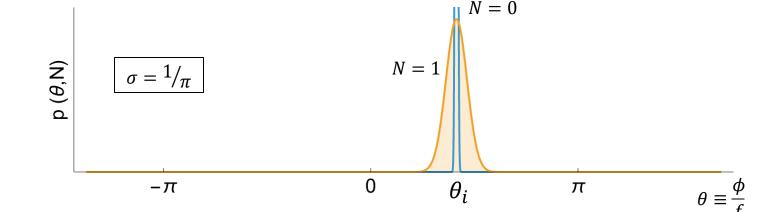

Setup

• Inflation + Scalar Field + Discrete Symmetry (Massless/very light) $\phi \rightarrow \phi + 2\pi f$

Setup

• Inflation + Scalar Field + Discrete Symmetry (Massless/very light) $\phi \rightarrow \phi + 2\pi f$

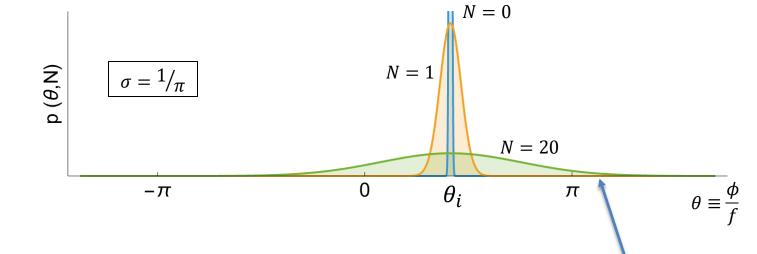
Diffusion begins


Controlling parameter

- $-\sigma = \frac{H}{2\pi f}$ per e-fold.
- After N e-folds, field diffuses according to:

$$p(\theta, N) \propto \exp\left(-\frac{(\theta - \theta_i)^2}{2 \sigma^2 N}\right)$$

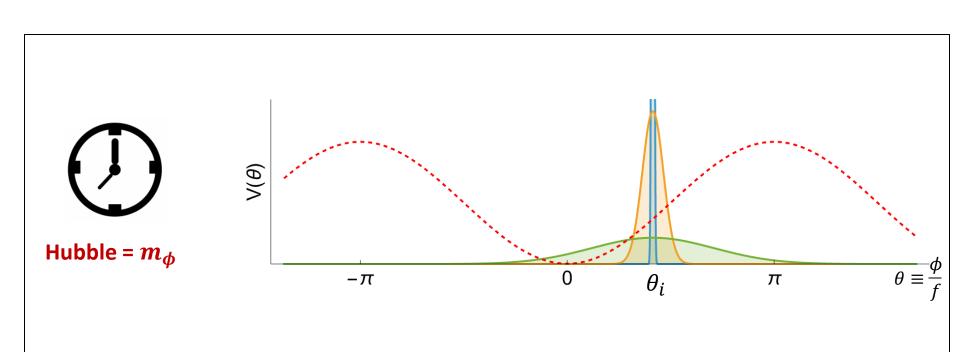
E-fold (N) = 1


Diffusion begins

- $-\sigma = \frac{H}{2\pi f}$ per e-fold.
- After N e-folds, field diffuses according to:

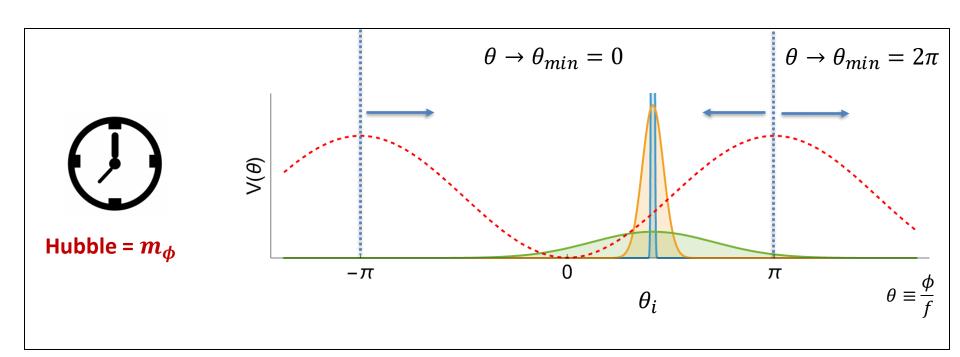
$$p(\theta, N) \propto \exp\left(-\frac{(\theta - \theta_i)^2}{2 \sigma^2 N}\right)$$

