Knot reconstruction of the scalar primordial power spectrum with Planck, ACT, and SPT CMB data

On arXiv:2503.10609 with Mario Ballardini

Antonio Raffaelli - Inflation 2025 - Paris, 01/12/2025

Primordial Power Spectrum

The primordial curvature power spectrum (PPS) sets the initial conditions for cosmological fluctuations in our Universe.

$$P(k) = A_{s} \left(\frac{k}{k_{*}}\right)^{n_{s}-1}$$

Primordial Power Spectrum

The primordial curvature power spectrum (PPS) sets the initial conditions for cosmological fluctuations in our Universe.

$$P(k) = A_{s} \left(\frac{k}{k_{*}}\right)^{n_{s}-1}$$

Being defined on all scales, it provides a tool to connect different cosmological observables from the early to the late Universe.

Primordial Power Spectrum

The primordial curvature power spectrum (PPS) sets the initial conditions for cosmological fluctuations in our Universe.

$$P(k) = A_{s} \left(\frac{k}{k_{*}}\right)^{n_{s}-1}$$

- Being defined on all scales, it provides a tool to connect different cosmological observables from the early to the late Universe.
- It can be probed both with CMB and galaxy surveys.

The primordial curvature power spectrum (PPS) sets the initial conditions for cosmological fluctuations in our Universe.

$$P(k) = A_{s} \left(\frac{k}{k_{*}}\right)^{n_{s}-1}$$

- Being defined on all scales, it provides a tool to connect different cosmological observables from the early to the late Universe.
- It can be probed both with CMB and galaxy surveys.
- Searching for features or departures from a power-law form in the PPS can shed light on the physics of inflation and other aspects of the early Universe.

Knot reconstruction

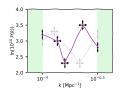


Figure: Visualization of knots reconstruction

- The aim of this research is to reconstruct the PPS in an model-independent way.
- This can be done through knots reconstruction (flexknot) [Millea and Bouchet 2018, Handley et al. 2019], sampling the amplitude and scale of the points of the PPS and then interpolate. This allows to probe the whole parameter space.

Knot reconstruction

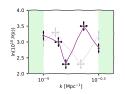


Figure: Visualization of knots reconstruction

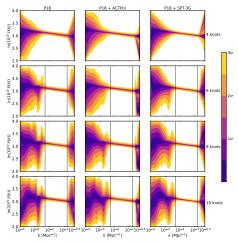
- The aim of this research is to reconstruct the PPS in an model-independent way.
- This can be done through knots reconstruction (flexknot) [Millea and Bouchet 2018, Handley et al. 2019], sampling the amplitude and scale of the points of the PPS and then interpolate. This allows to probe the whole parameter space.

- As a Boltzmann-Einstein solver for computing spectra we use a modified version of CAMB that computes spectra starting from interpolated PPS.
- We use a modified version of Cobaya together with PolyChord for sampling parameters.

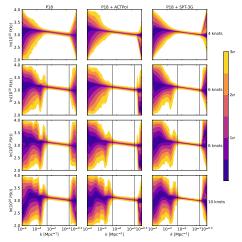
Parameter	Prior type	Prior range
$\Omega_b h^2$ $\Omega_{\rm odm} h^2$ $\tau_{\rm 1000}$ $100\theta_{\rm MC}$ In $(10^{10}A_s)$ n_s $\log_{10}(k_i)$ In $(10^{10}\mathcal{P}_{\mathcal{R}})$	Uniform Uniform Uniform Uniform Uniform Uniform Uniform Sorted Uniform Uniform	[0.019,0.025] [0.095,0.145] [0.01,0.4] [1.03,1.05] [1.61,3.91] [0.8,1.2] [-4,-0.3] [2,4]

Table: Priors on the cosmological parameters

The datasets used are from different CMB experiments: Planck [Planck 2018 results V. CMB Power spectra and likelihoods], Atacama Cosmology Telescope (ACTPol) DR4 [Choi et al. 2020], South Pole Telescope (SPT-3G) [Balkenhol et al. 2018].



- The datasets used are from different CMB experiments: Planck [Planck 2018 results V. CMB Power spectra and likelihoods], Atacama Cosmology Telescope (ACTPol) DR4 [Choi et al. 2020], South Pole Telescope (SPT-3G) [Balkenhol et al. 2018].
- With a growing number of knots, features in the PPS become more visible.
- Sampling logarithmically in scales focuses the search on large scales.

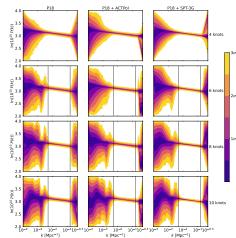


The datasets used are from different CMB experiments: Planck [Planck 2018 results V. CMB Power spectra and likelihoods], Atacama Cosmology Telescope (ACTPol) DR4 [Choi et al. 2020], South Pole Telescope (SPT-3G) [Balkenhol et al. 2018].