E-fold(N)=20

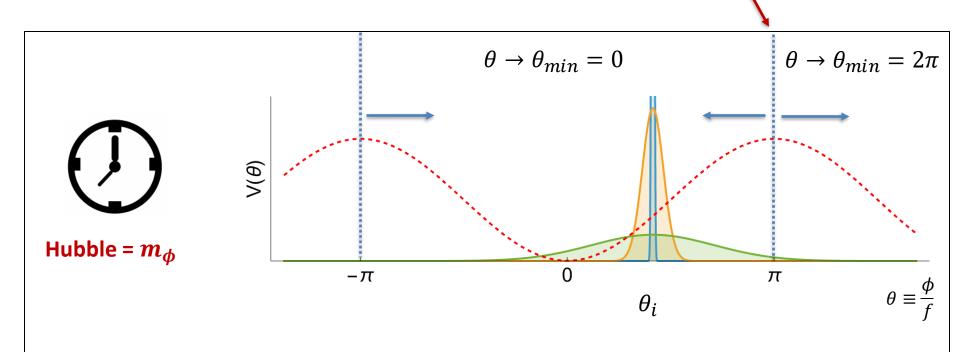

 $p(heta>\pi)$ is small but non-negligible...

After inflation

- At some point, $extbf{ extit{H}}(ext{t}) \simeq extbf{ extit{m}}_{m{\phi}}$ and $m{\phi}$ starts **oscillating**



It seems that I have a mass!


After inflation

- At some point, $H(t) \simeq m_{\phi}$ and ϕ starts oscillating:
 - In most places θ will oscillate **around 0**.
 - But, in some rare regions it oscillates around 2π .

After inflation

Dividing these regions of space there will **be closed domain walls! DW tension:** $\sigma_{DW} \sim m_\phi \, f^2$.

Domain Walls → **Dark Matter**

– Domain Walls (DWs) re-enter the horizon:

$$-\mathbf{f} = \int_{\theta > \pi} p(\theta, N) d\theta = DW$$
 volume fraction

$$-\frac{df}{dN}$$
 = **Probability** of DW **re-entering** per e-fold time

[Hasegawa & Kawasaki 18, Kitajima & Takahashi 20']

Domain Walls → **Dark Matter**

— Domain Walls (DWs) re-enter the horizon:

$$-\mathbf{f} = \int_{\theta > \pi} p(\theta, N) d\theta = DW$$
 volume fraction

$$-\frac{df}{dN}$$
 = **Probability** of DW **re-entering** per e-fold time

[Hasegawa & Kawasaki 18, Kitajima & Takahashi 20']

– And quickly collapse into:

- Cold Dark Matter Axions
- **PBHs**, if DWs are <u>supercritical</u> $(r_s > 1/\mathrm{H})$ (Even if aspherical)

,
$$\rho_{dm}(t_0)=\int \frac{df}{dN_*}\; \rho_{dw} \left(\frac{a(N_*)}{a0}\right)^3 dN_*$$

$$, M_{dw} = \sigma \times (4\pi H^{-2})$$

Domain Walls → **Dark Matter**

– Domain Walls (DWs) re-enter the horizon:

$$-\mathbf{f} = \int_{\theta > \pi} p(\theta, N) d\theta = DW$$
 volume fraction

[Hasegawa & Kawasaki 18, Kitajima & Takahashi 20']

- And quickly collapse into:
 - Cold Dark Matter Axions

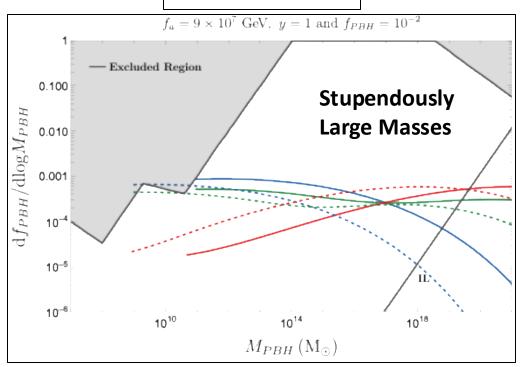
• **PBHs**, if DWs are supercritical
$$(r_S > 1/\mathrm{H})$$
 (Even if aspherical)

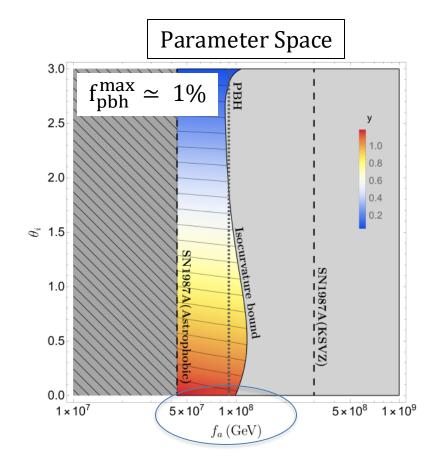
,
$$\rho_{dm}(t_0)=\int \frac{df}{dN_*}\; \rho_{dw} \left(\frac{a(N_*)}{a0}\right)^3 dN_*$$

$$, M_{dw} = \sigma \times (4\pi H^{-2})$$

Additional features

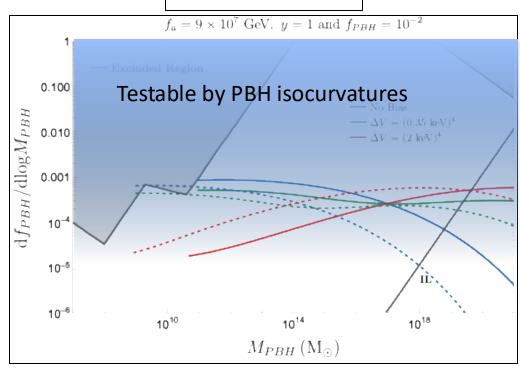
A. Isocurvatures:

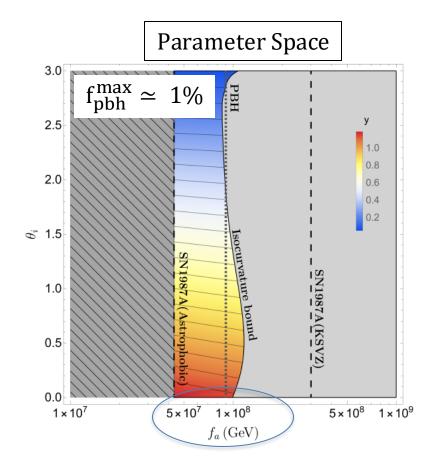

- Mechanism relies on stochastic diffusion on small scales. (not constrained by CMB data).
- **But...** residual fluctuations on large scales are constrained by CMB.


B. Primordial Black Holes!

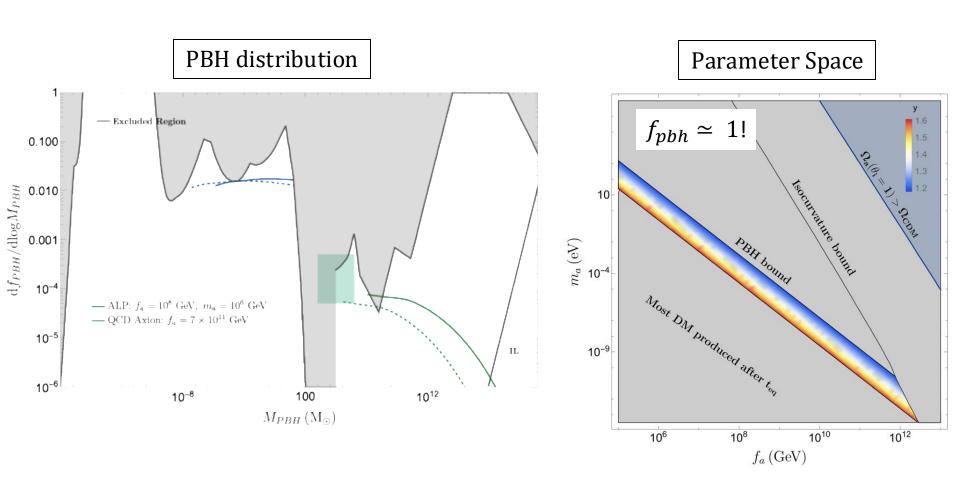
- Large DM abundance seems to come with large PBH abundance.
- Very broad distribution (no tuning!)

Example 1: The QCD axion


PBH distribution



Example 1: The QCD axion


PBH distribution

[see recent work Ivanov et al., Gerlach et al.]

Example 2: Generic ALP

Conclusions

Mechanism summary:

- Inflation \rightarrow diffusion \rightarrow closed DWs
- Horizon Reentry → DW collapse → PBHs + Cold DM

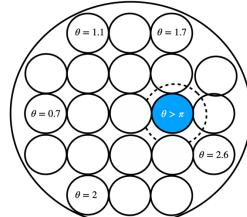
Features:

- No strings present in axion models;
- Broad PBH distribution. No tuning.

• Future:

- Astrophysical implications (GWs?). PBH clustering?
- Uncertainties in the DW collapse.

Extra Slides


Isocurvatures \rightarrow DW formation

[Faria, Ferreira and Rompineve 25']

- After inflation:
 - when $m_a(T) > H$, the regions of space where $\theta > \pi$ the oscillates the nearest minimum (2π) .
 - Superhorizon DWs are formed (even for KSVZ!)
 - At horizon reenter, the DWs colapse into:
 - Dark Matter axions

$$ho_{\mathrm{dm}}^{\mathrm{dw}}(t_0) = \int_{N_{\mathrm{cs}}}^{N_{\mathrm{osc}}} eta(N_*) \,
ho_{\mathrm{dw}} \left(rac{a(H_*)}{a_0}
ight)^3 dN_*$$

• **PBHs**, If DWs are <u>supercritical</u> $(r_S > 1/H M_{\rm dw} = 4\pi\sigma/H^2 + 4\pi\Delta V/(3H^3)$.