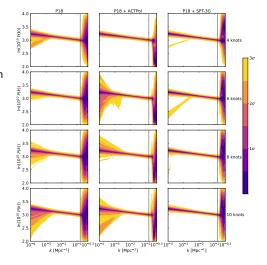
- With a growing number of knots, features in the PPS become more visible.
- Sampling logarithmically in scales focuses the search on large scales.
- The power law holds up to $k = 0.16 \,\mathrm{Mpc}^{-1}$ for Planck alone, and up to $k = 0.25 \,\mathrm{Mpc}^{-1}$ and $k = 0.20 \,\mathrm{Mpc}^{-1}$ when including ACTPol and

SPT-3G, respectively.

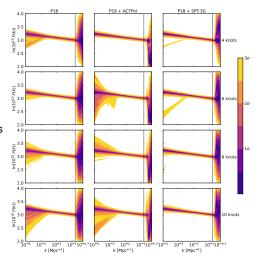
Deviations from a power-law PPS are constrained within a few percent in this range.



- We also sampled linearly on the scales.
- This allows to look for features on small scales.



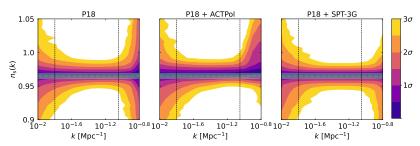
- We also sampled linearly on the scales.
- This allows to look for features on small scales.
- We do not see improvements in the scales up to which power law holds (same *k*_{max} as before).
- We do not observe features emerging at small scales.



Scalar spectral index

 The study of the scalar spectral index and its running can give important information on the underlying inflationary model

$$n_s - 1 = \frac{d \log P(k)}{d \log k}$$



■ On the scales probed by Planck n_s is constant with negligible error compatible with 1σ constraints from Λ CDM. On small and large scales there is room for running of n_s .

Reconstruction results with A₁

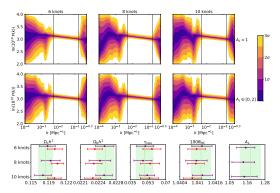


Figure: Red: reconstruction with $A_L = 1$; purple: free A_L ; green region: Λ CDM (power-law PPS).

- We also tested the reconstruction allowing A_L to vary. (Planck 2018 results X: Constraints on inflation. Domènech & Kamionkowski (2019); Ballardini & Finelli (2022)]
- In principle, features on small scales could absorb the effect of A_L.

Reconstruction results with A_I

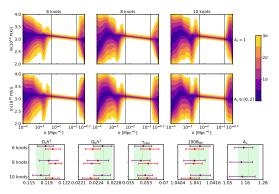


Figure: Red: reconstruction with $A_L = 1$; purple: free A_L ; green region: Λ CDM (power-law PPS).

- We also tested the reconstruction allowing A_L to vary. (Planck 2018 results X: Constraints on inflation. Domènech & Kamionkowski (2019): Ballardini & Finelli (2022)!
- In principle, features on small scales could absorb the effect of A_L.
- Running the free-A_L case against the fixed-A_L = 1 case, we find that the reconstructed PPS remains unchanged between the two, and the recovered value of A_L is consistent as well.

PPS from inflation

In inflationary models, curvature perturbations are generated from quantum fluctuations of the inflaton field.

$$\dfrac{\delta\phi}{\phi}\,\longrightarrow\,\dfrac{\delta\rho}{\rho}\,\longrightarrow\,$$
 gauge-invariant curvature perturbations $\mathcal{R},\,\zeta$

PPS from inflation

In inflationary models, curvature perturbations are generated from quantum fluctuations of the inflaton field.

$$\frac{\delta \phi}{\phi} \ \longrightarrow \ \frac{\delta \rho}{\rho} \ \longrightarrow \ \text{gauge-invariant curvature perturbations} \ \mathcal{R}, \ \zeta$$

The background dynamics during inflation and the inflaton behavior can be parametrized through slow-roll parameters.

$$\epsilon_1 = -\frac{H'}{H^2},$$

$$\epsilon_2 \equiv n = \frac{d \log \epsilon}{1 + 1}$$

■ The slow-roll parameters and the sound speed c_s can be interpreted as generators of features in the PPS in the context of the EFT of inflation [Cheung et al. 2008]. Fourier inversion of the PPS [Palma 2014; Palma et al. 2016; Durakovic et al. 2019] relates these parameters to observable features.

$$\begin{split} \epsilon_2 &\equiv \eta = \frac{d\log\epsilon_1}{dN} \qquad k^3 \frac{\Delta \mathcal{P}}{\mathcal{P}_0}(k) = -\frac{1}{4} \int_{-\infty}^{+\infty} d\tau \, \left[\frac{1}{8} \theta'''' + \frac{\delta''_H}{2\tau^2} - \frac{\delta_H}{\tau^4} \right] \sin(2k\tau) \\ \theta &= 1 - c_{\rm s}^2 \quad , \quad \delta_H = 3\epsilon + 3\eta/2 - \tau\eta'/2 \end{split}$$

PPS from inflation

In inflationary models, curvature perturbations are generated from quantum fluctuations of the inflaton field.

$$\frac{\delta \phi}{\phi} \ \longrightarrow \ \frac{\delta \rho}{\rho} \ \longrightarrow \ \text{gauge-invariant curvature perturbations} \ \mathcal{R}, \ \zeta$$

The background dynamics during inflation and the inflaton behavior can be parametrized through slow-roll parameters.

$$\epsilon_1 = -rac{H'}{H^2},$$
 $\epsilon_2 \equiv \eta = rac{d\log\epsilon_1}{dN}$

■ The slow-roll parameters and the sound speed c_S can be interpreted as generators of features in the PPS in the context of the EFT of inflation [Cheung et al. 2008]. Fourier inversion of the PPS [Palma 2014; Palma et al. 2016; Durakovic et al. 2019] relates these parameters to observable features.

$$\epsilon_2 \equiv \eta = \frac{d \log \epsilon_1}{dN} \qquad k^3 \frac{\Delta \mathcal{P}}{\mathcal{P}_0}(k) = -\frac{1}{4} \int_{-\infty}^{+\infty} d\tau \left[\frac{1}{8} \theta'''' + \frac{\delta''_H}{2\tau^2} - \frac{\delta_H}{\tau^4} \right] \sin(2k\tau)$$

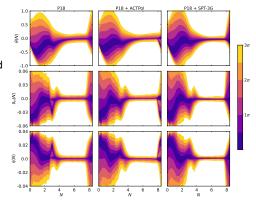
$$\theta = 1 - c_*^2 \quad , \quad \delta_H = 3\epsilon + 3\eta/2 - \tau \eta'/2$$

■ We reconstructed the parameters emerging at first order in perturbation theory, namely ϵ , η , and c_s , the effective speed of sound of perturbations during inflation.

Reconstruction of inflationary parameters

$$k^3 \frac{\Delta \mathcal{P}}{\mathcal{P}_0}(k) = -\frac{1}{4} \int_{-\infty}^{+\infty} d\tau \left[\frac{1}{8} \theta'''' + \frac{\delta''_H}{2\tau^2} - \frac{\delta_H}{\tau^4} \right] \sin(2k\tau)$$
$$\theta = 1 - c_s^2 \quad , \quad \delta_H = 3\epsilon + 3\eta/2 - \tau\eta'/2$$

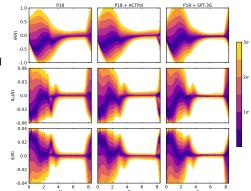
• We can separate the two components coming from variations of c_s (first row) and the slow roll parameters δ_H (second row).



$$k^{3} \frac{\Delta \mathcal{P}}{\mathcal{P}_{0}}(k) = -\frac{1}{4} \int_{-\infty}^{+\infty} d\tau \left[\frac{1}{8} \theta'''' + \frac{\delta''_{H}}{2\tau^{2}} - \frac{\delta_{H}}{\tau^{4}} \right] \sin(2k\tau)$$

$$\theta = 1 - c_{s}^{2} \quad , \quad \delta_{H} = 3\epsilon + 3\eta/2 - \tau\eta'/2$$

- We can separate the two components coming from variations of $c_{\rm s}$ (first row) and the slow roll parameters δ_H (second row).
- We then studied the case of sudden variations of the background during inflation $\theta=0, \, \eta'\gg\eta, \epsilon$ and neglect subdominant terms (third row).

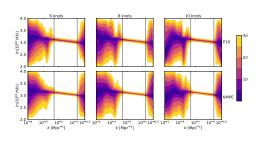


Conclusion

- We studied the reconstruction of the PPS and compared the reconstruction obtained with different datasets.
- We reconstructed parameters in the EFT of inflation: effective speed of sound and slow-roll parameters.
- We reconstructed the scalar spectral index. In principle it is possible to reconstruct the running of n_s, although one must be careful with the reconstruction method.
- AD Currently looking for a PostDoc!
- Main interests are initial conditions and extended cosmological models:
 - Features in primordial power spectrum from combined analysis of CMB and LSS
 - Running of the scalar spectral index from LSS
 - Cosmic Neutrino Background anisotropies

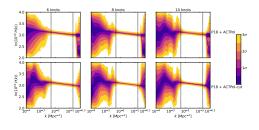
Thanks!

Comparison between Planck PR3 and Planck PR4



- We did a comparison between reconstruction with PR4 (indicated as NPIPE [Delouis et al 2019, Rosenberg et al 2022, Carron et al 2022]) and PR3 (indicated as P18) Planck data.
- We observe no significant difference between the two other than a little smoothing of the bump present at $k \sim 10^{-2.8} \,\mathrm{Mpc^{-1}}$.

ACT dataset cut



- Knot reconstruction is sensitive to features in datasets;
- We observed a weird behaviour at small scales when using ACTPol likelihood.
- We cut the last 4 datapoints and compared the reconstruction.
- We see how reconstruction changes when we do not include the last points even at large scales.

Cosmological parameters posteriors

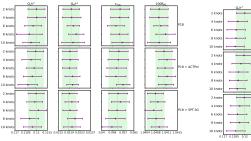


Figure: Posteriors on cosmological parameters for logarithmic sampling.

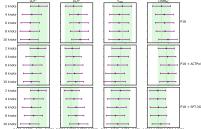


Figure: Posteriors on cosmological parameters for linear sampling.